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1 What does GA look like?

We now assume to solve a problem which includes n variables. That is, our task is to
determine an optimal set of n variables. Then we design GA as follows.

1.1 Individual is represented by a chromosome

Represent a series of xi as a population of strings. Each of these strings is refered to as
chromosome or sometimes called individual.

.........x1 x2 x3 x4 x5 xn

Then we start an evolution as follows, expecting better solutions from generation to
generation.

1. (Initialization) Generate an initial population of p individuals at random.

2. (Fitness Evaluation) Evaluate fitness of each chromosome and sort the chromo-
somes according to its fitness from the best to the worst.

3. (Selection) Select two chromosomes

– Here, from the best half of the population at random, which is called a Truncate
Selection.

4. (Reproduction) Produce a child by the following two operations:

– Uniform Crossover, for example

– Mutation

5. Create the next generation by repeating the steps from 3 to 4 n times.

6. Repeat the steps from 2 to 5 until (near) optimal solution is obtained.
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1.2 How we select parents?

Hopefully, the better the fitness the more likely to be selected.

1.2.1 Threee different versions of Selection

• Truncation Selection (Simplest of the three): Select parents from the best some-percentage
of the population.

• Roulette Wheel Selection (or Fitness Proportionate Selection):
With trancate selcetion, low fitness chromosomes have no chance to reproduce. In nature,

however, good children sometimes emerge from not good parents. So let’s give a chance to
a bad chromosomes to create children, though not with equal probability but proportion-
ate to their fitness. This is called fitness proportionete selection, or roulette wheel selection.

Select such that the probability to be selected is proportional to the fitness value.

37.50%

25.00%

12.5%

12.5%

6.25%
6.25%

To be more specific, sort the individual from low to high and calculate cumulative value
of fitness as follows: Then create a random number r from 0 to 1, and if r < 0.3750 then
select #1, else if r < 0.6250 then select #2 , else if r < 0.7500 then select #3 and so on.

• Tournament Selection Assume we have the original µ parents and their µ children. The
fitness value of each of the 2µ individuals are compared to those of q individuals which
are chosen randomly from the whole 2µ points at every time of the comparison Then the
2µ individuals are ranked according to the number of wins, and the best µ individuals
survive (q-tournament selection).
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individual after sort fitness cumulative value of fitness
#1 0.3750 0.3750
#2 0.2500 0.6250
#3 0.1250 0.7500
#4 0.1250 0.8750
#5 0.0625 0.9375
#6 0.0625 1.0000

Table 1: Individuals are selected using random numbers from 0.0000 to 1.0000 according
to the cumulative value of fitness after sorting the population.

Note that even the worst fitness individual have a chance to be selected under Roulette
Selection however few it might be, while under Trancate Selection worse individual have
no chance to be selected. Tornament Selection could also select a worse individual except
for the worst q individuals. We can control the probability of selecting worse individual
by changing q.

1.3 How parents produce a child?

1.3.1 Cross-over

So-called crossover is exproited for the reproduce children. Here, we see three different
versions of crossover bellow.

1.3.2 Mutation

We should give a mutation to introduce new genes. This is to avoid for individuals in the
population to be trapped into a local minimum. The probabability for mutation to occur
is small — typically 1/number-of-genes. To be more specific,
If a randomly generated number from 0.0 to 1.0 is smaller than the mutation rate then
mutate otherwise do nothing.
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One-point Crossover

8<
8<

8< 8< 8< 8< 8< 8<

8< 8< 8< 8< 8< 8<

Multi-point Crossover

Uniform Crossover
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2 All One Problem

To feel how the evolutionary algorithm works, let’s try a toy program. Assume we have
20 genes in one chromosome. Each of the genes corresponds to a trait of us such as blue
or brown eyes. All genes are binary. Also assume 1 is a good gene and 0 is a bad one.

Then starting with a population of random chromosomes, observe the evolution. Fitness
can be estimated the number of 1 in the chromosom.
An example of the chromosome is

1 0 0 1 0 1 1 1 0 0 1 0 1 0 0 0 0 1 1 0.

