A slide show of our Lecture Note

Fuzzy Data Processing

Akira Imada
Brest State Technical University

Last modified on 14 March 2019

I. Fuzzy Basic Arithmetics

Membership Function

In Fuzzy logic the probability of "how likely A is true" is called membership value of A and expressed as μ_{A}. E.g., assuming $A=$ "beer is cold," $\mu_{A}=1$ when temperature of beer is $5^{\circ} \mathrm{C}$, while $\mu_{A}=0.5$ when temperature of beer is $10^{\circ} \mathrm{C}$, and $\mu_{A}=0$ when temperature of beer is $15^{\circ} \mathrm{C}$.

Other types of Membership Function
Is This beer cold?

AND and OR

Membership of A AND B and A OR B are given, respectively, as

$$
\begin{aligned}
\mu_{A \cap B}(x) & =\min \left\{\mu_{A}(x), \mu_{B}(x)\right\} \\
& \text { and } \\
\mu_{A \cup B}(x) & =\max \left\{\mu_{A}(x), \mu_{B}(x)\right\}
\end{aligned}
$$

AND and OR - Crisp/Fuzzy

Temperature of Beer

Membership of AND \& OR

Young \& Tall

A Representation of Membership of Young AND Tall

IF-THEN

Membership of IF A THEN B has proposed by many but here we use this Larsen's proposal.

$$
\mu_{A \rightarrow B}(x)=\mu_{A}(x) \times \mu_{B}(x)
$$

De-fuzzification

When A has some different possibility, we determine most possible value of A by calculating the center of gravity of these membership values.

$$
\begin{gathered}
\sum_{i} \mu_{A_{i}} \times\left(x-x_{i}\right)=0 \\
\text { E.g. }
\end{gathered}
$$

II. Fuzzy Controller

Controll two metro cars

Let's create a virtual metro system with 2 cars on a loop line with 1000 pixels. Each car has a pair of 3 parameters of speed x, distance to the car in front y and strength of brake z.

Membership function of Speed, Distance and Brake assumed here.

brake
very weak medium very strong

Membership value of a rule with specific speed, distance and brake.

E.g.

The membership value below implies how this brake $=4$ will be likely when speed $=7$ and distance $=500$ under the rule below.

IF $\mathrm{x}=$ slow $A N D \mathrm{y}=$ long THEN $\mathrm{z}=$ weak
Assume now $x=7, y=500, z=4$
Then the membership value of this rule is $-(0.72+0.35) \times 0.31=0.3317$

An example of Membership value of one rule

Membership value of brake $=0,1,2,3,4,5,6,7,8,9$ when speed $=20$ and distance $=650$ under the rule IF speed $=$ medium AND distance $=$ long THEN brake $=$ medium .

Membership value of two rules

$$
\begin{gathered}
\text { IF } \mathrm{x}=\text { slow } \mathrm{AND} \mathrm{y}=\underset{\text { OR }}{\text { long }} \text { THEN } \mathrm{z}=\text { weak } \\
\end{gathered}
$$

IF $\mathrm{x}=$ medium AND $\mathrm{y}=$ medium THEN $\mathrm{z}=$ medium Assume now $x=7, y=500, z=4$
Then the membership value of these two rules is $\max \{\{(0.72+0.35) \times 0.31=0.3317),\{(0.23+0.75) \times 0.58=0.5684\}\}=0.5684$

Membership value of 3 rules for a pair of speed \& distance

Speed	Distance	Brake	Rule 1 : $17 x=$ medium AND $y=$ Small $T H E N z=$ strong				Rule 2: Fxx=medium AND y=medium THENz=medium				Rule 3: FF x =medium AND $y=$ large THEN $z=$ week				Maxof fules
			mSp1	mDs 1	mbr1		mSp2	mDs2	mb/2	manmpros mbir	mSp3	mDs3	mb13	minmprasimb	
11,00	550,00	0	0,75	0	0	0	0.75	0,25	0	0	0,75	0.75	0	0	0
		1	0.75	0	0	0	0.75	0,25	0	0	0.75	0.75	0	0	0
		2	0,75	0	0	0	0.75	0,25	0	0	0,75	0.75	0,25	0,1875	0,1875
		3	0.75	0	0	0	0.75	0,25	0	0	0.75	0.75	1	0.75	0,75
		4	0,75	0	0	0	0,75	0,25	0,75	0,1875	0,75	0.75	0,25	0,1875	0,1875
		5	0,75	0	0,3	0	0.75	0,25	0,75	0.1875	0,75	0.75	0	0	0,1875
		6	0,75	0	1	0	0.75	0,25	0	0	0.75	0.75	0	0	0
		7	0,75	0	0,3	-	0,75	0,25	0	0	0,75	0.75	0	0	,
		8	0,75	0	0	0	0,75	0,25	0	0	0,75	0,75	0	0	0
		9	0.75	0	0	0	0,75	0,25	0	0	0.75	0,75	0	0	0
		10	0.75	0	0	0	0.75	0.25	0	$\overline{0}$	0.75	0.75	0	0	0

From the work by Yulia Bogutskaya (2016 Fall)

