Lecture Note
 Application of Fuzzy Logic

Akira Imada
Brest State Technical University

Last modified on 22 December 2015

I. Fuzzy Basic Arithmetics

1. Membership Function

2. AND and OR

3. IF-THEN

II. Fuzzy Controller

1. Controll two metro cars using Speed, Distance, and Brake

Excercise

1. Design a virtual loop with 1000 pixels on which two metro cars run .
2. Put two cars on the loop each of which run with a speed of 20 pixels per step.
3. Change speed in 2. by adding -2, $-1,0,+1$, or +2 at random.
4. Stop the animation when a crash occurs.
5. Show the animation on the screen
6. Store the animation in GIF format

2. Defuzzification by Center of Gravity

Excercise

1. Design 10 membreship function for Speed (0-50), Distance (0-1000) each of which being made up of Very Small, Small, Medium, Large, Very Large.
2. Create a part of a rule such as Speed $=(\ldots)$ AND Distance $=(\ldots)$.
3. Calculate the membership function of 2.
4. Draw the 3-D graph of 3 .

3. Three Dimensional surface: Brake on Speed and Distance

Excercise

1. Design 15 membreship function for Speed (0-50), Distance (0-1000) and brake (0-10) each of which being made up of Very Small, Small, Medium, Large, Very Large.
2. Create one rule such as IF Speed $=(\ldots)$ AND Distance $=(\ldots)$ THEN Brake $=(\ldots)$.
3. Calculate the membership function of 2.
4. Show a table of 3. with 6 columns: speed; its μ; distance; its μ; brake; its μ; total μ.

Excercise

1. Create 2 rules of the form IF Speed $=(\ldots)$ AND Distance $=(\ldots)$ THEN Brake $=(\ldots)$.
2. Calculate the membership function of these two rules of 1 .
3. Show a table of 3. with 6 columns: speed; its μ; distance; its μ; brake; its μ; total μ.

Excercise

1. Create 10 rules of the form IF Speed $=(\ldots)$ AND Distance $=(\ldots)$ THEN Brake $=(\ldots)$.
2. Calculate the membership function of these two rules of 1 .
3. Show a table of 3. with 6 columns: speed; its μ; distance; its μ; brake; its μ; total μ.
4. Add one column of brake by calculating the Center of Gravity of each 10 brakes corresponding each set of Speed-Distance pair.
5. Draw a 3-D surface of Speed(x)-Distance(y)-Brake(z).

III. Fuzzy Classification

An example of classification - 3 families of fish

Family B

Family C

1. Rules to classify as an example

R_{1} : IF $X_{1}=$ medium $A N D X_{2}=\operatorname{small} \operatorname{THEN} A$
$R_{2}:$ IF $X_{1}=$ small $\operatorname{AND} X_{2}=\operatorname{medium}$ THEN B
$R_{3}:$ IF $X_{1}=$ large AND $X_{2}=$ small then C

Memership function for the size of two parts

$$
\mu(x)=\exp \left\{-\frac{(x-a v g)^{2}}{\sigma^{2}}\right\}
$$

Qestion: Which family is this new fish?

2. Takagi Sugeno Formula

1. Singleton Consequence

R_{k} : If x_{1} is A_{1}^{k}, and x_{2} is A_{2}^{k} and \cdots and x_{N} is A_{N}^{k} then y is g^{k}.

Takagi-Sugeno rules: Estimation of a single input

Estimation of y for an input $\mathbf{x}=\left(x_{1}, x_{2}, \cdots, x_{N}\right)$

$$
y_{j}=\frac{\sum_{k=1}^{H}\left(M_{k}(\mathbf{x}) \cdot g_{k}\right)}{\sum_{k=1}^{H} M_{k}(\mathbf{x})}
$$

where

$$
M_{k}(\mathbf{x})=\prod_{i=1}^{N} \mu_{i k}\left(x_{i}\right)
$$

where $\mu_{i k}$ is i-th attribute of k-th rule

Three rules to classify

A benchmark - Iris database

Iris flower dataset (taken from University of California Urvine Machine Learning Repository) consists of three species of iris flower setosa, versicolor and virginica.
Each sample represents four attributes of the iris flower sepal-length, sepal-width, petal-length, and petal-width.