The number of ’1’ is the fitness of this chromosome.
If your program works properly, you will get the best chromosom

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

after a several generations.
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Figure 2: The generation vs fitness curve in the case of 20 genes.
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Figure 3: The generation vs fitness curve in the case of 800 genes.
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3 Commonly Used Test Functions

Below we study two multi-dimensional test-functions whose location of the global mini-
mum was already known. It is, therefore, useful to explore this test-function to learn how
evolution works inside the PC.

3.1 Sphere model

3.1.1 Defined on 20-Dimensional space

Probably the simplest one is

y = x2
1 + x2

2 + x2
3 + · · ·+ x2

20.

Or, equivalently,

y =
20∑
i=1

x2
i (1)

which is difined, for example, on each xi ∈ [−5.12, 5.12] (i = 1, 2, · · · , 20). This function
is an extention of well known y = x2 to its 20-dimensional version. The unique global
minimum is located on the Origin and no local minimum. Hence, this might be a good
start to try a GA.

An example of chromosome is

3.2 4.4 -2.1 0.5 -3.8 -2.5 1.7 5.1 -0.3 -2.1 -3.8 5.0 0.4 4.2 -5.0 -1.3 3.3 4.0 -1.4 -3.9

By translating the i-th gene into xi we will get all the value of x1, · · · x20, and we can
calculate the value of y. This is the fitness of this chromosome.

3.1.2 Defined on 1-dimensional space

To be able to imagine let’s think its 2-dimensional version.

y = x2

Then the graph is a well-know parabola. See Figrue. 4.

3.2 Rastrigin Function

3.2.1 Defined on 20-Dimensional space

Now we observe a so-called the Rastrigin Function, which resembles a parabora but has
many local minima wevey where.

y = {x2
i − cos(2πx1)}+ {x2

2 − cos(2πx2)}+ · · ·+ {x2
20 − cos(2πx20}).

Or, equivalently,
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Figure 4: A two-dimensional version of the sphere model.

y = nA+
n∑

i=1

(x2
i − A cos(2πxi)), xi ∈ [−5.12− 5.12].

Ruggedness might be controlled by modifying the value of A.

3.2.2 Defined on 1-dimensional space

A two dimensional example (n = 1):

y = 3 + x2 − 3 cos(2πx).
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Figure 5: A 2-D version of Rastrigin function
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4 Neural Network to solve even-parity problem

Here we determine a configuration of weight values of a neural network. Now think of
a neural network to solve the even-N-parity Boolean function, that is, iff the number of
”1” is even the output should be ”1” otherwise ”0”. Assuming N-N-1 structure of feed
forward neural network, we should determine N2 + N weight values so that any binary
input results in the proper output.

Our chromosome in this case has N2 +N genes. Fitness can be evaluated by giving each
of the neural net work corresponding to the chromosome all the possible 2N query and
counting the number of its correct output.

0 1 1 0 1

0

Figure 6: A 5-5-1 structure of Feedforward neural network

Now we see the set of input and output of the even-5-parity Boolean function.

input output
00000 1
00001 0
00010 0
00011 1
00100 0
00101 1
00110 1
00111 0
01000 0
· · · · · ·

11110 1
11111 0

Table 7: Input and output of even-5-parity Boolean function.
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5 Traveling Salse-person Problem

Asuuming N cities all of whose cordinate are given, the Traveling Salse-person Problem
(TSP) is a problem in which a sales-person should visit all of these cities once but only
once and objective is to look for the shortest tour.

Assume we start from a city and return to the city after visiting all the other cities only
once. When the number of cities is N , the number of all the possible routes is (N − 1)!/2
if we don’t count the route with exactly opposite order of the cities of the route already
count.

Let’s try a TSP with 4 cities created at random in x-y cordinate where 0 < x, y < 10.
Then we calculate the distances between all the possible combinations of two cities, which
can be shown by a distnace matrix. As the number of possible routes is just 3!/2 = 3 we
can directly calculate the distance every such routes. See an example in Figure 9.

