Fuzzy Logic & Data Processing

Practice notes for Modern Method of Data Processing (CCOD) in 2014

Akira Imada Brest State Technical University, Belarus

(last modified on)

December 5, 2014

(Contemporary Method of Data Processing)

PART I Fuzzy Controller

1 Vertual metro

PART II Fuzzy Classifier

2 TS-fuzzy formula

We now assume n features and p rules:

Singleton Consequence

 R_i : IF x_1 is A_1^i AND x_2 is A_2^i AND \cdots AND x_n is A_n^i THEN class is g^i

Linear regression Consequence

 R_i : IF x_1 is A_1^i AND x_2 is A_2^i AND \cdots AND x_n is A_n^i THEN $g_i = a_1^i x_1 + a_2^i x_2 + a_3^i x_3 + \cdots + a_n^i x_n + b^i$

Then, in both cases, class is estimated as follows:

$$\hat{y} = \frac{\sum_{k=1}^{p} M_k \cdot g^k}{\sum_{k=1}^{p} M_k}$$

where

$$M_k = \prod_{i=1}^n \mu_i^k(x_i)$$

where μ_i^k is the membership function of the attribute A_i^k .

2.1 Iris flower classification

2.1.1 Singleton consequance, triangle membership function

Apply the TS-fuzzy formula above to the iris flawer database, assumming the folloing p = 3 rules and membership functions¹.

 $^{^1\}mathrm{Taken}$ frome H. Roubos et al. (2001) IEEE Transactions on Fuzzy Systems, Vol. 9, No. 4, pp. 516-524.

 R_1 : IF x_1 is short AND x_2 is long AND x_3 is short AND x_4 is short THEN y = 1.00. R_2 : IF x_1 is medium AND x_2 is small AND x_3 is medium AND x_4 is medium THEN y = 2.10. R_3 : IF x_1 is long AND x_2 is medium AND x_3 is long AND x_4 is long THEN y=2.95.

where each of the membership functions are adjusted as Figure 1 below.

Figure 1: Triangle membership functions representing small, medium and large for x_1 (up left), x_2 (Up right), x_3 (bottom left) and x_4 (bottom left).

Apply TS-formula above and then estimated class is:

$$y = \begin{cases} 1 & \dots \text{ if } \hat{y} < 1.5\\ 2 & \dots \text{ if } 1.5 \le \hat{y} < 2.5\\ 3 & \dots \text{ if } 2.5 \le \hat{y} \end{cases}$$

How many y out of 150 data are collect?

2.1.2 Linear regression consequence, Gaussian membership function

Apply the TS-fuzzy formula above to the iris flawer database, assumming the folloing p = 3 rules and membership functions².

²Taken frome M.H. Kim et al. (2004) A novel appreoach to design of Takagi-Sugeno fuzzy classifier. Joint International Conference on Soft Computing and Intelligent Systems and International Symposium on Advanced Intelligent Systems.

$$\begin{bmatrix} a_1^1 & a_2^1 & a_3^1 \\ a_1^2 & a_2^2 & a_3^2 \\ a_1^3 & a_2^3 & a_3^3 \end{bmatrix} = \begin{bmatrix} -0.0000 & 0.0000 & -0.0001 \\ -0.1121 & -0.2234 & 0.0029 \\ -0.1020 & -0.0624 & 0.1276 \end{bmatrix}$$

and

$$\begin{bmatrix} b^1 \\ b^2 \\ b^3 \end{bmatrix} = \begin{bmatrix} 0.6667 \\ 1.7547 \\ 1.8412 \end{bmatrix}.$$

Gaussian membership function is defiend here as:

$$\mu(x) = \exp\{-\frac{(x-c)^2}{w}\}$$

where c and w represent center and width of distribution, respectively.

Figure 2: Gaussian membership functions representing small, medium and large for x_1 (up left), x_2 (Up right), x_3 (bottom left) and x_4 (bottom left).

2.2 Lenear Regression Consequence with Gaussian membership Apply

 R_i : If x_1 is A_1^i and x_2 is A_2^i and \cdots and x_n is A_n^i then $y = a_1^1 x_1 + a_2^1 x_1 + \cdots + a_n^i x_n + b^i$. with a Gaussian membership function, that is,

$$\mu(x) = \exp\{-\frac{(x-c)^2}{w^2}\}$$

2.2.1 WBC data set

9 features and 2 classes

$$A = \begin{bmatrix} 0.0155 & 0.0125 \\ 0.0263 & 0.0021 \\ 0.0314 & 0.0030 \\ 0.0109 & 0.0051 \\ 0.0056 & -0.0012 \\ 0.0504 & 0.0052 \\ 0.0163 & 0.0096 \\ 0.0288 & 0.0015 \\ 0.0548 & 0.0028 \end{bmatrix}^{T}, \quad B = \begin{bmatrix} 0.6857 \\ 1.6990 \end{bmatrix}.$$

2.2.2 wine data set

13 features and 3 classes

3 Clustering by fuzzy relation

ckearoage

	[1]														٦	
	0.2	1														
	0	0.2	1													
	0.4	0.6	0	1												
	0.8	0.2	0	0	1											
	0.4	0.2	0.6	0.4	0.2	1										
	0.2	0.8	0.2	0.8	0.4	0.2	1									
$R^{(0)} =$	0.8	0.8	0	0	0.6	0.4	0.4	1								
	0.8	0.4	0.2	0	0.6	0.2	0.2	0.4	1							
	0.2	0	0.6	0.2	0.2	0.8	0	0	0.4	1						
	0.8	0	0	0	0.6	0.2	0.4	0	0.8	0.2	1					
	0.2	0.8	0	0.2	0.2	0.2	0.8	0	0	0	0	1				
	0.4	0.2	0.6	0	0.2	0.8	0.2	0	0.2	0.6	0	0	1			
	0.8	0.2	0	0	0.8	0.4	0.2	0.6	0.8	0.4	0.8	0	0.4	1		
	0	0	0	0	0.2	0.4	0.4	0	0.2	0.8	0	0	0.8	0.4	1	