Iris Flower Database

Setosa				Versicolor										Virginica		
x_{1}	x_{2}	x_{3}	x_{4}	x_{1}	x_{2}	x_{3}	x_{4}	x_{1}	x_{2}	x_{3}	x_{4}					
0.65	0.80	0.20	0.08	0.89	0.73	0.68	0.56	0.80	0.75	0.87	1.00					
0.62	0.68	0.20	0.08	0.81	0.73	0.65	0.60	0.73	0.61	0.74	0.76					
0.59	0.73	0.19	0.08	0.87	0.70	0.71	0.60	0.90	0.68	0.86	0.84					
0.58	0.70	0.22	0.08	0.70	0.52	0.58	0.52	0.80	0.66	0.81	0.72					
0.63	0.82	0.20	0.08	0.82	0.64	0.67	0.60	0.82	0.68	0.84	0.88					
0.68	0.89	0.25	0.16	0.72	0.64	0.65	0.52	0.96	0.68	0.96	0.84					
0.58	0.77	0.20	0.12	0.80	0.75	0.68	0.64	0.62	0.57	0.65	0.68					
0.63	0.77	0.22	0.08	0.62	0.55	0.48	0.40	0.92	0.66	0.91	0.72					

(to be cont'd to the next page)

Setosa				Versicolor					Virginica			
x_{1}	x_{2}	x_{3}	x_{4}	x_{1}	x_{2}	x_{3}	x_{4}	x_{1}	x_{2}	x_{3}	x_{4}	
0.56	0.66	0.20	0.08	0.84	0.66	0.67	0.52	0.85	0.57	0.84	0.72	
0.62	0.70	0.22	0.04	0.66	0.61	0.57	0.56	0.91	0.82	0.88	1.00	
0.68	0.84	0.22	0.08	0.63	0.45	0.51	0.40	0.82	0.73	0.74	0.80	
0.61	0.77	0.23	0.08	0.75	0.68	0.61	0.60	0.81	0.61	0.77	0.76	
0.61	0.68	0.20	0.04	0.76	0.50	0.58	0.40	0.86	0.68	0.80	0.84	
0.54	0.68	0.16	0.04	0.77	0.66	0.68	0.56	0.72	0.57	0.72	0.80	
0.73	0.91	0.17	0.08	0.71	0.66	0.52	0.52	0.73	0.64	0.74	0.96	
0.72	1.00	0.22	0.16	0.85	0.70	0.64	0.56	0.81	0.73	0.77	0.92	
0.68	0.89	0.19	0.16	0.71	0.68	0.65	0.60	0.82	0.68	0.80	0.72	
0.65	0.80	0.20	0.12	0.73	0.61	0.59	0.40	0.97	0.86	0.97	0.88	
0.72	0.86	0.25	0.12	0.78	0.50	0.65	0.60	0.97	0.59	1.00	0.92	
0.65	0.86	0.22	0.12	0.71	0.57	0.57	0.44	0.76	0.50	0.72	0.60	
0.68	0.77	0.25	0.08	0.75	0.73	0.70	0.72	0.87	0.73	0.83	0.92	
0.65	0.84	0.22	0.16	0.77	0.64	0.58	0.52	0.71	0.64	0.71	0.80	
0.58	0.82	0.14	0.08	0.80	0.57	0.71	0.60	0.97	0.64	0.97	0.80	
0.65	0.75	0.25	0.20	0.77	0.64	0.68	0.48	0.80	0.61	0.71	0.72	
0.61	0.77	0.28	0.08	0.81	0.66	0.62	0.52	0.85	0.75	0.83	0.84	

Excercise

1. Design 3 membership functions for Very Small, Small, Medium, Large, Very Large all from 0 to 1.
2. Create 10 rules of the form IF $x_{1}=(\ldots)$ AND $x_{2}=(\ldots)$ AND $x_{3}=(\ldots)$ AND $x_{4}=(\ldots)$ THEN class $=(A, B$ or $C)$.
3. Create a black-box whose inputs are x_{1}, x_{2}, x_{3} and x_{4} and output is class.
4. Input all the 150 data one by one and record output.
5. Show the table whose columns are $x_{1} ; x_{2} ; x_{3} ; x_{4} ;$ real class; and predicted class.
6. Calculate overall success rate.

Result

A, B or C	x_{1}	x_{2}	x_{3}	x_{4}	g	\hat{y}	OK or NOT
A	0.65	0.80	0.20	0.08			
A	0.62	0.68	0.20	0.08			
		\cdots					
C	0.85	0.75	0.83	0.84			

2. Stochastic Consequence

R_{k} : If x_{1} is A_{1}^{k}, and \cdots and x_{N} is A_{N}^{k} then

y_{1} is g_{1}^{k} and \cdots and y_{N} is g_{N}^{k}.