A

B

C

D

0.00 4.13 4.34 1.95

4.13 0.00 7.35 5.00

4.34 7.35 0.00 2.51

1.95 5.00 2.51 0.00

A

B

C

D

A B C D

A-B-C-D-A => 4.13 + 7.35 + 2.51 + 1.95 = 15.94

A-B-D-C-A => 4.13 + 5.00 + 2.51 + 4.34 = 15.98

A-B-C-D-A => 4.34 + 7.35 + 5.00 + 1.95 = 18.64

All the possible routes

Distance MatrixMap of the 4 cities

(5.14, 1.76)

(5.14, 1.76)

(5.14, 1.76)

(5.14, 1.76)

Figure 8: An example of four cities. Map, distance matrix, and all the possible routes
with total distance of each route .

Problem is, the number of possible routes will explode as the number of cities N increases.
How many routes do you guess when N = 1000 for example? Now we apply a genetic
algorithm to this problem1.

1Here we explore the TSP by an GA. But there seems to be more direct way of computation called
Ant Colony Optimization (ACO). ACO is an optimization technique we borrowed the metaphore of an
intelligence of ant society as their collective behaviour. Ants are good at seeking a shortest path from
their nest to a food when one of their colleagues finds it he communicates with others by using a chemical
called pheromon. If we have a time we will study ACO later.
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5.1 To solve TSP by a Gentic Algorithm

5.1.1 How to encode for a crossover to be valid?

First, we have to design our chromosome representing a tour? If we represent a candidate
solution with a list of cities to be visited in order, such as the chromosome of the tour
A-C-F-D-G-E-B is

(ACFDGEB) (2)

Are the the results of crossover and mutation feasible? The answer is No! For example,
the possible child of two parent (ACFDGEB) and (AGBFCDE) by one-point-crossover
could be (ACFFCDE) and this is not a feasible tour because C and F are visited twice
and B is not visited. Or, if we give a standard mutation to (ACFDGEB), for example,
by replacing 4th gene with other randomly chosen city, such as (ACFAGEB), which is
not a feasible tour either.

Then, in order for the result of crossover and mutation to be feasible what representations
are possible?

One idea is:

Algorithm 1 (Traveling Salesperson Problem) Encoding a legitimate route to a chro-
mosome made up of any integer.

Step-1. Set i = 1.

Step-2. If i-th gene is n then n-th city in the list is the city to be currently visited.

Step-3. Remove the city from the list.

Step-4. Set i = i+ 1 and repeat Step-2 to Step-4 while i ≤ n.

For example, when the list of cities is

{A, B, C, D, E, F, G, H, I }

chromosome: (112141311) is the tour:

A-B-D-C-H-E-I-F-G.

Try some one-point crossover on two parents (112141311) and (515553321).

5.1.2 Mutation

Then next, how we design mutation? How about, for example, specifying two points at
random and reverse the gene order?

5.1.3 When to stop a run?

Finally, when, on earth, we stop a run? We don’t know the optimum. The answer is
let’s observe the evolution of fitness. We can expect the run converges to the optimum or
near-optimum.
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8< 8<

Figure 9: A possible mutation in Traveling Salesperson Problem.
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Figure 10: An example of fourteen cities and its one option of tour.

5.1.4 TSP with a huge number of cities

I found that 13,509 real cities in USA are given with their cordinates in the web-page
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95. Why don’t we
try this very challenging problem by ourselves. The plotted these cities are shown in
Figure 3.

Figure 11: An example of 13509 real cities’ location in US. Plotted with the data taken
from http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95.
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6 Robot Navigation in GridWorld

Assume now that we want to make an agent, or a robot, in a gridworld, a possible chro-
mosome can be made up of integer gene from 1 to 4 where 1, 2, 3, and 4 correspond to
one cell movement of the agent to north, south, east and west. Take a look at the below
as an example.

Our chromosome is made up of 4 different genes move (i) up, (ii) down, (iii) to right ,
and (iV) to left. See an example below.

