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PART I
Fuzzy Set Arithmetics

1 Fuzzy Set Theory

1.1 Fuzzy set vs. Crisp set

• Examples of crisp set

? 0 < x < 10

? x=12

• Examples of fuzzy set

? {x is much smaller than 10}
? {x is close to 12}
? Beer is either of {very-cold, cold, not-so-cold, warm}

1.1.1 Membership function

How x is likely to be A is expressed by a function called membership function. Usually it
is described as µA(x).

For example, a possible membership function for a fuzzy expression {x is close to 12} will
be

µ(x) =
1

1 + (x− 12)2
(1)

See Figure 1.

1.1.2 AND and OR in Fuzzy Logic

In the logic of crisp set A and B and A or B are defined as in Figure 3.
In Fuzzy Logic, on the other hand, the membership function of A and B and A or B are
specified in various way, but most popular ones are:

µA∩B(x) = min{µA(x), µB(x)} (2)

and
µA∪B(x) = max{µA(x), µB(x)}, (3)

respectively.
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Figure 1: Examples of membership function {x is much smaller than 10} (right) and {x
is close to 12} (left).

Figure 2: AND and OR in crisp set.

Figure 3: AND and OR in fuzzy set.
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To be more concrete the membership function of x is closer to 4 AND/OR x is closer to
5 is like a Figure 4.

Figure 4: Membership function of x is closer to 4 OR x is closer to 5

• Very cold or pretty cold beer. (µ(x) is defined on temperature).
Assume we like very cold beer or pretty cold beer and now we have a beer the temperature
of which is 3 degree. Then how is the beer likely to be our prefered one?

Note that this operation of OR was possible because both of the two membership function
is defined on the same domain temperature. Then what if two membership functions are
defined on different domains, such as age and height?

• Young and tall.

For example,
We cannot draw the membership function of young and tall on the 2-dimensional coordi-
nate any more.

(1) 3-D graphic (z = µ is defined on x = age and y = height)

(2) Matrix representation koko
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1.1.3 IF-Then rule in Fuzzy Logic

In Fuzzy Logic, the membership of IF A Then B is specified also in many way. Here, let’s
take it as

? Mamdani’s proposal

µA→B(x) = min{µA(x), µB(x)} (4)

? Larsen’s proposal
µA→B(x) = µA(x)× µB(x) (5)

• If he is young then my love to him is strong.

• If he is young and tall then my love to him is very strong.

1.2 How to express multidimensional membershipfunction
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PART II
Fuzzy Controller

2 Fuzzy Controller

Let’s construct a virtual metro and control trains by fuzzy controller.

A goal

We now assume x is speed of my car, y is distance to the car in front, and z is how
strongly we push brake-pedal. Then let’s controll my car with a set of rules, like

• IF x is high AND y is short THEN z should be strong

• IF x is medium AND y is long THEN z should be medium

• IF x is medium low or x is medium AND y is long THEN z should be weak

• IF x is low or x is medium low AND y is short or y is medium hort THEN z should
be medium weak

• etc.

Then the results will be plotted like in the Figure below.

Figure 5: An example of the goal of Fuzzy controller
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2.1 Virtual metro system with two trains in a loop line

We study Fuzzy Controllar via a simulation of virutal metro with one loop line on which
two Train A and B run. To simplify we don’t assume stations. That is, both trains always
run. The speed of these trains are denoted as xA and XB. The distance from train A to
train B is denoted as yA and from train B to train A is yB. Note that xA + yB is constant
(length of the loop line). Speed will be controlled by the distance to the train in front via
its break. The shorter the distance, the storonger the break in order to avoid a collision.

3 Vertual metro

Let’s create a virtual metro system with 2 cars on a loop line with 1000 pixels in which
4 stations 1, 2, 3 and 4 at pixel number 0, 250, 500 and 750, respectively.