Result

3. Linear Regression Consequence

$$
\begin{gathered}
R_{i}: \text { If } x_{1} \text { is } A_{1}^{i} \text { and } x_{2} \text { is } A_{2}^{i} \text { and } \cdots \text { and } x_{n} \text { is } A_{n}^{i} \\
\text { then } \\
y=a_{1}^{i} x_{1}+a_{2}^{i} x_{1}+\cdots+a_{n}^{i} x_{n}+b^{i}
\end{gathered}
$$

Result

			a_{1}	,	a_{2}	a_{3}	a	
Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6								
A, B or C	${ }^{1}$	x_{2}	x_{3}	x_{4}		y	\hat{y}	OK or Not
$\begin{aligned} & \text { A } \\ & \text { A } \\ & \ldots \\ & \hline \end{aligned}$	$\begin{aligned} & 0.65 \\ & 0.62 \\ & 0.85 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.80 \\ & 0.68 \\ & 0.7 \\ & 0.75 \end{aligned}$	$\begin{aligned} & 0.20 \\ & 0.20 \\ & \ldots .83 \\ & 0.83 \end{aligned}$	$\begin{aligned} & 0.08 \\ & 0.08 \\ & 0.84 \\ & \hline \end{aligned}$				
$M_{1} \cdot y_{1}+M_{2} \cdot y_{2}+\cdots+M_{6} \cdot y_{6}$								

IV. Fuzzy Clustering

1. Fuzzy Relation

2. Combining two Fuzzy Relations

Max-Min Composition Formula

$$
\begin{gathered}
\mu_{R_{A \circ B}}(x, z)=\max \left\{\min _{y}\left\{\mu_{R_{A}}(x, y), \mu_{R_{B}}(y, z)\right\}\right\} \\
\text { E.g. } \\
\mu_{R} \circ \mu_{R}(2,3) \\
=\max \{\min (0.4,0.5), \min (0.5,0.8), \min (0.6,0)\} \\
=\max \{0.4,0.5,0\} \\
=0.5 \\
\text { when } \\
{\left[\begin{array}{ccc}
0.1 & 0.2 & 0.3 \\
0.4 & 0.5 & 0.6 \\
0.7 & 0.8 & 0.9
\end{array}\right] \circ\left[\begin{array}{ccc}
0.3 & 0.1 & 0.5 \\
0.2 & 0.7 & 0.8 \\
0.9 & 0.4 & 0
\end{array}\right]}
\end{gathered}
$$

3. Clustering by Similarity

Algorithm 1 1. Calculate a max-min similarity-relation $R=\left[a_{i j}\right]$
2. Set $a_{i j}=0$ for all $a_{i j}<\alpha$ and $i=j$
3. Select s and t so that $a_{i j}=\max \left\{a_{i j} \mid i<j\right.$ and $\left.i, j \in I\right\}$. When tie, select one of these pairs at random

WHILE $a_{\text {st }} \neq 0$ DO put s and t into the same cluster $C=\{s, t\}$ ELSE [4.] ELSE all indices $\in I$ into separated clusters and STOP
4. Choose $u \in I \backslash C$ so that

$$
\sum_{i \in C} a_{i u}=\max _{j \in I \backslash C}\left\{\sum_{i \in C} a_{i j} \mid a_{i j} \neq 0\right\}
$$

When a tie, select one such u at random.
WHILE such a u exists, put u into $C=\{s, t, u\}$ and REPEAT [4.]
5. Let $I=I \backslash C$ and GOTO [3.]

Repeat until no change, e.g.,

Starting with

$$
\left[\begin{array}{ccc}
1 & 0.2 & 0.3 \\
0.4 & 1 & 0.6 \\
0.7 & 0.8 & 1
\end{array}\right] \circ\left[\begin{array}{ccc}
1 & 0.2 & 0.3 \\
0.4 & 1 & 0.6 \\
0.7 & 0.8 & 1
\end{array}\right]
$$

repeat composition until no change

$$
\left[\begin{array}{ccc}
1 & 0.2 & 0.3 \\
0.4 & 1 & 0.6 \\
0.7 & 0.8 & 1
\end{array}\right] \Rightarrow\left[\begin{array}{ccc}
1 & 0.3 & 0.3 \\
0.6 & 1 & 0.6 \\
0.7 & 0.8 & 1
\end{array}\right] \Rightarrow\left[\begin{array}{ccc}
1 & 0.3 & 0.3 \\
0.8 & 1 & 0.6 \\
0.8 & 0.8 & 1
\end{array}\right] \Rightarrow\left[\begin{array}{ccc}
1 & 0.3 & 0.3 \\
0.8 & 1 & 0.6 \\
0.8 & 0.8 & 1
\end{array}\right]
$$

Example 1 Starting from the following 10×10 proximity-relation $R^{(0)}$, let's apply the the algorithm above. Assume now $\alpha=0.55$.

$$
R^{(0)}=\left[\begin{array}{cccccccccc}
1 & .7 & .5 & .8 & .6 & .6 & .5 & .9 & .4 & .5 \\
.7 & 1 & .3 & .6 & .7 & .9 & .4 & .8 & .6 & .6 \\
.5 & .3 & 1 & .5 & .5 & .4 & .1 & .4 & .7 & .6 \\
.8 & .6 & .5 & 1 & .7 & .5 & .5 & .7 & .5 & .6 \\
.6 & .7 & .5 & .7 & 1 & .6 & .4 & .5 & .8 & .9 \\
.6 & .9 & .4 & .5 & .6 & 1 & .3 & .7 & .7 & .5 \\
.5 & .4 & .1 & .5 & .4 & .3 & 1 & .6 & .2 & .3 \\
.9 & .8 & .4 & .7 & .5 & .7 & .6 & 1 & .4 & .4 \\
.4 & .6 & .7 & .5 & .8 & .7 & .2 & .4 & 1 & .7 \\
.5 & .6 & .6 & .6 & .9 & .5 & .3 & .4 & .7 & 1
\end{array}\right]
$$