(311113323322333131442411141)

start

goal

Figure 12: An example of a chromosome and the path represented by it.

We now take a look at two such problems more specifically in the next subsection.

6.1 Exploration of a gridworld with a limited energy

Search for a path of minimum Manhattan distance

.

Search for a path to the start point after a maximum exploration

It would be not so difficult for us human to find such a route. But how about a computer?
The question now would be, “How we designed fitness function?”

We will return this topics of “multiple fitness functions later.

6.2 Jeep Problem
– From “A camel in a Desert” to Landrover in the Mars”

Assume we have a Jeep at the base which locates at the edge of a desert. The Jeep
has a tank which can be filled with a maximum of one-unit of gasoline. With one unit
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96x96 grid 178 steps 96x96 grid 48 steps

Figure 13: In the grid-world of 96 starting from (24,24) a robot walks aiming the goal
at (72,72) of which the robot had no a-priori information. Left: The path of minimum
length among 100 trials by random walk. Right: Minimal path the robot found after an
evolutionary learning as shown in Fig. 3. (Marginal area is omitted.)

of gasoline, the jeep can move one unit of distance. The Jeep can only fill gasoline at
the base.The jeep can carry containers to put its gasoline on the desert for a future use,
Assume the tour should be on the strait line in the desert. 2

The question is “How far the jeep can penetrate in to the desert on the straight road
when n unit of gasoline is available at the base.

For example when n = 2, the best strategy is to start the base with one unit of gasoline
in its tank and go 1/3 unit distance (it has spent 1/3 unit of gasoline to reach the point,
then put 1/3 unit of gasoline in the container there (now jeep has 1/3 unit of gasoline
in the tank) and go back to the base. Exactly when the jeep arrive to base all gasoline
filled at the start was spent. Then geep fill the 2nd unit of gasoline given, go 1/3 unit
fill the gasoline he had put before and the tank is again full, then go forward until all the
gasoline in the tank will be spent. Therefore the maximum distance the jeep can go is
4/3 unit of distance.

Guess the maximum distance when n = 2. We already know the maximum distance with
n unit ofgasoline is Dn is expressed as the recursive relation Dn = Dn−1 + 1/(2n− 1).

Our interest is on whether an evolutionary computation can find a almost best strategy,
say, n = 5 in which maximum distance is 1323/945=1.4. (If my calcuration is correct.
Try it by yourself).

2The problem first appeared as “a camel carrying grain in a desert” as the 52nd problem in the
“Propositions ad acuendos inventes” (in Latin) attributed to Alcuin of York (around in B.C. 732–804).
And now a jeep in a dessert, further, landrver in the Mars.
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6.3 Finite State Automaton

Now let’s make an artificial ant explore an gridworld. A strange assumption but thre is

one grain of sugar, say 1mg, in the dark cell whil nothin in the white cells. Now an ant
explores the grid starting from the entrance with the aim of eating all those grains by
following the shortest path to the last grain of sugar, that is to say, with 98 steps. Try to
specify the transition table for such an FSA.

70

80

10
89

start
goal

40

Figure 14: John-muir-trail. An agent should follow the path shown with shaded cell as
effectively as possible. Note that the grid has a troidal structure (the left neihbor cell of
the leftmost cell is the rightmost cell).

Generally speaking, in order for an FSA to make a meaningful behavior, it will not easy
to specify a transision table. In this example, it would be interesting to make it using
Genetic Algorithm. For the purpose, let’s represent the transition table by all binary
numbers. For the above example, the binary version of the transition table mentioned
above is shown in Table 2.

Now we express this specific FSA with a chromosome

00001101101101001110100110000111100000111010100010111010001100110011011010100001
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current state input action next state
000 0 00 001

1 10 110
001 0 11 010

1 01 110
010 0 10 011

1 00 001
011 0 11 100

1 00 011
100 0 10 101

1 00 010
101 0 11 101

1 00 011
110 0 00 110

1 01 101
111 0 10 101

1 00 001

Table 15: A binary version of the above mentioned transition table.

