Roulette Wheel Selection

\#	01	0.98
\#	02	0.93
\#	03	0.87
\#	04	0.75
\#	05	0.61
\#	06	0.54
\#	07	0.48
\#	08	0.36
\#	09	0.21
\#	10	0.16

Calculate the probability with which \#10 chromosome is selected.

Traveling Salesperson

with 5 cities under distant matrix

	A	B	C	D	E
A	0	5	3	2	4
B	5	0	7	2	1
C	3	7	0	1	8
D	2	2	1	0	6
E	4	1	8	6	0

```
What is a route starting from A
    of a chromosome 4 2 7 8
        and its fitness?
```

Evolving Neural Network for XOR

$$
\begin{aligned}
& \text {-0. } 5 \\
& \text { x1 => 0 --> } 0 \quad 0 \quad 0.6 \\
& 0.3 \\
& x \quad 0 \rightarrow y \\
& -0.8 \\
& \text { x2 => ○ } \rightarrow \text { ○ } 00.4 \\
& 0.7
\end{aligned}
$$

Calculate the fitness

Sorting Algorithms (1)

A chromosome to sort 4 items

> with
> 100111100110001110011011
> Sort
> CADB
> and
> show the fitness value of the result.

Sorting Algorithms (2)

Diploidy chromosomes to sort 4 items
Two parents are now
100111100110
001110011011
\&
110111001101
100001100101

```
Create one child. Then sort CADB by the child and
show the fitness value of the result.
```


Prisoner's Dilemma

Assuming chromosome of A \& B are

```
1 1 0 0 1 0 1 0 1 1 0 1 0 1 0 0 ~ 0 1 0 1 0 0 1 0 1 0 1 1 0 0 0 1 ~ 0 1 0 1 0 1 0 0 ~ 0 1 0 1 1 0 1 0 ~ 1 0 0 1 0 1 0 0 ~ 1 0 1 0 0 0 0 1 ~ \&
1 1 0 0 1 0 1 0 0 0 1 1 0 1 0 0 ~ 0 0 0 1 0 1 1 1 ~ 0 1 0 0 1 0 1 0 ~ 1 0 0 1 1 0 0 0 ~ 1 1 0 1 0 0 0 0 ~ 1 1 0 1 0 0 1 0 1 0 1 0 1 0 0 1
```

What is the next action of A ? And then B ?

$$
\begin{array}{lllll}
\mathrm{A} & 0 & 1 & 0 & ? \\
\mathrm{~B} & 1 & 1 & 0 & ?
\end{array}
$$

Dimension reduction - Data visualization

Assuming 7D to 2D Reduction, Distance matrix of 7-D 5 points after normalization is

$$
\begin{array}{lllll}
0.0 & 0.8 & 0.2 & 0.5 & 0.1 \\
0.8 & 0.0 & 0.3 & 0.7 & 0.9 \\
0.2 & 0.3 & 0.0 & 0.6 & 0.1 \\
0.5 & 0.7 & 0.6 & 0.0 & 1.0 \\
0.1 & 0.9 & 0.1 & 1.0 & 0.0
\end{array}
$$

Calculate fitness of

 (3243597618)
Fitness Sharing (1)

Lucky dog with 2 sausages

```
    Starting from (500,500), now dog A is at (797,795), B
is at(799,798), C is at (802, 802), while sausage is at
(800,800). Calculate shared fitness of dog A, B and C,
    with \sigma being 6.
```


Fitness Sharing (2)
 2-D Function minimization

6 chromosomes each representing $x=1,2.5,3.5,4,4.5$ and 6 exist.
Now assuming fitness is

$$
y=-(x-3)^{\wedge} 2
$$

Calculate the shared fitness of with σ being 2.

A representation of coordinate x by binary chromosome
 $$
\begin{aligned} & \text { Assuming } x=0 \text { is } \\ & (00000) \\ & \text { and } x=10 \text { is } \\ & (11111) . \end{aligned}
$$

Then what chromosome represent $\mathrm{x}=7$?

Crowding algorithm

```
    Assume now fitness function is
                y = - (x - 5)^2
    When population is
    x \in {1,2,3,4,5,6,7,8}
        create
        c1 & c2
        from
        p1 = 2& p2 = 6
Then which of these four survived?
```


What if two Fitness Functions?

Assume two fitness functions

$$
\begin{aligned}
& y=(x-3)^{\wedge} 2 \\
& y=(x-6)^{\wedge} 2
\end{aligned}
$$

When population is $x \in\{1,2,3,4,5,6,7,8\}$
(1) which $x=5$ dominates?
(2) $x=7$ is dominated by which?
(3) What is rank of $x=2$?

