Exercises for Bayesian Decision Theory

for special course in 2012

Akira Imada
Brest State Technical University, Belarus

(last modified on)
April 13, 2012

1 A classification under 1-D Gaussian distribution

Exercise 1 Assuming two classes ω_{1} and ω_{2} each follows 1-D Gaussian $N(\mu=3, \sigma=1)$ and $N(\mu=7, \sigma=2)$, respectively. (i) Create 20 sample points from each classes at random and plot them in x-axis. (ii) Then classify the data point, say, $x=5$. Does this point belong to ω_{1} or ω_{2} ? How about the other point, say, (iii) $x=4.5$ or (iv) $x=5.5$?

First, you must recall 1-dimensional Gaussian p.d.f. See as follows.

$$
p(x \mid \omega)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{-\frac{1}{2} \frac{(x-\mu)^{2}}{\sigma^{2}}\right\}
$$

where μ is mean value and σ is standard deviation of the distribution.
An example of 100 points following a p.d.f. is like bellow.

2 Inference

Assume all the parameter as follows:

	p (which \| when)		p (which \| where)			p(color \| Which)				p(thickness \| when)		
	Salmon	Seabass		Salmon	Seabass		Light	Medium	Dark		Salmon	eabass
Winter	0.90	0.10	North	0.65	0.35	Salmon	0.33	0.33	0.34	Salmon	0.40	0.60
Spring	0.30	0.70	South	0.25	0.75	Seabass	0.80	0.10	0.10	Seabass	0.95	0.05
Summer	0.40	0.60										
Autumn	0.80	0.20										

Figure 1: Given primer and conditional probabilities of Salmon and Sea-bass.

Exercise 2 Create a program that asks a user (i) which valuable is the hyposethes and (ii) which valuables are evidences, from one valuable to the next.

- Is $<a$: winter $>$ in $<A$: When $>$
- your hypotheses? [yes][no]
- your evidence? [yes][no]

After the user specify his/her hypotheses, then stop asking this hereafter, only keep asking evidence from one item to the next.