Now you may notice the number of states and the number of action is better to be in
the form of 2n.

We are now ready to apply a Genetic Algorithm to evolve random FSA to be cleaver
enough to solve this John-muir-trail by the following procedure.

1. Create a populotion of, say 100, random binary chromosoms whose length is 80.

2. Make it try the trail one by one and evaluate how many sugar it can collect (fitness).

3. Select two chromosomes as parents (by, e.g., Roulette wheel selection) and create
on child by chrossover and mutation.

4. repeat 3. (say, 100 times) untill we create a new generation.

5. repeat 3. and 4. untill we find a perfect chromosome.
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7 Evolving Strategy — Iterated Prisonner’s Dilemma

So, To be or not to be? — That is the question. Not only Shakespere but in many
literarture works dilemma is their theme. The Opera “Tosca” by Puccini is one of those
typical examples.3

7.1 When dilemma happens?

Assume n person are in the following game. Each of these n pearson is in the separate
booth, where communication would not be available and not visible with each other. In
each of those boothes button are fascilitated. You all are in the booth for one minute.
If no one does not push the button, all of you will be given 100$ each. If, on the other
hand, someone push the button, or more people do so, the first one who push the button
will be given 10$ and other will not be given any money. What would you do, if you were
one of these n people?

7.1.1 Condition to be a dilemma

What if the money given in case all do not touch button is 10 dolor, and otherwise the
first person who push the button will be given 100 dolor? In this case no dilemma will
be arosen. Push the button immediately without hesitation.

7.2 Prisoner’s Dilemma

In the community of Game Theory we have the problem called Prisoner’s Dilemma4 which
is formulated as follows.

Problem (Prisoner’s Dilemma) Two newly arrested prisoners A and B are offered a
deal:

3Matt Ridley once wrote in his book, “The Origin of Virtue – Human Instincts and the Evolution of
Cooperation.” Penguin Books (1996) about this opera. It reads: In Puccini’s opera Tosca, the heroine
is faced with a terrible dilemma. Her lover Cavaradossi has been condemned to death by Scarpia, the
police chif, but Scarpia has offered her a deal. If Tosca will sleep with him, he will save her lover’s life
by telling the firing squad to use blanks. Tosca decides to deceive Scarpia by agreeing to his request, but
then stabbing him dead after he has given the order to use blanks. She does so, but too late discovers that
Scarpia chose to deceive her too. The firing squad does not use blanks: Cavaradossi dies. Tosca commits
suicide, and all three end up dead. The book is regarding a Game Theory. The author continues: Though
they did not put it this way, Tosca and Scarpia were playing a game, indeed the most famous game in
all of game theory, an esoteric branch of mathematics that provides a strange bridge between biology and
economics. The game has been central to one of the most exiting scientific discoveries of recent years:
nothing less than an understanding of why people arenice to each other. Moreover, Tosca and Scarpia
each played the game in the way that game theory predicts they should, despite the disastrous outcome
for each. How can this be?

4Proposed by Merrill Flood and Melvin Dresher in the 1950’s
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· If A confesses and B does not, A will be reliesed and B will get 5 years in jail, and
vice versa.

· If both confess, then both will get 4 years in jail.

· If both do not they will each get 2 years.

Cleary, “0 year in prison” would be the best reward from the personal point of view. If we
think of the both prisoners’ benefit, then the case “both in jail for 2 years” would be bet-
ter than the case “both in jail for 4 years” unless you expected the prison as a “free hotel.”

7.2.1 Condition to be a dilemma

Now let me quote descriptions from a website5 where the parameter’s is as follows: R is a
Reward for mutual cooperation. Therefore, if both players cooperate then both receive a
reward R. (e.g., 3 points). If one player defects and the other cooperates then one player
who defects receives T - the Temptation to defect - (e.g. 5 points), and the other player
who cooperates receives M - the Minimum payoff (e.g., zero). If both players defect then
they both receive P - the Punishment for mutual defection (e.g., 1).