Defuzzified value of break for a pair of a speed and a distance

			Speed is very slow AID Distance is very short THEN Brake is strong			Speed is very slow AND Distance is short THEN Brake is strong			Speed is medium ANDDistance is short THEN Brake is very strong			
Speed	Distance	Brake	$\mu 1$ Speed	$\mu 1$ Distance	11 Brak	$\mu 2$ Speed	$\mu 2$ Distance	L3 Brak¢	$\mu 3$ Speed	$\mu 3$ Distance	$\mu 3$ Brake	Result
0	150	0	1	0.4	0	1	0.6	0	0	0.6	0	0
0	150	1	1	0.4	0	1	0.6	0	0	0.6	0	0
0	150	2	1	0.4	0	1	0.6	0	0	0.6	0	0
0	150	3	1	0.4	0	1	0.6	0	0	0.6	0	0
0	150	4	1	0.4	0	1	0.6	0	0	0.6	0	0
0	150	5	1	0.4	0	1	0.6	0	0	0.6	0	0
0	150	6	1	0.4	0.5	1	0.6	0.5	0	0.6	0	0.3
0	150	7	1	0.4	1	1	0.6	1	0	0.6	0	0.6
0	150	8	1	0.4	0.5	1	0.6	0.5	0	0.6	0.5	0.3
0	150	9	1	0.4	0	1	0.6	0	0	0.6	1	0

From the work by Kuchur Alexander (2015 Fall)

Membership value of 3 rules for 3 pairs of speed \& distance

From the work by Yulia Bogutskaya (2016 Fall)

Membership function of 25 rules

Too small to be visible but all combination of speed, distance and brake.

From the work by Lishko Aleksandr (2016 Fall)

6. 3-D bar-graph of speed-distance-brake with 25 rules

From the work by Bokhanov Evgenii (2015 Fall)

3-D surface of speed-distance-brake with limited domain

An example of how to draw for a fixed speed and three diferent value of distances

From the work by Bokhanov Evgenii (2015 Fall)

3-D surface of speed-distance-brake with limited domain (continued)
Distance speed

From the work by Bokhanov Evgenii (2015 Fall)

A 3-D surface of speed-distance-brake over whole domain

From the work by Yulia Bogutskaya (2016 Fall)

Another 3-D surface of speed-distance-brake over whole domain

From the work by Kolesnikov Dmitry (2016 Fall)
7. Control metros by 3-D surface of speed-distance-brake

From the work by Muzyka Aleksandr (2016 Fall)
III. Fuzzy Classification

An example of classification - 3 families of fish

Family B

Family C

Rules to classify as an example

$R_{1}:$ IF $x_{1}=$ medium AND $x_{2}=$ small THEN A
$R_{2}:$ IF $x_{1}=$ small AND $x_{2}=$ medium THEN B
$R_{3}:$ IF $x_{1}=$ large AND $x_{2}=$ small THEN C

Memership function for the size of two parts

$$
\mu(x)=\exp \left\{-\frac{\left(x-(a v g)^{2}\right)}{(s t d)^{2}}\right\}
$$

How to estimate avg and std from dataset

How we specify avg and std for each of membership function from dataset given?

Algorithm 1

1. Select maximum data + minimum data + other randomly chose $5 N-2$ data.
2. Sort these $5 N$ data from small to large in each attribute.
3. Devide the data in each attribute into 5 groups, that is, very small, small, medium, large, and very large.
4. Calculate average and stndard deviation in eact devision.

Question: Which family is this new fish?

Takagi Sugeno Formula

R_{k} : If x_{1} is A_{1}^{k}, and x_{2} is A_{2}^{k} and \cdots and x_{N} is A_{N}^{k} then y is g^{k}.

Takagi-Sugeno rules: Estimation of a single input

Estimation of y for an input $\mathbf{x}=\left(x_{1}, x_{2}, \cdots, x_{N}\right)$

$$
y_{j}=\frac{\sum_{k=1}^{H}\left(M_{k}(\mathbf{x}) \cdot g_{k}\right)}{\sum_{k=1}^{H} M_{k}(\mathbf{x})}
$$

where

$$
M_{k}(\mathbf{x})=\prod_{i=1}^{N} \mu_{i k}\left(x_{i}\right)
$$

where $\mu_{i k}$ is i-th attribute of k-th rule

Three rules to classify

A benchmark - Iris database

Iris flower dataset (taken from University of California Urvine Machine Learning
Repository) consists of three species of iris flower setosa, versicolor and virginica.
Each sample represents four attributes of the iris flower sepal-length, sepal-width, petal-length, and petal-width.

Iris Flower Database to design

Setosa				Versicolor				Virginica			
x_{1}	x_{2}	x_{3}	x_{4}	x_{1}	x_{2}	x_{3}	x_{4}	x_{1}	x_{2}	x_{3}	x_{4}
0.56	0.66	0.20	0.08	0.84	0.66	0.67	0.52	0.85	0.57	0.84	0.72
0.62	0.70	0.22	0.04	0.66	0.61	0.57	0.56	0.91	0.82	0.88	1.00
0.68	0.84	0.22	0.08	0.63	0.45	0.51	0.40	0.82	0.73	0.74	0.80
0.61	0.77	0.23	0.08	0.75	0.68	0.61	0.60	0.81	0.61	0.77	0.76
0.61	0.68	0.20	0.04	0.76	0.50	0.58	0.40	0.86	0.68	0.80	0.84
0.54	0.68	0.16	0.04	0.77	0.66	0.68	0.56	0.72	0.57	0.72	0.80
0.73	0.91	0.17	0.08	0.71	0.66	0.52	0.52	0.73	0.64	0.74	0.96
0.72	1.00	0.22	0.16	0.85	0.70	0.64	0.56	0.81	0.73	0.77	0.92
0.68	0.89	0.19	0.16	0.71	0.68	0.65	0.60	0.82	0.68	0.80	0.72
0.65	0.80	0.20	0.12	0.73	0.61	0.59	0.40	0.97	0.86	0.97	0.88
0.72	0.86	0.25	0.12	0.78	0.50	0.65	0.60	0.97	0.59	1.00	0.92
0.65	0.86	0.22	0.12	0.71	0.57	0.57	0.44	0.76	0.50	0.72	0.60
0.68	0.77	0.25	0.08	0.75	0.73	0.70	0.72	0.87	0.73	0.83	0.92
0.65	0.84	0.22	0.16	0.77	0.64	0.58	0.52	0.71	0.64	0.71	0.80
0.58	0.82	0.14	0.08	0.80	0.57	0.71	0.60	0.97	0.64	0.97	0.80
0.65	0.75	0.25	0.20	0.77	0.64	0.68	0.48	0.80	0.61	0.71	0.72
0.61	0.77	0.28	0.08	0.81	0.66	0.62	0.52	0.85	0.75	0.83	0.84