By repeating $R^{(n+1)}=R^{(n)} \circ R^{(n)}$ till $R^{(n)}=R^{(n+1)}$.
In this way, similarity-relation $R^{(n)}$ will be calculated as:

$$
R^{(n)}=\left[\begin{array}{cccccccccc}
1 & .2 & .5 & .8 & .6 & .2 & .3 & .9 & .4 & .3 \\
.2 & 1 & .3 & .6 & .7 & .9 & .2 & .8 & .3 & .2 \\
.5 & .3 & 1 & .5 & .3 & .4 & .1 & .3 & .7 & .6 \\
.8 & .6 & .5 & 1 & .7 & .3 & .5 & .4 & .1 & .3 \\
.6 & .7 & .3 & .7 & 1 & .2 & .4 & .5 & .8 & .9 \\
.2 & .9 & .4 & .3 & .2 & .4 & .1 & .3 & .7 & .2 \\
.3 & .2 & .1 & .5 & .4 & .1 & 1 & .6 & .1 & .3 \\
.9 & .8 & .3 & .4 & .5 & .3 & .6 & 1 & 0 & .2 \\
.4 & .3 & .7 & .1 & .8 & .7 & .1 & 0 & 1 & .1 \\
.3 & .2 & .6 & .3 & .9 & .2 & .3 & .2 & .1 & 1
\end{array}\right]
$$

$$
\begin{gathered}
c c c \\
{\left[\begin{array}{cccccccccc}
0 & .7 & 0 & .8 & .6 & .6 & 0 & .9 & 0 & 0 \\
.7 & 0 & 0 & .6 & .7 & .9 & 0 & .8 & .6 & .6 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & .7 & .6 \\
.8 & .6 & 0 & 0 & .7 & 0 & 0 & .7 & 0 & .6 \\
.6 & .7 & 0 & .7 & 0 & .6 & 0 & 0 & .8 & .9 \\
.6 & .9 & 0 & 0 & .6 & 0 & 0 & .7 & .7 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & .6 & 0 & 0 \\
.9 & .8 & 0 & .7 & 0 & .7 & .6 & 0 & 0 & 0 \\
0 & .6 & .7 & 0 & .8 & .7 & 0 & 0 & 0 & .7 \\
0 & .6 & .6 & .6 & .9 & 0 & 0 & 0 & .7 & 0
\end{array}\right]}
\end{gathered}
$$

$$
\begin{gathered}
\text { Firstly, set } \\
I=\{1,2,3,4,5,6,7,8,9,10\} \text { and } C=\{ \} . \\
\text { Then apply [3.] and [4.] }
\end{gathered}
$$

3. Now $a_{18}=a_{26}=a_{510}=0.9$ are maximum and a_{18} is randomly selected. Then $C=\{1,8\}$.
4. $a_{12}+a_{82}=a_{14}+a_{84}=1.5$ are maximum and $j=4$ is randomly selected. Then $C=\{1,8,4\}$.

Repeat [4.]

4. $a_{12}+a_{42}+a_{82}=2.1$ is maximum, then $C=\{1,8,4,2\}$.
5. There are no j such that $a_{1 j}+a_{2 j}+a_{4 j}+a_{8 j}$ is maximum. Then final $C=$ $\{1,8,4,2\}$.
$\star a_{16}+a_{26}+a_{46}+a_{86}=0.6+0.9+0+0.7=2.2$ seems maximum but actually not because $a_{46}=0$

Note that $\sum_{i \in C} a_{i u}=\max _{j \in I \backslash C}\left\{\sum_{i \in C} a_{i j} \mid a_{i j} \neq 0\right\}$

Next
5. Let $I=\{3,5,6,7,9,10\}$
3. $a_{510}=0.9$ is maximum. Then renew C as $\{5,10\}$.
4. $a_{59}+a_{109}=1.5$ is maximum. Then $C=\{5,10,9\}$.
4. There are no j in $\{3,6,9\}$ such that $a_{5 j}+a_{9 j}+a_{10 j}$ is maximum. Then final $C=\{5,10,9\}$.