Figure 6: To de-fuzzify strength of break

Exercise 1 Create your own simulation of metro with one loop on which two trains A
and B run, using graphics. 6 parameters xA, xB, yA, yB, zA, zB, should also be desplayed
on the screen. The simulation might be started with xA = xB, yA = yB, zA = zB = 0.

3.1 Let’s design a set of rules for driving a train

3.1.1 membership function

E.g., when we say ”speed is 13,” it is likely to be fast with 75% certain and medium with
25% .
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Figure 7: An example of 5 membership function for speed.

Figure 8: An example of 5 membership function for speed.

Figure 9: An example of 5 membership function for speed.
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3.1.2 One point of break

Figure 10: An example of 5 membership function for speed.

3.1.3 One plaine of break

Figure 11: An example of 5 membership function for speed.

3.1.4 3-D control of break

Figure 12: An example of 5 membership function for speed.
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3.1.5 To calculate one point of break value for fixed speed and distance under
one rule

We now assume our rule is

IF speed is fast AND distance is short THEN break is strong

Then

speed µ distance µ break µ total µ
13 0.75 125 0.25 0 0.00 0.00
13 0.75 125 0.25 1 0.00 0.00
13 0.75 125 0.25 2 0.00 0.00
13 0.75 125 0.25 3 0.00 0.00
13 0.75 125 0.25 4 0.00 0.00
13 0.75 125 0.25 5 0.33 0.08
13 0.75 125 0.25 6 1.00 0.25
13 0.75 125 0.25 7 0.33 0.08
13 0.75 125 0.25 8 0.00 0.00
13 0.75 125 0.25 9 0.00 0.00

Figure 13: An example of 5 membership function for speed.

We now know the center of gravity of break is at at 6. So the point is (13, 125, 6).
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Figure 14: An example of 5 membership function for speed.
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3.1.6 To calculate one point of break value for fixed speed and distance under
two rules

Rule 1 Rule 2 Total
x µ y µ z µ µ1 x µ y µ z µ µ2 µ-final
15 0.25 80 0.25 0 0.25 0.25 15 0.25 80 0.25 0 0.25 0.25 0.25
15 0.25 80 0.25 1 0.25 0.25 15 0.25 80 0.25 1 0.25 0.25 0.25
15 0.25 80 0.25 2 0.25 0.25 15 0.25 80 0.25 2 0.25 0.25 0.25
15 0.25 80 0.25 3 0.25 0.25 15 0.25 80 0.25 3 0.25 0.25 0.25
15 0.25 80 0.25 4 0.25 0.25 15 0.25 80 0.25 4 0.25 0.25 0.25
15 0.25 80 0.25 5 0.25 0.25 15 0.25 80 0.25 5 0.25 0.25 0.25
15 0.25 80 0.25 6 0.25 0.25 15 0.25 80 0.25 6 0.25 0.25 0.25
15 0.25 80 0.25 7 0.25 0.25 15 0.25 80 0.25 7 0.25 0.25 0.25
15 0.25 80 0.25 8 0.25 0.25 15 0.25 80 0.25 8 0.25 0.25 0.25
15 0.25 80 0.25 9 0.25 0.25 15 0.25 80 0.25 9 0.25 0.25 0.25
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3.1.7 To calculate one point of break value for fixed speed and distance under
ten rules

Rule 1 Rule 2 · · · Rule 10 Total
x y z µ x y z µ · · · x y z µ µ
15 250 0 0.84 15 250 0 0.52 · · · 15 250 0 0.7 0.7
15 250 1 0.84 15 250 1 0.52 · · · 15 250 1 0.7 0.7
15 250 2 0.84 15 250 2 0.52 · · · 15 250 2 0.7 0.7
15 250 3 0.84 15 250 3 0.52 · · · 15 250 3 0.7 0.7
15 250 4 0.84 15 250 4 0.52 · · · 15 250 4 0.7 0.7
15 250 5 0.84 15 250 5 0.52 · · · 15 250 5 0.7 0.7
15 250 6 0.84 15 250 6 0.52 · · · 15 250 6 0.7 0.7
15 250 7 0.84 15 250 7 0.52 · · · 15 250 7 0.7 0.7
15 250 8 0.84 15 250 8 0.52 · · · 15 250 8 0.7 0.7
15 250 9 0.84 15 250 9 0.52 · · · 15 250 9 0.7 0.7
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Figure 15: An example of 5 membership function for speed.
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PART III
Fuzzy Classification

4 Classify data by a rule set

Assume we classiy M data to be classified by using N features.

x1, x2, x3, · · · , xN .