Avg and std of each column

	Setos.				Versicolor				Virginica			
	$\times 1$	$\times 2$	x3	x4	$\times 1$	$\times 2$	x3	x4	x 1	x2	x3	x4
	0.56	0.66	0.2	0.08	0.84	0.66	0.67	0.52	0.85	0.57	0.84	0.72
	0.62	0.7	0.22	0.04	0.66	0.61	0.57	0.56	0.91	0.82	0.88	1
	0.68	0.84	0.22	0.08	0.63	0.45	0.51	0.4	0.82	0.73	0.74	0.8
	0.61	0.77	0.23	0.08	0.75	0.68	0.61	0.6	0.81	0.61	0.77	0.76
	0.61	0.68	0.2	0.04	0.76	0.5	0.58	0.4	0.86	0.68	0.8	0.84
	0.54	0.68	0.16	0.04	0.77	0.66	0.68	0.56	0.72	0.57	0.72	0.8
	0.73	0.91	0.17	0.08	0.71	0.66	0.52	0.52	0.73	0.64	0.74	0.96
	0.72	1	0.22	0.16	0.85	0.7	0.64	0.56	0.81	0.73	0.77	0.92
	0.68	0.89	0.19	0.16	0.71	0.68	0.65	0.6	0.82	0.68	0.8	0.72
	0.65	0.8	0.2	0.12	0.73	0.61	0.59	0.4	0.97	0.86	0.97	0.88
	0.72	0.86	0.25	0.12	0.78	0.5	0.65	0.6	0.97	0.59	1	0.92
	0.65	0.86	0.22	0.12	0.71	0.57	0.57	0.44	0.76	0.5	0.72	0.6
	0.68	0.77	0.25	0.08	0.75	0.73	0.7	0.72	0.87	0.73	0.83	0.92
	0.65	0.84	0.22	0.16	0.77	0.64	0.58	0.52	0.71	0.64	0.71	0.8
	0.58	0.82	0.14	0.08	0.8	0.57	0.71	0.6	0.97	0.64	0.97	0.8
	0.65	0.75	0.25	0.2	0.77	0.64	0.68	0.48	0.8	0.61	0.71	0.72
	0.61	0.77	0.28	0.08	0.81	0.66	0.62	0.52	0.85	0.75	0.83	0.84
Avg:	0.64	0.80	0.21	0.10	0.75	0.62	0.62	0.53	0.84	0.67	0.81	0.82
Deviation:	0.04	0.07	0.03	0.04	0.04	0.06	0.05	0.07	0.07	0.08	0.08	0.08

added by Evgene Borisiuk (on 05 February 2019)

Iris Flower Database to validate

Setosa				Versicolor					Virginica			
x_{1}	x_{2}	x_{3}	x_{4}	x_{1}	x_{2}	x_{3}	x_{4}	x_{1}	x_{2}	x_{3}	x_{4}	
0.65	0.80	0.20	0.08	0.89	0.73	0.68	0.56	0.80	0.75	0.87	1.00	
0.62	0.68	0.20	0.08	0.81	0.73	0.65	0.60	0.73	0.61	0.74	0.76	
0.59	0.73	0.19	0.08	0.87	0.70	0.71	0.60	0.90	0.68	0.86	0.84	
0.58	0.70	0.22	0.08	0.70	0.52	0.58	0.52	0.80	0.66	0.81	0.72	
0.63	0.82	0.20	0.08	0.82	0.64	0.67	0.60	0.82	0.68	0.84	0.88	
0.68	0.89	0.25	0.16	0.72	0.64	0.65	0.52	0.96	0.68	0.96	0.84	
0.58	0.77	0.20	0.12	0.80	0.75	0.68	0.64	0.62	0.57	0.65	0.68	
0.63	0.77	0.22	0.08	0.62	0.55	0.48	0.40	0.92	0.66	0.91	0.72	