Further

5. Let $I=\{3,6,7\}$.
6. Now $a_{36}=a_{37}=a_{67}=0$. Then $\{3\},\{6\}$ and $\{7\}$ are three separated clusters.

> In fact
> $\left[\begin{array}{lll}a_{33} & a_{36} & a_{37} \\ a_{63} & a_{66} & a_{67} \\ a_{73} & a_{76} & a_{77}\end{array}\right]=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$

So

$$
\sum_{i \in\{3,6,7\}} a_{i u}=\max _{j \in\{3,6,7\}}\left\{\sum_{i \in C} a_{i j} \mid a_{i j} \neq 0\right\}
$$ does not exit any more.

Excercise

1. Create a target set to be classified such as Russian alphabet
2. Apply the algorithm above and cluster them.

4. The other composition forumula

Besides (i) Max-Min composition:

$$
\mu_{R_{A \circ B}}(x, z)=\max \left\{\min _{y}\left\{\mu_{R_{A}}(x, y), \mu_{R_{B}}(y, z)\right\}\right\}
$$

we have a cuple of other formulae: (ii) max-prod

$$
\begin{gathered}
\left.\mu_{R}(x, y)=\max _{z \in X}\left\{\mu_{R}(x, z) \times \mu_{R}(z, y)\right\}\right\} \\
(\text { iii }) \max -a v g \\
\mu_{R}(x, y)=\max _{z \in X}\left\{\left(\mu_{R}(x, z)+\mu_{R}(z, y)\right) / 2\right\} \\
(\text { iv }) \max -\Delta \\
\mu_{R}(x, y)=\max _{z \in X}\left\{\max \left\{0, \mu_{R}(x, z)+\mu_{R}(z, y)-1\right\}\right\}
\end{gathered}
$$

E.g.

when

$$
\begin{gathered}
{\left[\begin{array}{lll}
0.1 & 0.2 & 0.3 \\
0.4 & 0.5 & 0.6 \\
0.7 & 0.8 & 0.9
\end{array}\right] \circ\left[\begin{array}{lll}
0.3 & 0.1 & 0.5 \\
0.2 & 0.7 & 0.8 \\
0.9 & 0.4 & 0.0
\end{array}\right]} \\
\quad \operatorname{MAX}-\mathrm{PROD} \\
\mu_{R} \circ \mu_{R}(2,3) \\
=\max \{0.4 \times 0.5,0.5 \times 0.8,0.6 \times 0.0)\} \\
=\max \{0.2,0.4,0.0\}=0.4 \\
\operatorname{MAX}-\mathrm{AVG} \\
\mu_{R} \circ \mu_{R}(2,3) \\
=\max \{(0.4+0.5) / 2,(0.5+0.8) / 2,(0.6+0.0) / 2\} \\
=\max \{0.45,0.65,0.3\}=0.65 \\
\quad \operatorname{MAX}-\Delta \\
\mu_{R} \circ \mu_{R}(2,3) \\
=\max \{\max (0,0.4+0.5-1.0), \max (0,0.5+0.8-1.0), \max (0,0.6+0.0-1.0)\} \\
=\max \{\max (0,-0.1), \max (0,0.3), \max (0,-0.4)\} \\
=\max \{0,0.3,-0.4\}=0.3
\end{gathered}
$$

V. Time Series Forecasting by Fuzzy Logic

1. Fuzzy Time Series

Challenge 1

$$
\begin{aligned}
& \text { very very small very small small big very big too big } \\
& F(t)=\left[\begin{array}{lllllllllll}
1 & 0.5 & 0 & 0 & \ldots & 0 & 0 & 0 & 0
\end{array}\right] \\
& C(t)=F(t-1)=\left[\begin{array}{lll}
c_{1} & \cdots \cdots & c_{m}
\end{array}\right] \\
& O(t)=\left[\begin{array}{c}
F(t-2) \\
\vdots \\
F(t-w-1)
\end{array}\right]=>\left[\begin{array}{ccc}
0_{11} & \cdots \cdots & 0_{1 m} \\
& \vdots & \\
0_{w 1} & \cdots \cdots & 0_{w m}
\end{array}\right] \\
& R(t)=\left[\begin{array}{ccc}
c_{1} \cdot 0_{11} & \cdots \ldots & c_{m} \cdot 0_{1 m} \\
c_{w} \cdot 0_{w 1} & \cdots \cdots & c_{w} \cdot 0_{w m}
\end{array}\right] \Rightarrow\left[\begin{array}{ccc}
R_{11} & & R_{1 m} \\
& \vdots & \\
R_{w 1} & \cdots \cdots & R_{w m}
\end{array}\right] \\
& F(t)=\left[\max \left(R_{11}, R_{21}, \cdots, R_{w 1}\right) \cdots \cdots \quad \max \left(R_{1 w}, R_{22}, \cdots, R_{w w}\right)\right]
\end{aligned}
$$

Excersize

1. With m being 6, i.e., big decrease, decrease, no change, increase, big increase, too big increase, estimate $F(1977)$ by the data from 1972 to $1976(w=6)$
2. calculate the center of gravity. This is the predicted value of the year
3. Then predict 1978 in the same way
4. Repeat 2. and 3. till 1992
5. Plot the points predicted, and compare the actual data