A rule such as

If x1 = A1 and x2 = A2, and · · · , and xN = AN then class = ωp.

classifies the data to one class ωp.

Ai is called attribute. For instance, (i) IF xi = 30, (ii) IF 15 < xi < 20, (iii) IF xi is
Large, or (iv) IF xi is Female, etc. The first two are called crisp, second is fuzzy, and
fourth is called categorical. Let’s take an example.

IFx1 = 20g AND 10cm < x2 < 20cm AND x3 = Green, AND x4 = Fruits THEN this is apple.
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5 A benchmark – Iris database

As an example target here, we classify Iris flowers. Iris flower dataset1 is made up of 150
samples consists of three species of iris flower, that is, setosa, versicolor and virginica.
Each of these three families includes 50 samples. Each sample is a four-dimensional
vector representing four attributes of the iris flower, that is, sepal-length, sepal-width,
petal-length, and petal-width.

All data are given as crisp as below.

x1 x2 x3 x4 class
5.1 3.5 1.4 0.2 1 (Setosa)
4.9 3.0 1.4 0.2 1 (Setosa)
4.7 3.2 1.3 0.2 1 (Setosa)
· · · · · · · · · · · · · · ·
7.0 3.2 4.1 1.4 2 (Versicolor)
6.4 3.2 4.5 1.5 2 (Versicolor)
6.9 3.1 4.9 1.5 2 (Versicolor)
· · · · · · · · · · · · · · ·
5.8 2.7 5.1 1.9 3 (Virginica)
7.1 3.0 5.9 2.1 3 (Virginica)
6.3 2.9 5.6 1.8 3 (Virginica)
· · · · · · · · · · · · · · ·

1University of California Urvine Machine Learning Repository.
ics.uci.edu: pub/machine-learning-databases.
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5.1 Let’s visualize data

Each data is a point in 4-dimensional space, i.e., x1, x2, x3 and x4.

5.1.1 distribution of each of 4 attributes

First, let’s see how each xi (i = 1, 2, 3, 4) of these dataset distributed.

5.1.2 What if we had only two attributes?

5.1.3 Demension reduction from 4 to 2 by Samon mapping

Figure 16: Sammon mapping of iris data.
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5.2 Non-fuzzy approach

If
a11 ≤ x1 < b11 and a12 ≤ x2 < b12 and a13 ≤ x3 < b13 and a14 ≤ x4 < b14 then class = 1.

Else if
a21 ≤ x1 < b21 and a22 ≤ x2 < b22 and a23 ≤ x3 < b23 and a24 ≤ x4 < b24 then class = 2.

Else
clase = 3.
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6 TS-Fuzzy Formula

6.1 Singleton Consequence

Ri: If x1 is Ai
1 and x2 is Ai

2 and · · · and xn is Ai
n then y is gi.

6.2 Linear Regression Consequence

Ri: If x1 is Ai
1 and x2 is Ai

2 and · · · and xn is Ai
n then y = a11x1 + a12x1 + · · · + ainxn + bi.

6.3 Triangle vs. Gaussian membership function

µ(x) = exp{−(x− c)2

w2
}

6.4 Example - Iris data classification

6.4.1 Singleton Consequence with triangle membership

Apply the TS-fuzzy formula above to the iris flawer database, assumming the folloing
p = 3 rules and membership functions2.
R1: IF x1 is short AND x2 is long AND x3 is short AND x4 is short THEN y = 1.00.