Wine dataset to design rules

class	$\times 1$	$\times 2$	$\times 3$	$\times 4$	$\times 5$	$\times 6$	$\times 7$	$\times 8$	$\times 9$	$\times 10$	$\times 11$	$\times 12$	$\times 13$
1	14,23	1,71	2,43	15,6	127	2,8	3,06	0,28	2,29	5,64	1,04	3,92	1065
	13,2	1,78	2,14	11,2	100	2,65	2,76	0,26	1,28	4,38	1,05	3,4	1050
	13,16	2,36	2,67	18,6	101	2,8	3,24	0,3	2,81	5,68	1,03	3,17	1185
	14,37	1,95	2,5	16,8	113	3,85	3,49	0,24	2,18	7,8	0,86	3,45	1480
	13,24	2,59	2,87	21	118	2,8	2,69	0,39	1,82	4,32	1,04	2,93	735
	14,2	1,76	2,45	15,2	112	3,27	3,39	0,34	1,97	6,75	1,05	2,85	1450
	14,39	1,87	2,45	14,6	96	2,5	2,52	0,3	1,98	5,25	1,02	3,58	1290
	14,06	2,15	2,61	17,6	121	2,6	2,51	0,31	1,25	5,05	1,06	3,58	1295
	14,83	1,64	2,17	14	97	2,8	2,98	0,29	1,98	5,2	1,08	2,85	1045
	13,86	1,35	2,27	16	98	2,98	3,15	0,22	1,85	7,22	1,01	3,55	1045
2	12,37	0,94	1,36	10,6	88	1,98	0,57	0,28	0,42	1,95	1,05	1,82	520
	12,33	1,1	2,28	16	101	2,05	1,09	0,63	0,41	3,27	1,25	1,67	680
	12,64	1,36	2,02	16,8	100	2,02	1,41	0,53	0,62	5,75	0,98	1,59	450
	13,67	1,25	1,92	18	94	2,1	1,79	0,32	0,73	3,8	1,23	2,46	630
	12,37	1,13	2,16	19	87	3,5	3,1	0,19	1,87	4,45	1,22	2,87	420
	12,17	1,45	2,53	19	104	1,89	1,75	0,45	1,03	2,95	1,45	2,23	355
	12,37	1,21	2,56	18,1	98	2,42	2,65	0,37	2,08	4,6	1,19	2,3	678
	13,11	1,01	1,7	15	78	2,98	3,18	0,26	2,28	5,3	1,12	3,18	502
	12,37	1,17	1,92	19,6	78	2,11	2	0,27	1,04	4,68	1,12	3,48	510
	13,34	0,94	2,36	17	110	2,53	1,3	0,55	0,42	3,17	1,02	1,93	750
3	12,86	1,35	2,32	18	122	1,51	1,25	0,21	0,94	4,1	0,76	1,29	630
	12,88	2,99	2,4	20	104	1,3	1,22	0,24	0,83	5,4	0,74	1,42	530
	12,81	2,31	2,4	24	98	1,15	1,09	0,27	0,83	5,7	0,66	1,36	560
	12,7	3,55	2,36	21,5	106	1,7	1,2	0,17	0,84	5	0,78	1,29	600
	12,51	1,24	2,25	17,5	85	2	0,58	0,6	1,25	5,45	0,75	1,51	650
	12,6	2,46	2,2	18,5	94	1,62	0,66	0,63	0,94	7,1	0,73	1,58	695
	12,25	4,72	2,54	21	89	1,38	0,47	0,53	0,8	3,85	0,75	1,27	720
	12,53	5,51	2,64	25	96	1,79	0,6	0,63	1,1	5	0,82	1,69	515
	13,49	3,59	2,19	19,5	88	1,62	0,48	0,58	0,88	5,7	0,81	1,82	580
	12,84	2,96	2,61	24	101	2,32	0,6	0,53	0,81	4,92	0,89	2,15	590

From the work by Savchuk Artem (2016 Fall)

Two sets of membership function from 13 attributes (1)

Membership functions for attribute $\times 1$ (Alcohol):

	very small	small	medium	large	very large
average	12,43	12,98	13,435	14,0875	14,53
std	0,024	0,024	0,0263	0,0213	0,045

From the work by Savchuk Artem (2016 Fall)

Two sets of membership function from 13 attributes (2)

Membership functions for attribute $\times 13$ (Proline):

	very small	small	medium	large	very large
average	468,67	661,5	0	1078	1378,75
std	3670,89	3003,91	0	2916	7554,69

From the work by Savchuk Artem (2016 Fall)

Rules to classify a wine dataset

\#	If X1	AND X2	AND X3	AND $\times 4$	AND X5	AND X6	AND X7	AND X 8	AND $\times 9$	AND X10	AND X11	AND X12	AND X13	Then
1	large	small	large	very small	small	large	very large	small	large	very large	large	medium	very large	A
2	very large	small	large	medium	medium	medium	large	very small	large	medium	large	large	large	A
3	very small	very small	medium	very large	very small	small	medium	small	large	medium	large	very small	small	B
4	medium	very small	small	medium	medium	medium	small	large	very small	small	large	small	small	B
5	small	medium	large	large	small	small	very small	medium	small	very large	small	medium	very small	C
6	very small	small	very large	very large	large	very small	very small	large	very small	medium	small	small	small	C
7	very large	large	small	small	very large	very large	small	large	very large	large	medium	very large	medium	Other

From the work by Savchuk Artem (2016 Fall)

Wine data for validation

class	x1	$\times 2$	x3	X4	x5	$\times 6$	$\times 7$	x8	$\times 9$	x10	x11	x12	x13
1	14,1	2,16	2,3	18	105	2,95	3,32	0,22	2,38	5,75	1,25	3,17	1510
	14,12	1,48	2,32	16,8	95	2,2	2,43	0,26	1,57	5	1,17	2,82	1280
	13,75	1,73	2,41	16	89	2,6	2,76	0,29	1,81	5,6	1,15	2,9	1320
	14,75	1,73	2,39	11,4	91	3,1	3,69	0,43	2,81	5,4	1,25	2,73	1150
	14,38	1,87	2,38	12	102	3,3	3,64	0,29	2,96	7,5	1,2	3	1547
2	12,21	1,19	1,75	16,8	151	1,85	1,28	0,14	2,5	2,85	1,28	3,07	718
	12,29	1,61	2,21	20,4	103	1,1	1,02	0,37	1,46	3,05	0,906	1,82	870
	13,86	1,51	2,67	25	86	2,95	2,86	0,21	1,87	3,38	1,36	3,16	410
	13,49	1,66	2,24	24	87	1,88	1,84	0,27	1,03	3,74	0,98	2,78	472
	12,99	1,67	2,6	30	139	3,3	2,89	0,21	1,96	3,35	1,31	3,5	985
3	12,93	2,81	2,7	21	96	1,54	0,5	0,53	0,75	4,6	0,77	2,31	600
	13,36	2,56	2,35	20	89	1,4	0,5	0,37	0,64	5,6	0,7	2,47	780
	13,52	3,17	2,72	23,5	97	1,55	0,52	0,5	0,55	4,35	0,89	2,06	520
	13,62	4,95	2,35	20	92	2	0,8	0,47	1,02	4,4	0,91	2,05	550
	12,25	3,88	2,2	18,5	112	1,38	0,78	0,29	1,14	8,21	0,65	2	855

