What else?

Knapsack Problem

Price and size of each item.

Number of item	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Item's praice	77	88	67	14	36	10	68	36	87	68	34	45	53	77	36	76	9	39	84	22
Item's weight	39	5	74	12	84	16	87	83	34	50	39	66	89	76	5	79	13	4	73	13

Fitness vs. Generation.

The best combination with maximum total price.

| Itum | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| :--- |
| Number
 of items | 4 | 5 | 0 | 2 | 0 | 1 | 0 | 0 | 4 | 5 | 4 | 0 | 0 | 1 | 4 | 0 | 0 | 4 | 1 | 4 |
| Item's
 price | 308 | 440 | 0 | 28 | 0 | 10 | 0 | 0 | 348 | 340 | 216 | 0 | 0 | 77 | 144 | 0 | 0 | 156 | 84 | 88 |

Yulia Lishko (2014)

Dimension Reduction

(1) A classification of iris flowers

x_{1}	x_{2}	x_{3}	x_{4}	class
5.1	3.5	1.4	0.2	1 (Setosa)
4.9	3.0	1.4	0.2	1 (Setosa)
4.7	3.2	1.3	0.2	1 (Setosa)
\cdots	\cdots	\ldots	\cdots	\ldots
7.0	3.2	4.1	1.4	2 (Versicolor)
6.4	3.2	4.5	1.5	2 (Versicolor)
6.9	3.1	4.9	1.5	2 (Versicolor)
\cdots	\cdots	\cdots	\cdots	\cdots
5.8	2.7	5.1	1.9	3 (Virginica)
7.1	3.0	5.9	2.1	3 (Virginica)
6.3	2.9	5.6	1.8	3 (Virginica)
\cdots	\cdots	\cdots	\cdots	\cdots

(2) 100 points
from surface of hyper sphere in 49^2 $=2401$ dimensional space

3-D Function Optimization

(1) Sphere model

$$
z=x^{2}+y^{2}
$$

(2) 3-D Schwefel function

$$
z=x \sin (|x|)+y \sin (|y|)
$$

(3) An example

Random Mutation Hill-climbing

(1) choose a string at random and call this current-hilltop
(2) choose a locus at random to flip. If the flip leads to an equal or higher fitness then set current-hilltop to the resulting string
(3) goto step (2) until an optimum string has been found or until a maximum number of evaluations have been performed.
(4) return the current-hilltop

A conceptual plot of fitness value defined on a fictitious 2-D space

A needle in a hay stack problem

Ex. Sorting algorithm by Knuth et. al (1964)

63 Comparisons

Evolution of Tree Structure

Prgramming in LISP which can be represented by tree such as
$(\rightarrow 12(1 F(>$ time 10$) 34))$

Its crossover \& mutation
crossover

mutation

Evolution under two Fitness Functions