If one player defects and the other cooperates then one player receives the Temptation
to defect payoff (5 in this case) and the other player (the cooperator) receives the Sucker
payoff (zero in this case). If both players defect then they both receive the Punishment
for mutual defection payoff (1 in this case).

The question arises: what should you do in such a game?

Suppose you think the other player will cooperate. If you cooperate then you will receive
a payoff of 3 for mutual cooperation. If you defect then you will receive a payoff of 5 for
the Temptation to Defect payoff. Therefore, if you think the other player will cooperate
then you should defect, to give you a payoff of 5.

But what if you think the other player will defect? If you cooperate, then you get the
Sucker payoff of zero. If you defect then you would both receive the Punishment for Mu-
tual Defection of 1 point. Therefore, if you think the other player will defect, you should
defect as well.

So, you should defect, no matter what option your opponent chooses.

Of course, the same logic holds for your opponent. And, if you both defect you receive a
payoff of 1 each, whereas, the better outcome would have been mutual cooperation with
a payoff of 3. The choices of an individual is less than that could have been achieved by
two cooperating players, thus the dilemma and the research challenge of finding strategies
that promote mutual cooperation.

5http://www.prisoners-dilemma.com/whatisit.html. Author’s name is not visible in the page.
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In defining a prisoners dilemma, certain conditions have to hold. The values we used
above, to demonstrate the game, are not the only values that could have been used, but
they do adhere to the conditions listed below.

Firstly, the order of the payoffs is important. The best a player can do is T (temptation
to defect). The worst a player can do is to get the sucker payoff, S. If the two players
cooperate then the reward for that mutual cooperation, R, should be better than the
punishment for mutual defection, P. Therefore, the following must hold.

T > R > P > S

Secondly, players should not be allowed to get out of the dilemma by taking it in turns to
exploit each other. Or, to be a little more pedantic, the players should not play the game
so that they end up with half the time being exploited and the other half of the time
exploiting their opponent. In other words, an even chance of being exploited or doing the
exploiting is not as good an outcome as both players mutually cooperating. Therefore,
the reward for mutual cooperation should be greater than the average of the payoff for
the temptation and the sucker. That is, the following must hold.

R > (S + T )/2

However dilemma is not so serious like Hamlet’s “To be or not to be? That is a problem.”
It’s better to always confess.

If the game is to be iterated, on the other hand, we have to see the game differently. Like
any negotiation it’s likely to have a dilemma – corporate or betray?

7.2.2 Iterated Prisoner’s Dilemma

The next question then is how about if the game is repeated? This is called the Iterated
Prisoner’s Dilemma (IPD). In this case strategy to get a higher award as a result arises:
What would be the optimal next action? For example, Always Defect strategy, or Tit-for-
Tat strategy where the player cooperates on the first play, and afterward the same action
as the opponent in the previous game.

Here, strategy determins the next action based on three previous moves of the two players
in a raw. Number of all possible previous three games is 26 = 64 — 64 combination of
Cooperate and Defect. Namely, all those possible combinations of 6 previous moves can
be represented with a 64 bit binary chromosome. For example, if a history of 6 previous
actions of opponent and the player is C-d-D-d-C-d we express the history by the binary
number 100010 where “C” and “c” are expressed by 1 and “D” and “d” are expressed
by 0 and uppercase “C” and “D” are opponent’s and lowercase “c” and “d” is playere’s
Cooporation and Defection, respectively.

Then the next action when the hisory was (000000) is put on the 1st bit with 0 being
defection and 1 being cooperation. The same is repeated, that is, the next action when
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the history was (000001) is put on the 2nd bit and so on. No need to repeat but, the 3rd
bit is the action after the history of (000010) and the 64-th bit, the last bit, is when the
history was (111111) Thus we can represent a strategy with a 64-bit binary chromosome.

Then each individual (chromosome) competes with each of other randomly chose p indi-
viduals, and the number of it wins against others is counted. This number of wins is the
fitness value of the individual, which is called a p-tournament selection.