From the work by Savchuk Artem (2016 Fall)

Result of validate rules

No.	Family A	Family B	Family C	Evaluation
$\# 1$	A	B	C	Good
$\# 2$	A	C	C	NotGood
$\# 3$	A	A	C	NotGood
$\# 4$	A	B	C	Good
$\# 5$	A	Other	C	Not Good
Success rate	100%	$40,00 \%$	100%	40%

From the work
by Savchuk Artem (2016 Fall)

Practice 3

```
To design olassifioation rules
    1. Select one dataset from those given
    2. Oreate table with raw data from upper half of the dataset
    3. Each colum is devided into s categories: VS, S,M, L and VL by (max-min)/s
    4. Define Gaussian membership functions M ij for i = 1, 2, -., N and j = 1, 2, 3, 4, 5
                where M is the number of attributes
            j = 1, 2,3,4,5 meams VS,S,M, L, VL, respectively
    5. Translate the table in z. into fuzzy variables VS,S,M, L, VL
    G. Oreate p rules from upper half of the dataset
```

To validate the rules

9. Calculate overall success rare
IV. Time-series prediction by Fuzzy

Forecasting a value from its history

Assume $y(t)$ is a value of a variable y at time t such as maximum price of a stock during a day. Then T-S formula for singleton consequeance is as follows
(Taken from Sheta, A. F. () Forecasting the Nile river flow using fuzzy logic model)
R_{i} : If $y(t-1)$ is A_{1}^{i} and $y(t-2)$ is A_{2}^{i} and \cdots and $y(t-n+1)$ is A_{n}^{i} then $y(t)$ is g^{i}.

Forecasting a value from other related items

R_{i} : If $x_{1}(t)$ is A_{1}^{i} and $x_{2}(t)$ is A_{2}^{i} and \cdots and $x_{n}(t)$ is A_{n}^{i} then $y(t)$ is g^{i}.

A stock dataset

Date	Open	Close	Date	Open	Close
$9 / 26 / 2007$	13779.3	13878.15	$8 / 9 / 2007$	13652.33	13270.68
$9 / 25 / 2007$	13757.84	13778.65	$8 / 8 / 2007$	13497.23	13657.86
$9 / 24 / 2007$	13821.57	13759.06	$8 / 7 / 2007$	13467.72	13504.3
$9 / 21 / 2007$	13768.33	13820.19	$8 / 6 / 2007$	13183.13	13468.78
$9 / 20 / 2007$	13813.52	13766.7	$8 / 3 / 2007$	13462.25	13181.91
$9 / 19 / 2007$	13740.61	13815.56	$8 / 2 / 2007$	13357.82	13463.33
$9 / 18 / 2007$	13403.18	13739.39	$8 / 1 / 2007$	13211.09	13362.37
$9 / 17 / 2007$	13441.95	13403.42	$7 / 31 / 2007$	13360.66	13211.99
$9 / 14 / 2007$	13421.39	13442.52	$7 / 30 / 2007$	13266.21	13358.31
$9 / 13 / 2007$	13292.38	13424.88	$7 / 27 / 2007$	13472.68	13265.47
$9 / 12 / 2007$	13298.31	13291.65	$7 / 26 / 2007$	13783.12	13473.57
$9 / 11 / 2007$	13129.4	13308.39	$7 / 25 / 2007$	13821.4	13785.79
$9 / 10 / 2007$	1311639	13127.85	$7 / 24 / 2007$	13940.9	13716.95
$9 / 7 / 2007$	13360.74	13113.38	$7 / 23 / 2007$	13851.73	13943.42
$9 / 6 / 2007$	13306.44	13363.35	$7 / 20 / 2007$	14000.73	13851.08
$9 / 5 / 2007$	13442.85	13305.47	$7 / 19 / 2007$	13918.79	14000.41

$9 / 4 / 2007$	13358.39	13448.86	$7 / 18 / 2007$	13955.05	13918.22
$8 / 31 / 2007$	13240.84	13357.74	$7 / 17 / 2007$	13951.96	13971.55
$8 / 30 / 2007$	13287.91	13238.73	$7 / 16 / 2007$	13907.09	13950.98
$8 / 29 / 2007$	13043.07	13289.29	$7 / 13 / 2007$	13859.86	13907.25
$8 / 28 / 2007$	13318.43	13041.85	$7 / 12 / 2007$	13579.33	13861.73
$8 / 27 / 2007$	13377.16	13322.13	$7 / 11 / 2007$	13500.4	13577.87
$8 / 24 / 2007$	13231.78	13378.87	$7 / 10 / 2007$	13648.59	13501.7
$8 / 23 / 2007$	13237.27	13235.88	$7 / 9 / 2007$	13612.66	13649.97
$8 / 22 / 2007$	13088.26	13236.13	$7 / 6 / 2007$	13559.01	13611.68
$8 / 21 / 2007$	13120.05	13090.86	$7 / 5 / 2007$	13576.24	13565.84
$8 / 20 / 2007$	13078.51	13121.35	$7 / 3 / 2007$	13556.87	13577.3
$8 / 17 / 2007$	12848.05	13079.08	$7 / 2 / 2007$	13409.6	13535.43
$8 / 16 / 2007$	12859.52	12845.78	$6 / 29 / 2007$	13422.61	13408.62
$8 / 15 / 2007$	13021.93	12861.47	$6 / 28 / 2007$	13427.48	13422.28
$8 / 14 / 2007$	13235.72	13028.92	$6 / 27 / 2007$	13336.93	13427.73
$8 / 13 / 2007$	13238.24	13236.53	$6 / 26 / 2007$	13352.37	13337.66