R2: IF x1 is medium AND x2 is small AND x3 is medium AND x4 is medium THEN y = 2.10.

R3: IF x1 is long AND x2 is medium AND x3 is long AND x4 is long THEN y=2.95.

where each of the membership functions are adjusted as Figure 1 below.

Apply TS-formula above and then estimated class is:

y =


1 ... if ŷ < 1.5
2 ... if 1.5 ≤ ŷ < 3.0
3 ... if 3.0 ≤ ŷ

Exercise 2 How many y out of 150 data are collect?

2Taken frome the draft of H. Roubos et al. (2001) IEEE Transactions on Fuzzy Systems, Vol. 9, No.
4, pp. 516-524.



(Contemporary Method of Data Processing) 21

6.4.2 Lenear Regression Consequence with Gaussian membership

Apply the TS-fuzzy formula above to the iris flawer database, assumming the folloing
p = 3 rules and membership functions3.

 a11 a12 a13 a13
a21 a22 a23 a13
a31 a32 a33 a13

 =

 −0.0000 0.0000 −0.0001 0.0005
−0.1121 −0.2234 0.0029 0.0005
−0.1020 −0.0624 0.1276 0.0005


and  b1

b2

b3

 =

 0.6667
1.7547
1.8412

 .
Gaussian membership function is defiend here as:

µ(x) = exp{−(x− c)2

w2
}

where c and w represent center and width of distribution, respectively.

6.5 Neuro Fuzzy approach

6.5.1 Fuzzy Neural Network Implementation.

The procedure described in the previous sub-subsection can be realized when we assume
a neural network architecture such as depicted in Fig. 2. The 1st layer is made up of
n input neurons. The 2nd layer is made up of H groups of a neuronal structure each
contains n neurons where the i-th neuron of the k-th group has a connection to the i-th
neuron in the 1st layer with a synaptic connection which has a pair of weights (wik, σik).
Then k-th group in the second layer calculates the value µk(x) from the values which are
received from each of the n neurons in the first layer. The 3rd layer is made up of m
neurons each of which collects the H values from the output of the second layer, that is
j-th neuron of the 3rd layer receives the value from k-th output in the second layer with
the synapse which has the weight νkj

6.5.2 How it learns?

Castellano et al. [?] used (i) a competitive learning to determine how many rules are needed
under initial weights created at random. Then, in order to optimize the initial random

3Taken frome M.H. Kim et al. (2004) A novel appreoach to design of Takagi-Sugeno fuzzy classifier.
Joint International Conference on Soft Computing and Intelligent Systems and International Symposium
on Advanced Intelligent Systems.
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weight configuration, they use (ii) a gradient method performing the steepest descent on a
surface in the weight space employing the same training data, that is, supervised learning.

Here, on the other hand, we use a simple genetic algorithm, since our target space is
specific enough to know the network structure in advance, i.e., only unique rule is nec-
essary. Our concern, therefore, is just obtaining the solution of weight configuration of
the network. That is to say, all we want to know is a set of parameters wik, σik and
νkj (i = 1, · · ·n), (k = 1, · · ·H), (j = 1, · · ·m) where n is the dimension of data, H is
the number of rules, and m is the number of outputs. Hence our chromosome has those
n×H ×m genes. Starting with a population of chromosomes whose genes are randomly
created, they evolve under simple truncate selection where higher fitness chromosome are
chosen, with uniform crossover and occasional mutation by replacing some of a few genes
with randomly created other parameters, expecting higher fitness chromosomes will be
emerged. These settings are determined by trials and errors experimentally.

6.6 Multi input multi output
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Figure 17: TS-model singleton conswquence. How to estimate class of a data.
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Figure 18: Triangle membership functions representing small, medium and large for x1
(up left), x2 (Up right), x3 (bottom left) and x4 (bottom left).