7.2.3 An example of chromosome

Assume now, for example, the game is

A · · · 0 1 1 Now my turn. Which should I choose 1 or 0?
B · · · 0 1 0

The history, in this case is

0, 1, 1, 1, 0, 0

So, this binary 011100 is translated into decimal 28.

Now if A’s chromosome is

0010101111001010101010011010100101011101000011110111000011111101

the action should be the 28th bit from the lowest (right most) bit, that is, 1. Hence
corporate.

100100010101110010010101000011010101010110101010101010101010101010101010101010101A:

100100010101110010010101000011010101010110101010101010101010101010101010101010101B:

Choromosome

Iterated game:

A: 1 1 0

A: 1 0 1

?

history of 6 actions in 3 games in a row

111001 => 57

64th 57th......

0 1

0 1 0

...

...

0

?

001100 => 12

12th

...

...

Figure 16: A two-dimensional version of the Schwefel’s Function’s graph.

7.2.4 Tournament selection

Now assume the number of population is N (e.g., 40). Each individual choose T (e.g., 5)
other individuals to play a game from the one to the next. So fitness of the individual is
the number of win, or the total amount of reward points during these T games.
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8 Sorting Network

– How many minimum comparisons are necessary?

Which is clever? – Human or Computer?

When we write an algorithm, we often come accross a necessity to sort a set of items in
the order of some criteria. How, for example, do we create codes for sorting 16 integer
inputs in ascending order? We pick up 2 items from one item to the next, compare, and
swap them if the order is not the preferable one

Algorithm 2 (A Sorting Algorithm) Now we assume to sort N numerical items from
the smallest to the largest.

• For i = 1 to N-1

⋆ For j = i+1 to N

· If item(i) < item (j) Then swap item(i) and item(j)

Now let us represent the sorting above by a graphics in the following way.

Figure 17: A typical network for sorting, not very efficient though.

The total number of comparison in this case is 120, though this is not a very efficient way.
Then problem is what is the minimum number of comparisons with which any arbitrary
set of 16 inputs are correctly sorted. That is,

Problem (Sorting Network) The task is to sort n items. For the purpose, the i-th and
j-th element are compared and swap if necessary. and the goal is to find an algorithm
which correctly sorts all n items with the minimum number of comparisons.
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It might be interesting to overview a little history of this topic. In 1960’s, in a comunity
of computer algorithms, there was a competision of what is the minimum number of
comparisons when, say, (n = 16)? The result was

⋆ 65 comparisons Bose and Nelson (1962).

⋆ 63 by Batcher and by Floyd and Knuth (1964).

⋆ 62 by Shapiro (1969)

⋆ 60 by Green (1969)

See the Figure bellow.

Batcher Sort: 63 comparisons by Knuth (1973)

Comparisons in the same column can be made in parallel.

Figure 18: Batcher’s proposition of sorting network with 63 comprisons (1964)

Up to now, however, we have had no proof for this optimality. Then let’s make an Evo-
lutionary Computation surch for this nimimum number. Would it work better than by
human? Hillis (1992) challenged this. Hillis’s innovations was that he employed Diploidy
Chromosome as follows. We will show this more in detail later. Here, we show a simple
version of GA implementation.

Now assume one chromosome corresponding to one sorting network is made up of 140
genes each of which takes an integer value from 01 to 16 permitting overlaps, such as

(12 01 05 04 16 12 04 14 01 02 06 ...... 07 15 08 10)

where an odd number gene and the next righthand side even number genes represent a
comparison. In the example above
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12 <=> 01; 05 <=> 04; 16 <=> 12; ......; 08 <=> 10)

Then one chromosome include 70 comparisons at most. Why at most? Because it could
include a same comparison multiple time. Hence, the minimum number of comparison is
one, which is very unlikly though.
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9 Sorting Network Revisited

9.1 Let’s be more biological - Exploitation of Diploidy Chromo-
somes

(1001 1000 1010 1101 1110 0100 1110 0011)
(1001 1000 1010 1101 1110 0100 1110 0011)