V. Fuzzy Clustering

Fuzzy Relation

\star Example $4 \ldots \mathrm{X}=\{$ green, yellow, red $\}, \mathrm{Y}=\{$ unripe, semiripe, ripe $\}$.
We may assume that a red apple is provably ripe, but a green apple is most likely, and so on. Thus, for example:

$X \backslash Y$	unripe	semiripe	ripe
green	1	0.5	0
yellow	0.3	1	0.4
red	0	0.2	1

Let's call this relation R_{1}. Then we think a similar but new Relation.

$$
\begin{aligned}
& \text { Combine two fuzzy relations } \\
& \text { Now } \\
& Y=\{\text { unripe }, \text { semiripe, ripe }\} \\
& \text { and } \\
& Z=\{\text { sour, sour }- \text { sweet, sweet }\}
\end{aligned}
$$

Let's call this relation R_{2}.

$X \backslash Y$	sour	sour-sweet	sweet
unripen	0.8	0.5	0.1
semiripe	0.1	0.7	0.5
ripe	0.2	0.3	0.9

Combine two fuzzy relations - continued We combine these two relations R_{1} and R_{2} by the formula

$$
\mu_{R}(x, z) \geq \max _{y \in X}\left\{\min \left\{\mu_{R}(x, y), \mu_{R}(y, z)\right\}\right\}
$$

the result is:

$X \backslash Y$	sour	sour-sweet	sweet
red	0.8	0.5	0.5
yellow	0.3	0.7	0.5
green	0.2	0.3	0.9

Expression by our daily language

This relation could be expressed by our daily language like
"If tomato is red then it's most likely sweet, possibly sour-sweet, and unlikely sour."
"If tomato is yellow then probably it's sour-sweet, possibly sour, maybe sweet."
"If tomato is green then almost always sour, less likely sour-sweet, unlikely sweet."
Or, we could say:
"Now tomato is more or less red, then what is taste like?"

Clustering by Fuzzy Relation of Proximity

Algorithm 2 0. Initialize I and C

1. Calculate a max-min similarity-relation $R^{(0)}=\left[a_{i j}\right]$
2. Set $a_{i j}=0$ for all $a_{i j}<\alpha$ and $i=j$
3. Select s and t such that $a_{s t}=\max \left\{a_{i j} \mid i<j A N D i, j \in I\right\}$. When tie, select one of these pairs at random

WHILE $a_{\text {st }} \neq 0$ DO put s and t into the same cluster $C=\{s, t\}$ ELSE 4 . ELSE all indices $\in I$ into separated clusters and STOP
4. Choose $u \in I-C$ such that

$$
\sum_{i \in C} a_{i u}=\max _{j \in I-C}\left\{\sum_{i \in C} a_{i j} \mid a_{i j} \neq 0\right\}
$$

When a tie, select one such u at random.
WHILE such a u exists, put u into $C=\{s, t, u\}$ and REPEAT 4.
5. Let $I=I-C$ and GOTO 3.

Find maximum a_{ij} (if some are equal, select one at random)

$$
\begin{array}{ll}
a_{11} a_{12} a_{13} a_{14} a_{15} a_{16} a_{17} a_{18} a_{19} & \\
a_{21} a_{22} a_{23} a_{24} a_{25} a_{26} a_{27} a_{28} a_{29} & \text { Look for } \\
a_{31} a_{32} a_{33} a_{34} a_{35} a_{36} a_{37} a_{38} a_{39} & \text { Maximum } a_{i j} \text { was } a_{\text {st }} \\
a_{41} a_{42} a_{43} a_{44} a_{45} a_{46} a_{47} a_{48} a_{49} & \text { Put s and } t \text { to } C\} \\
a_{51} a_{52} a_{53} a_{54} a_{55} a_{56} a_{57} a_{58} a_{59} & \rightarrow \\
a_{61} a_{62} a_{63} a_{64} a_{65} a_{66} a_{67} a_{68} a_{69} & \text { Assume nowe.g. } a_{47} \\
a_{71} a_{72} a_{73} a_{74} a_{75} a_{76} a_{77} a_{78} a_{79} & \text { So } \\
a_{81} a_{82} a_{83} a_{84} a_{85} a_{86} a_{87} a_{88} a_{89} & C=\{4,7\} \\
a_{91} a_{92} a_{93} a_{94} a_{95} a_{96} a_{97} a_{98} a_{99} & I=\{1,2,3,5,6,8,9\}
\end{array}
$$

```
Then calculate \(\max \left\{\sum_{i=1}^{2}\left(\mathbf{a}_{\text {is }}+\mathbf{a}_{\mathrm{it}}\right)\right\}\)
    I.e. \(\max \left\{\left(a_{\mathrm{sj}}+a_{t \mathrm{j}}\right),\left(a_{\mathrm{sj}}+a_{\mathrm{tj}}\right), \cdots,\left(a_{\mathrm{sj}}+a_{\mathrm{tj}}\right)\right\}\)
                                    If multiple such \(j\) then select one at random
    \(a_{11} a_{12} a_{13} a_{14} a_{15} a_{16} a_{17} a_{18} a_{19}\)
    \(a_{21} a_{22} a_{23} a_{24} a_{25} a_{26} a_{27} a_{28} a_{29}\)
    \(a_{31} a_{32} a_{33} a_{34} a_{35} a_{36} a_{37} a_{38} a_{39}\)
    \(a_{41} a_{42} a_{43} a_{44} a_{45} a_{46} a_{47} a_{48} a_{49}\)
    \(a_{51} a_{52} a_{53} a_{54} a_{55} a_{56} a_{57} a_{58} a_{59}\)
    \(a_{61} a_{62} a_{63} a_{64} a_{65} a_{66} a_{67} a_{68} a_{69}\)
    \(a_{71} a_{72} a_{73} a_{74} a_{75} a_{76} a_{77} a_{78} a_{79}\)
    \(a_{81} a_{82} a_{83} a_{84} a_{85} a_{86} a_{87} a_{88} a_{89}\)
    \(a_{91} a_{92} a_{93} a_{94} a_{95} a_{96} a_{97} a_{98} a_{99}\)
Assume now e.g. \(\mathrm{a}_{94}+\mathrm{a}_{97}\)
        is such maximum
            Then put 9 into C
        \(\mathbf{C}=\{4,7,9\}\)
    \(I=\{1,2,3,5,6,8\}\)
```