Yet another dataset

Date	Opea	Close	Date	Open	Close
9/26/2007	13779.3	13878.15	$8 / 9 / 2007$	13652.33	13270.68
$9 / 25 / 2007$	13757.84	13778.65	$8 / 8 / 2007$	13497.23	13657.86
$9 / 24 / 2007$	13821.57	13759.06	$8 / 7 / 2007$	13467.72	13504.3
$9 / 21 / 2007$	13768.33	13820.19	$8 / 6 / 2007$	13183.13	13468.78
$9 / 20 / 2007$	13813.52	13766.7	$8 / 3 / 2007$	13462.25	13181.91
$9 / 19 / 2007$	13740.61	13815.56	$8 / 2 / 2007$	13357.82	13463.33
$9 / 18 / 2007$	13403.18	13739.39	$8 / 1 / 2007$	13211.09	13362.37
$9 / 17 / 2007$	13441.95	13403.42	$7 / 31 / 2007$	13360.66	13211.99
$9 / 14 / 2007$	13421.39	13442.52	$7 / 30 / 2007$	13266.21	13358.31
$9 / 13 / 2007$	13292.38	13424.88	$7 / 27 / 2007$	13472.68	13265.47
$9 / 12 / 2007$	13298.31	13291.65	$7 / 26 / 2007$	13783.12	13473.57
$9 / 11 / 2007$	13129.4	13308.39	$7 / 25 / 2007$	13821.4	13785.79
$9 / 10 / 2007$	13116.39	13127.85	$7 / 24 / 2007$	13940.9	13716.95
$9 / 7 / 2007$	13360.74	13113.38	$7 / 23 / 2007$	13851.73	13943.42
$9 / 6 / 2007$	13306.44	13363.35	$7 / 20 / 2007$	14000.73	13851.08
$9 / 5 / 2007$	13442.85	13305.47	$7 / 19 / 2007$	13918.79	14000.41
9					

$9 / 4 / 2007$	13358.39	13448.86	$7 / 18 / 2007$	13955.05	13918.22
$8 / 31 / 2007$	13240.84	13357.74	$7 / 17 / 2007$	13951.96	13971.55
$8 / 30 / 2007$	13287.91	13238.73	$7 / 16 / 2007$	13907.09	13950.98
$8 / 29 / 2007$	13043.07	13289.29	$7 / 13 / 2007$	13859.86	13907.25
$8 / 28 / 2007$	13318.43	13041.85	$7 / 12 / 2007$	13579.33	13861.73
$8 / 27 / 2007$	13377.16	13322.13	$7 / 11 / 2007$	13500.4	13577.87
$8 / 24 / 2007$	13231.78	13378.87	$7 / 10 / 2007$	13648.59	13501.7
$8 / 23 / 2007$	13237.27	13235.88	$7 / 9 / 2007$	13612.66	13649.97
$8 / 22 / 2007$	13088.26	13236.13	$7 / 6 / 2007$	13559.01	13611.68
$8 / 21 / 2007$	13120.05	13090.86	$7 / 5 / 2007$	13576.24	13565.84
$8 / 20 / 2007$	13078.51	13121.35	$7 / 3 / 2007$	13556.87	13577.3
$8 / 17 / 2007$	12848.05	13079.08	$7 / 2 / 2007$	13409.6	13535.43
$8 / 16 / 2007$	12859.52	12845.78	$6 / 29 / 2007$	13422.61	13408.62
$8 / 15 / 2007$	13021.93	12861.47	$6 / 28 / 2007$	13427.48	13422.28
$8 / 14 / 2007$	13235.72	13028.92	$6 / 27 / 2007$	13336.93	13427.73
$8 / 13 / 2007$	13238.24	13236.53	$6 / 26 / 2007$	13352.37	13337.66

Challenge 2

Year to Year	Change			
$1971-1972$	3.89%			
$1972-1973$	2.24%		$1982-1983$	0.41%
$1973-1974$	5.98%		$1983-1984$	-2.27%
$1974-1975$	5.20%		$1984-1985$	0.12%
$1975-1976$	-0.96%		$1985-1986$	5.41%
$1976-1977$	1.91%		$1986-1987$	5.47%
$1977-1978$	1.65%		$1987-1988$	7.66%
$1978-1979$	5.96%		$1988-1989$	4.52%
$1979-1980$	0.67%		$1989-1990$	1.89%
$1980-1981$	-3.14%		$1990-1991$	0.05%
$1981-1982$	-5.83%		$1991-1992$	-2.38%