Figure 19: Data for 12 triangle membership function above, indicating (start−peak−end)
of each triangle for small, medium and large for each of x1, x2, x3 and x4.



(Contemporary Method of Data Processing) 25

Figure 20: Gaussian membership functions representing small, medium and large for x1
(up left), x2 (Up right), x3 (bottom left) and x4 (bottom left).



(Contemporary Method of Data Processing) 26

Figure 21: Architecture of the proposed fuzzy neural network which infers how an input
x = (x1, · · ·xn) is likely to belong to the j-th class by generating outputs yj each of which
reflect the degree of the likeliness. In this example, a 20-dimension data input will be
inferred to which of the 3 classes the input belongs by using 2 rules.
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PART IV
Time series data forecasting with TS-Fuzzy formula

7 Two different formulae

7.1 Forcasting a value from its history

Assume y(t) is a value of a variable y at time t such as maximum price of a stock during
a day. Then T-S formula for singleton consequeance is as follows4.

Ri: If y(t− 1) is Ai
1 and y(t− 2) is Ai

2 and · · · and y(t− n+ 1) is Ai
n then y(t) is gi.

7.2 Forcasting a value from its history

Ri: If x1(t) is Ai
1 and x2(t) is Ai

2 and · · · and xn(t) is Ai
n then y(t) is gi.

4Taken from Sheta, A. F. () Forecasting the Nile river flow using fuzzy logic model.
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PART V
Fuzzy Relation

8 Relation between two sets

In this section we study fuzzy expressions such as ”at least middle-aged,” brighter than
average,” more or less expensive” and ”younger than about 20.”
First, let’s recall Cartesian product X × Y in which both X and Y is a set. Let
me take an example. Assume now X = {1, 2} and Y = {a, b, c} then X × Y =
{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)}. Then relation is defiened over Cartesian product
X × Y , that is, a subset of X × Y . In other words relation is a set of ordered pair in
which order is important.

Generally it is defined over multipel set, like X1 × X2 × · · · × Xn, but here we think of
only product of two set, and call it binary relation.

To visualize we can plot µR(X, Y ) 3-D Cartesian space.

? Example 1 ... X = {1, 2}, Y = {2, 3, 4}, R : X < Y

Let’s think of it as a crisp logic, that is, the value is 1 (yes) or 0 (no). Then membership
function of this relation will be:

X \ Y 2 3 4
1 1 0 0
2 1 1 0
3 0 0 1

Then what about the relation R : x ≈ y. Let’s think of this example with fuzzy logic.

? Example 2 ... X = {1, 2}, Y = {2, 3, 4}, R : X ≈ Y

X \ Y 2 3 4
1 2/3 1/3 0
2 1 2/3 1/3
3 2/3 1 2/3
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The values are just examples. Further more we think of X and Y as a continuous values
instead of integer. Then membership function is a surface instead of just 9 points, over
X − Y coordinate.

We now proceed to examples where we use fuzzy linguistic expression instead of numbers.

First, these matrices are not necessarily rectangular. For example:

? Example 3 ... X = {Brest, London, BuenosAires} Y=Tokyo, NewYork, Minsk, Johanes-
burg R: very far.

X \ Y Tokio New York Minsk Johanesburg
Brest

London
Buenos Aires

Try to fill those blancs by yourself.
? Example 4 ... X = {green, yellow, red}, Y = {unripe, semiripe, ripe}.

Imagine an apple. First, with a crisp logic. A red apple is usually ripe but a green apple
is unripe. Thus:

X \ Y unripe semiripe ripe
green 1 0 0
yellow 0 1 0

red 0 0 1

Now, secondly, with a fuzzy logic. A red apple is provably ripe, but a green apple is most
likely, and so on. Thus, for example:

X \ Y unripe semiripe ripe
green 1 0.5 0
yellow 0.3 1 0.4

red 0 0.2 1
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8.1 Combine two fuzzy relations

We now return to the previous example of tomato.