Choose u from

such that $\sum_{i \varepsilon C} a_{i u} \max _{\mathrm{j} \varepsilon\{\mathrm{I}-\mathrm{C}\}}\left\{\sum_{\mathrm{i} \varepsilon \mathrm{C}} \mathrm{a}_{\mathrm{ij}} \quad \mid \quad \mathrm{a}_{\mathrm{ij}} \neq 0\right\}$
If multiple such u then select one at random
$a_{11} a_{12} a_{13} a_{14} a_{15} a_{16} a_{17} a_{18} a_{19}$
$a_{21} a_{22} a_{23} a_{24} a_{25} a_{26} a_{27} a_{28} a_{29}$
$a_{31} a_{32} a_{33} a_{34} a_{35} a_{36} a_{37} a_{38} a_{39}$ Assume now $a_{24}+a_{27}+a_{29}$
$a_{41} a_{42} a_{43} a_{44} a_{45} a_{46} a_{47} a_{48} a_{49}$
$a_{51} a_{52} a_{53} a_{54} a_{55} a_{56} a_{57} a_{58} a_{59}$ is such maximum
$a_{61} a_{62} a_{63} a_{64} a_{65} a_{66} a_{67} a_{68} a_{69}$
$a_{71} a_{72} a_{73} a_{74} a_{75} a_{76} a_{77} a_{78} a_{79}$
$a_{81} a_{82} a_{83} a_{84} a_{85} a_{86} a_{87} a_{88} a_{89}$ $a_{91} a_{92} a_{93} a_{94} a_{95} a_{96} a_{97} a_{98} a_{99}$

Put 2 into C
$\mathbf{C}=\{2,4,7,9\}$
$I=\{1,3,5,6,8\}$

Repeat this prosedure

$$
\begin{array}{lc}
a_{11} a_{12} a_{13} a_{14} a_{15} a_{16} a_{17} a_{18} a_{19} & \\
a_{21} a_{22} a_{23} a_{24} a_{25} a_{26} a_{27} a_{28} a_{29} & \\
a_{31} a_{32} a_{33} a_{34} a_{35} a_{36} a_{37} a_{38} a_{39} & \text { Assume now } \\
a_{41} a_{42} a_{43} a_{44} a_{45} a_{46} a_{47} a_{48} a_{49} & a_{11}+a_{12}+a_{14}+a_{17}+a_{19} \\
a_{51} a_{52} a_{53} a_{54} a_{55} a_{56} a_{57} a_{58} a_{59} & \text { is such maximum } \\
a_{61} a_{62} a_{63} a_{64} a_{65} a_{66} a_{67} a_{68} a_{69} & \text { Put } 2 \text { into } c \\
a_{71} a_{72} a_{73} a_{74} a_{75} a_{76} a_{77} a_{78} a_{79} & \\
a_{81} a_{82} a_{83} a_{84} a_{85} a_{86} a_{87} a_{88} a_{89} & C=\{1,2,4,7,9\} \\
a_{91} a_{92} a_{93} a_{94} a_{95} a_{96} a_{97} a_{98} a_{99} & I=\{3,5,6,8\}
\end{array}
$$

Till a_{ij} included is/are 0 Or no such maximum
$a_{11} a_{12} a_{13} a_{14} a_{15} a_{16} a_{17} a_{18} a_{19}$ $a_{21} a_{22} a_{23} a_{24} a_{25} a_{26} a_{27} a_{28} a_{29}$ $a_{31} a_{32} a_{33} a_{34} a_{35} a_{36} a_{37} a_{38} a_{39}$ $a_{41} a_{42} a_{43} a_{44} a_{45} a_{46} a_{47} a_{48} a_{49}$ $a_{51} a_{52} a_{53} a_{54} a_{55} a_{56} a_{57} a_{58} a_{59}$ $a_{61} a_{62} a_{63} a_{64} a_{65} a_{66} a_{67} a_{68} a_{69}$ $a_{71} a_{72} a_{73} a_{74} a_{75} a_{76} a_{77} a_{78} a_{79}$ $a_{81} a_{82} a_{83} a_{84} a_{85} a_{86} a_{87} a_{88} a_{89}$ $a_{91} a_{92} a_{93} a_{94} a_{95} a_{96} a_{97} a_{98} a_{99}$

$$
\stackrel{\text { If }}{a_{11}}+a_{12}+a_{14}+a_{17}+a_{19}
$$

is such maximum like previous slide

$$
\text { but incase } a_{11}=0 \text { for example }
$$

Stop

And start again from the beginning searching for another cluster
with

$$
\begin{gathered}
\mathrm{I}=\{2,4.7,9\} \\
\mathrm{C}=\{ \}
\end{gathered}
$$

Example: Let's Start with the following $R^{(0)}$,

$$
R^{(0)}=\left[\begin{array}{llllllllll}
1 & .7 & .5 & .8 & .6 & .6 & .5 & .9 & .4 & .5 \\
.7 & 1 & .3 & .6 & .7 & .9 & .4 & .8 & .6 & .6 \\
.5 & .3 & 1 & .5 & .5 & .4 & .1 & .4 & .7 & .6 \\
.8 & .6 & .5 & 1 & .7 & .5 & .5 & .7 & .5 & .6 \\
.6 & .7 & .5 & .7 & 1 & .6 & .4 & .5 & .8 & .9 \\
.6 & .9 & .4 & .5 & .6 & 1 & .3 & .7 & .7 & .5 \\
.5 & .4 & .1 & .5 & .4 & .3 & 1 & .6 & .2 & .3 \\
.9 & .8 & .4 & .7 & .5 & .7 & .6 & 1 & .4 & .4 \\
.4 & .6 & .7 & .5 & .8 & .7 & .2 & .4 & 1 & .7 \\
.5 & .6 & .6 & .6 & .9 & .5 & .3 & .4 & .7 & 1
\end{array}\right]
$$