Year	Actual Enrollment	Actual \%	Fuzzy		Forcast	
1971	13055					
1972	13563	3.89	\times_{9}	2.7229	13410	
1973	13867	2.24				
1974	14696	5.98				
1975	15460	5.20				
1976	15311	-0.96		-		Fuzzy Set:
1977	15603	1.91		:		$X_{1}=$ very very small ($-6.0,-4.0$
1978	15861	1.65				= very very smail (-6.0, -4.0
1979	16807	5.96				
1980	16916	0.67				$\mathrm{X}_{13}=$ very too large $(6.0,8.0)$
1981	16388	-3.14		$?$		$\mathrm{X}_{13}=$ very too large (6.0, 8.0)
1982	15433	-5.38		$?$		-
1983	15497	0.41				$\sqrt{ }$
1984	15145	-2.27				
1985	15163	0.12				$\mathbf{a}^{\text {j }}$
1986	15984	5.41		:		,
1987	16859	5.47				1
1988	18150	7.66				\checkmark
1989	18970	4.52				
1990	19328	1.89				t j
1991	19337	0.05				
1992	18876	-2.38				

Devide the interval with the largest number of data into 4 sub-interval of equal length 2nd largest into 3, and 3rd largest into 2 with all other intervals remain unchanged.

Defuzzification

$$
t_{j}=\left\{\begin{array}{l}
\frac{1.5}{\frac{1}{a_{1}}+\frac{1}{a_{2}}} \cdots \text { if } j=1 \\
\frac{2}{\frac{0.5}{a_{j-1}}+\frac{1}{a_{j}}+\frac{1}{a_{j+1}}} \cdots \text { if } 2 \leq j \leq(n-1) \\
\frac{1.5}{\frac{0.5}{a_{n-1}}+\frac{1}{a_{n}}} \cdots \text { if } j=n
\end{array}\right.
$$

- where a_{j-1}, a_{j}, a_{j+1} are the midpoints of the fuzzy intervals X_{j-1}, X_{j}, X_{j+1} respectively.
- t_{j} yields the predicted year to year percentage change of enrollment.
- Use the predicted percentage on the previous years enrollment to determine the forecasted enrollment.

Excersize

1. Apply the algoritm above.
2. Plot the points predicted, and compare the actual data

2. Takagi-Sugeno Formula again

R_{i} : If $y(t-1)$ is A_{1}^{i} and $y(t-2)$ is A_{2}^{i} and \cdots and $y(t-n+1)$ is A_{n}^{i} then $y(t)$ is g^{i}.

$$
R_{i}: \text { If } x_{1}(t) \text { is } A_{1}^{i} \text { and } x_{2}(t) \text { is } A_{2}^{i} \text { and } \cdots \text { and } x_{n}(t) \text { is } A_{n}^{i} \text { then } y(t) \text { is } g^{i} .
$$

Challenge 3

Date	Open	Close	Date	Open	Close
9/26/2007	13779.3	13878.15	$8 / 9 / 2007$	13652.33	13270.68
9/25/2007	13757.84	13778.65	$8 / 8 / 2007$	13497.23	13657.86
$9 / 24 / 2007$	13821.57	13759.06	$8 / 7 / 2007$	13467.72	13504.3
$9 / 21 / 2007$	13768.33	13820.19	$8 / 6 / 2007$	13183.13	13468.78
$9 / 20 / 2007$	13813.52	13766.7	$8 / 3 / 2007$	13462.25	13181.91
$9 / 19 / 2007$	13740.61	13815.56	$8 / 2 / 2007$	13357.82	13463.33
$9 / 18 / 2007$	13403.18	13739.39	$8 / 1 / 2007$	13211.09	13362.37
$9 / 17 / 2007$	13441.95	13403.42	$7 / 31 / 2007$	13360.66	13211.99
$9 / 14 / 2007$	13421.39	13442.52	$7 / 30 / 2007$	13266.21	13358.31
$9 / 13 / 2007$	13292.38	13424.88	$7 / 27 / 2007$	13472.68	13265.47
$9 / 12 / 2007$	13298.31	13291.65	$7 / 26 / 2007$	13783.12	13473.57
$9 / 11 / 2007$	13129.4	13308.39	$7 / 25 / 2007$	13821.4	13785.79
$9 / 10 / 2007$	13116.39	13127.85	$7 / 24 / 2007$	13940.9	13716.95
$9 / 7 / 2007$	13360.74	13113.38	$7 / 23 / 2007$	13851.73	13943.42
$9 / 6 / 2007$	13306.44	13363.35	$7 / 20 / 2007$	14000.73	13851.08
$9 / 5 / 2007$	13442.85	13305.47	$7 / 19 / 2007$	13918.79	14000.41