X \ Y unripe semiripe ripe
green 1 0.5 0
yellow 0.3 1 0.4

red 0 0.2 1

This is the relation of two sets:

X = {green, yellow, red}

and

Y = {unripe, semiripe, ripe}

Let’s call this relation R1. Then we think a similar but new Relation.

Y = {unripe, semiripe, ripe}

and

Z = {sour, sour − sweet, sweet}

Let’s call this relation R2.

X \ Y sour sour-sweet sweet
unripen 0.8 0.5 0.1
semiripe 0.1 0.7 0.5

ripe 0.2 0.3 0.9

If we combine these two relations R1 and R2 by the formula

µR(x, z) ≥ max
y∈X
{min{µR(x, y), µR(y, z)}},

the result is:
This relation could be expressed by our daily language like

”If tomato is red then it’s most likely sweet , possibly sour-sweet, and unlikely
sour.”



(Contemporary Method of Data Processing) 31

X \ Y sour sour-sweet sweet
red 0.8 0.5 0.5

yellow 0.3 0.7 0.5
green 0.2 0.3 0.9

”If tomato is yellow then probably it’s sour-sweet , possibly sour, maybe
sweet.”

”If tomato is green then almost always sour, less likely sour-sweet, unlikely
sweet.”

Or, we could say:

”Now tomato is more or less red, then what is taste like?”

9 Clustering by fuzzy relation

In the previous section, we studied Fuzzy relation between two sets X and Y R(X, Y .
Here, in this section, we extended it to fuzzy relation between X and X, in which our
goal is to cluster the elements of X into n clusters such that

X =
n⋃

i=1

Ci

We start with an intuitive proximity relation which should follow only two condition

(i) Reflectivity

µR(x, x) = 1...∀x ∈ X.
and (ii) Simmetry

µR(x, y) = µR(y, x)...∀x, y ∈ X.
Then we use an algorithm5 to obtain similarity relation, which also follows (iii) Transivity

µR(x, y) ≥ max
z∈X
{min{µR(x, z), µR(z, y)}}...∀x, y ∈ X.

The
5Firstly by Tamura, S. et al. (1971) ”Pattern classification based on fuzzy relations.” IEEE Trans-

actions on Systems, Man, and Cybernetics, Vol.SMC-1, No. 1. and then extended by Yang, M-S. et
al. (1999) ”Cluster analusis based on fuzzy relations.” Fuzz Sets and Systems, Elsevier, Vol. 120 pp.197-
212.
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Algorithm 1 1. Calculate a max-min similarity-relation R = [aij]

2. Set aij = 0 for all aij < α and i = j

3. Select s and t so that aij = max{aij|i < jand i, j ∈ I}. When tie, select one of
these pairs at random

WHILE ast 6= 0 DO put s and t into the same cluster C = {s, t} ELSE [4.]
ELSE all indices ∈ I into separated clusters and STOP

4. Choose u ∈ I \ C so that ∑
i∈C

aiu = max
j∈I\C

{
∑
i∈C

aij|aij 6= 0}

When a tie, select one such u at random.

WHILE such a u exists, put u into C = {s, t, u} and REPEAT [4.]

5. Let I = I \ C and GOTO [3.]
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Example

Exercise 3 Starting from the following 10 × 10 proximity-relation R(0), apply the algo-
rithm above. Assume now α = 0.55.

R(0) =



1 .7 .5 .8 .6 .6 .5 .9 .4 .5
.7 1 .3 .6 .7 .9 .4 .8 .6 .6
.5 .3 1 .5 .5 .4 .1 .4 .7 .6
.8 .6 .5 1 .7 .5 .5 .7 .5 .6
.6 .7 .5 .7 1 .6 .4 .5 .8 .9
.6 .9 .4 .5 .6 1 .3 .7 .7 .5
.5 .4 .1 .5 .4 .3 1 .6 .2 .3
.9 .8 .4 .7 .5 .7 .6 1 .4 .4
.4 .6 .7 .5 .8 .7 .2 .4 1 .7
.5 .6 .6 .6 .9 .5 .3 .4 .7 1