Then repeat $R^{(n+1)}=R^{(n)} \circ R^{(n)}$ till $R^{(n)}=R^{(n+1)}$.

$$
R^{(n)}=\left[\begin{array}{llllllllll}
1 & .2 & .5 & .8 & .6 & .2 & .3 & .9 & .4 & .3 \\
.2 & 1 & .3 & .6 & .7 & .9 & .2 & .8 & .3 & .2 \\
.5 & .3 & 1 & .5 & .3 & .4 & .1 & .3 & .7 & .6 \\
.8 & .6 & .5 & 1 & .7 & .3 & .5 & .4 & .1 & .3 \\
.6 & .7 & .3 & .7 & 1 & .2 & .4 & .5 & .8 & .9 \\
.2 & .9 & .4 & .3 & .2 & .4 & .1 & .3 & .7 & .2 \\
.3 & .2 & .1 & .5 & .4 & .1 & 1 & .6 & .1 & .3 \\
.9 & .8 & .3 & .4 & .5 & .3 & .6 & 1 & 0 & .2 \\
.4 & .3 & .7 & .1 & .8 & .7 & .1 & 0 & 1 & .1 \\
.3 & .2 & .6 & .3 & .9 & .2 & .3 & .2 & .1 & 1
\end{array}\right]
$$

Now assumming $\alpha=0.55$ apply [1.] and [2.]

$$
\left[\begin{array}{cccccccccc}
0 & .7 & 0 & .8 & .6 & .6 & 0 & .9 & 0 & 0 \\
.7 & 0 & 0 & .6 & .7 & .9 & 0 & .8 & .6 & .6 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & .7 & .6 \\
.8 & .6 & 0 & 0 & .7 & 0 & 0 & .7 & 0 & .6 \\
.6 & .7 & 0 & .7 & 0 & .6 & 0 & 0 & .8 & .9 \\
.6 & .9 & 0 & 0 & .6 & 0 & 0 & .7 & .7 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & .6 & 0 & 0 \\
.9 & .8 & 0 & .7 & 0 & .7 & .6 & 0 & 0 & 0 \\
0 & .6 & .7 & 0 & .8 & .7 & 0 & 0 & 0 & .7 \\
0 & .6 & .6 & .6 & .9 & 0 & 0 & 0 & .7 & 0
\end{array}\right]
$$

First, set $I=\{1,2,3,4,5,6,7,8,9,10\}$ and $C=\{ \}$. Then
Step 3. Now $a_{18}=a_{26}=a_{510}=0.9$ are maximum and a_{18} is randomly selected. Then $C=\{1,8\}$.
Step 4. $a_{12}+a_{82}=a_{14}+a_{84}=1.5$ are maximum and $j=4$ is randomly selected. Then $C=\{1,8,4\}$.
Step 4. $a_{12}+a_{42}+a_{82}=2.1$ is maximum, then $C=\{1,8,4,2\}$.
Step 4. There are no j such that $a_{1 j}+a_{2 j}+a_{4 j}+a_{8 j}$ is maximum. Then final $C=\{1,8,4,2\}$.

$$
\begin{aligned}
& \star a_{16}+a_{26}+a_{46}+a_{86}=0.6+0.9+0+0.7=2.2 \text { seems maximum but actually not because } \\
& a_{46}=0
\end{aligned}
$$

Note that $\sum_{i \in C} a_{i u}=\max _{j \in I \backslash C}\left\{\sum_{i \in C} a_{i j} \mid a_{i j} \neq 0\right\}$

Step 5. Let $I=\{3,5,6,7,9,10\}$
Step 3. $a_{510}=0.9$ is maximum. Then renew C as $\{5,10\}$.
Step 4. $a_{59}+a_{10} 9=1.5$ is maximum. Then $C=\{5,10,9\}$.
Step 4. There are no j in $\{3,6,9\}$ such that $a_{5 j}+a_{9 j}+a_{10 j}$ is maximum. Then final $C=\{5,10,9\}$.
Step 5. Let $I=\{3,6,7\}$.
Step 3. Now $a_{36}=a_{37}=a_{67}=0$. Then $\{3\},\{6\}$ and $\{7\}$ are three separated clusters. In fact,

$$
\left[\begin{array}{lll}
a_{33} & a_{36} & a_{37} \\
a_{63} & a_{66} & a_{67} \\
a_{73} & a_{76} & a_{77}
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

So $\sum_{i \in\{3,6,7\}} a_{i u}=\max _{j \in\{3,6,7\}}\left\{\sum_{i \in C} a_{i j} \mid a_{i j} \neq 0\right\}$ does not exit any more.
In this way, when $\alpha=0.55$, we have 5 clasters $\{1,8,4,2\},\{5,10,9\},\{3\},\{6\}$ and $\{7\}$ are obtained.

An example (1) Russian 33 alphabets

An example (2) A set of 13 Japanese characters

Thel 4 thation

c: $=1$