$9 / 4 / 2007$	13358.39	13448.86	$7 / 18 / 2007$	13955.05	13918.22
$8 / 31 / 2007$	13240.84	13357.74	$7 / 17 / 2007$	13951.96	13971.55
$8 / 30 / 2007$	13287.91	13238.73	$7 / 16 / 2007$	13907.09	13950.98
$8 / 29 / 2007$	13043.07	13289.29	$7 / 13 / 2007$	13859.86	13907.25
$8 / 28 / 2007$	13318.43	13041.85	$7 / 12 / 2007$	13579.33	13861.73
$8 / 27 / 2007$	13377.16	13322.13	$7 / 11 / 2007$	13500.4	13577.87
$8 / 24 / 2007$	13231.78	13378.87	$7 / 10 / 2007$	13648.59	13501.7
$8 / 23 / 2007$	13237.27	13235.88	$7 / 9 / 2007$	13612.66	13649.97
$8 / 22 / 2007$	13088.26	13236.13	$7 / 6 / 2007$	13559.01	13611.68
$8 / 21 / 2007$	13120.05	13090.86	$7 / 5 / 2007$	13576.24	13565.84
$8 / 20 / 2007$	13078.51	13121.35	$7 / 3 / 2007$	13556.87	13577.3
$8 / 17 / 2007$	12848.05	13079.08	$7 / 2 / 2007$	13409.6	13535.43
$8 / 16 / 2007$	12859.52	12845.78	$6 / 29 / 2007$	13422.61	13408.62
$8 / 15 / 2007$	13021.93	12861.47	$6 / 28 / 2007$	13427.48	13422.28
$8 / 14 / 2007$	13235.72	13028.92	$6 / 27 / 2007$	13336.93	13427.73
$8 / 13 / 2007$	13238.24	13236.53	$6 / 26 / 2007$	13352.37	13337.66

Nine Rules

R_{01} : If $x(t-2)$ is SMALL and $x(t-1)$ is SMALL then $x(t)$ is λ_{1} R_{02} : If $x(t-2)$ is SMALL and $x(t-1)$ is MEDIUM then $x(t)$ is λ_{2} R_{03} : If $x(t-2)$ is SMALL and $x(t-1)$ is LARGE then $x(t)$ is λ_{3} R_{04} : If $x(t-2)$ is MEDIUM and $x(t-1)$ is SMALL then $x(t)$ is λ_{4} R_{05} : If $x(t-2)$ is MEDIUM and $x(t-1)$ is MEDIUM then $x(t)$ is λ_{5} $R_{06}:$ If $x(t-2)$ is MEDIUM and $x(t-1)$ is LARGE then $x(t)$ is λ_{6} $R_{07}:$ If $x(t-2)$ is LARGE and $x(t-1)$ is SMALL then $x(t)$ is λ_{7} R_{08} : If $x(t-2)$ is LARGE and $x(t-1)$ is MEDIUM then $x(t)$ is λ_{8} R_{09} : If $x(t-2)$ is LARGE and $x(t-1)$ is LARGE then $x(t)$ is λ_{9}

A rule representation

$\times(\mathrm{t}-1)$					
		SMALL	MEDIUM	LARGE	
$\times(\mathrm{t}-2)$	SMALL	λ_{1}	λ_{2}	λ_{3}	
	MEDIUM	λ_{4}	λ_{5}	λ_{6}	
	LARGE	λ_{7}	λ_{8}	λ_{9}	

E.g.
if $x(t-2)$ is SMALL and $x(t-1)$ is SMALL then $x(t+1)=\lambda_{1}$ if $x(t-2)$ is SMALL and $x(t-1)$ is MEDIUM then $x(t+1)=\lambda_{2}$

Takagi-Sugeno Formula in this challange

$$
R_{i} \text { : If } x(t-2) \text { is } A_{1}^{i} \text { and } x(t-2) \text { is } A_{2}^{i} \text { then } \lambda_{i}
$$

Estimation of $x(t)$ for inputs $x_{2}=x(t-2)$ and $x_{1}=x(t-1)$

$$
x(t)=\frac{\sum_{k=1}^{9}\left(M_{k}(\mathbf{x}) \cdot \lambda_{k}\right)}{\sum_{k=1}^{9} M_{k}(\mathbf{x})}
$$

where

$$
M_{k}(\mathbf{x})=\prod_{i=1}^{2} \mu_{i k}\left(x_{i}\right)
$$

where $\mu_{i k}$ is membership value of A_{i}^{k}

A Summary Table

t	$x(t-2)$	$x(t-1)$	A 1	A 2	λ	$\hat{x}(t)$	$x(t)$
1						?	13878.15
2		13878.15		LARGE	3	?	13778.65
3	13878.15	13778.65	LARGE	LARGE	3	?	13759.06
4	13778.65	13759.06	LARGE	LARGE	3	?	13820.19
5	13759.06	13820.19	LARGE	LARGE	3	?	13766.70
63	13408.62	13422.78	MEDIUM	MEDIUM	2	?	13427.73
64	13422.28	13427.73	MEDIUM	MEDIUM	2	?	13337.66

Excersize

1. Apply the algoritm above.
2. Plot the points predicted, and compare the actual data