An example solution

By repeating R(n+1) = R(n) ◦ R(n) till R(n) = R(n+1). In this way, similarity-relation R(n)

will be calculated as:

R(n) =



1 .2 .5 .8 .6 .2 .3 .9 .4 .3
.2 1 .3 .6 .7 .9 .2 .8 .3 .2
.5 .3 1 .5 .3 .4 .1 .3 .7 .6
.8 .6 .5 1 .7 .3 .5 .4 .1 .3
.6 .7 .3 .7 1 .2 .4 .5 .8 .9
.2 .9 .4 .3 .2 .4 .1 .3 .7 .2
.3 .2 .1 .5 .4 .1 1 .6 .1 .3
.9 .8 .3 .4 .5 .3 .6 1 0 .2
.4 .3 .7 .1 .8 .7 .1 0 1 .1
.3 .2 .6 .3 .9 .2 .3 .2 .1 1


Now apply [1.] and [2.] 

0 .7 0 .8 .6 .6 0 .9 0 0
.7 0 0 .6 .7 .9 0 .8 .6 .6
0 0 0 0 0 0 0 0 .7 .6
.8 .6 0 0 .7 0 0 .7 0 .6
.6 .7 0 .7 0 .6 0 0 .8 .9
.6 .9 0 0 .6 0 0 .7 .7 0
0 0 0 0 0 0 0 .6 0 0
.9 .8 0 .7 0 .7 .6 0 0 0
0 .6 .7 0 .8 .7 0 0 0 .7
0 .6 .6 .6 .9 0 0 0 .7 0
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First, set I = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and C = { }.

Then

3. Now a18 = a26 = a5 10 = 0.9 are maximum and a18 is randomly selected. Then
C = {1, 8}.

4. a12 + a82 = a14 + a84 = 1.5 are maximum and j = 4 is randomly selected. Then
C = {1, 8, 4}.

4. a12 + a42 + a82 = 2.1 is maximum, then C = {1, 8, 4, 2}.

4. There are no j such that a1j +a2j +a4j +a8j is maximum. Then final C = {1, 8, 4, 2}.

? a16 + a26 + a46 + a86 = 0.6 + 0.9 + 0 + 0.7 = 2.2 seems maximum but actually
not because a46 = 0

Note that
∑

i∈C aiu = maxj∈I\C{
∑

i∈C aij|aij 6= 0}

5. Let I = {3, 5, 6, 7, 9, 10}

3. a5 10 = 0.9 is maximum. Then renew C as {5, 10}.

4. a59 + a10 9 = 1.5 is maximum. Then C = {5, 10, 9}.

4. There are no j in {3, 6, 9} such that a5j + a9j + a10j is maximum. Then final
C = {5, 10, 9}.

5. Let I = {3, 6, 7}.

3. Now a36 = a37 = a67 = 0. Then {3}, {6}and {7}are three separated clusters. In
fact, a33 a36 a37

a63 a66 a67
a73 a76 a77

 =

0 0 0
0 0 0
0 0 0


So

∑
i∈{3,6,7} aiu = maxj∈{3,6,7}{

∑
i∈C aij|aij 6= 0} does not exit any more.

In this way, when α = 0.55, we have 5 clasters {1, 8, 4, 2},{5, 10, 9}, {3}, {6} and {7} are
obtained.
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9.1 Other formula for combination

Other than (i) max-min formula

µR(x, y) = max
z∈X
{min{µR(x, z), µR(z, y)}}

we have a cuple of other formulae:
(ii) max-prod

µR(x, y) = max
z∈X
{µR(x, z)R(z, y)}}

(iii) max-avg

µR(x, y) = max
z∈X
{(µR(x, z) + µR(z, y))/2}

(iv) max-∆

µR(x, y) = max
z∈X
{max{0, µR(x, z) + µR(z, y)− 1}}