(1001 1000 1010 1101 1110 0100 1110 0011)
(1001 1000 1010 1101 1110 0100 1110 0011)

(1001 1000 1010 1101 1110 0100 1110 0011)
(1001 1000 1010 1101 1110 0100 1110 0011)

(1001 1000 1010 1101 1110 0100 1110 0011)
(1001 1000 1010 1101 1110 0100 1110 0011)

(1001 1000 1010 1101 1110 0100 1110 0011)
(1001 1000 1010 1101 1110 0100 1110 0011)

(1001 1000 1010 1101 1110 0100 1110 0011)
(1001 1000 1010 1101 1110 0100 1110 0011)

(1001 1000 1010 1101 1110 0100 1110 0011)
(1001 1000 1010 1101 1110 0100 1110 0011)

(1001 1000 1010 1101 1110 0100 1110 0011)
(1001 1000 1010 1101 1110 0100 1110 0011)

(1001 1000 1010 1101 1110 0100 1110 0011)
(1001 1000 1010 1101 1110 0100 1110 0011)

(1001 1000 1010 1101 1110 0100 1110 0011)
(1001 1000 1010 1101 1110 0100 1110 0011)

(1001 1000 1010 1101 1110 0100 1110 0011)
(1001 1000 1010 1101 1110 0100 1110 0011)

(1001 1000 1010 1101 1110 0100 1110 0011)
(1001 1000 1010 1101 1110 0100 1110 0011)

(1001 1000 1010 1101 1110 0100 1110 0011)
(1001 1000 1010 1101 1110 0100 1110 0011)

(1001 1000 1010 1101 1110 0100 1110 0011)
(1001 1000 1010 1101 1110 0100 1110 0011)

(1001 1000 1010 1101 1110 0100 1110 0011)
(1001 1000 1010 1101 1110 0100 1110 0011)

Figure 19: An example of Hillis’s set of diploidy chromosomes.

- Each individual consists of 15 pairs of 32-bit chromosomes.

- Each chromosome consists of eight 4-bit strings (called codons).

(0001 0010 0101 1000 0000 0100 1111 1001)
(0011 0100 0101 1000 1101 1100 1111 1001)

- Each codon represents an integer between 0 and 15 indicating which item is to be
compared out of 16 items. That is, the above example is interpreted as.

(01 02 05 08 00 04 15 09)
(03 04 05 08 13 12 15 09)

- Each adjacent pair of codons in a chromosome specifies a comparison between two
elements. Thus each chromosome encodes four comparisons, e.g.,
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Figure 20: Four comparisons specified by the chromosome (09 08 10 13 14 04 14 03).

(09 08 10 13 14 04 14 03)

indicates the four comparisons below.

- The chromosome pairs is read off from left to right.

- If these adjacent two codons are identical at the same corresponding two positions
of the chromosome pair – this is called homozygous – then only one pair of numbers
is inserted in the phenotype. If it encodes different pairs of numbers – heterozygous
– then both pairs are inserted in the phenotype. So in the previous example:

(01 02 05 08 00 04 15 09)
(03 04 05 08 13 12 15 09)

means the following six comparisons:

01⇔02, 03⇔04, 05⇔08, 00⇔04, 13⇔12, 15⇔09

- Thus 15 pairs of chromosomes produce a phenotype with 60-120 comparisons. The
more homozygous positions, the fewer comparisons.

- When two individuals are selected, one-point-crossover takes place within each chro-
mosome pair inside each individual.

- For each of the 15 chromosome pairs, a crossover point is chosen at random and a
single chromosome (called gamete) is formed.

- Thus 15 gametes from each parent are created.

- Each of the 15 gametes from the first parent is then paired with the gamete of the
corresponding position from the second parent to form one offspring.
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9.2 Pressure to homozygousity

Homezygous pair is more likely to survive than heterozygous pair, that is, two genes at the
same location in a pair of chromosome will be more likely to the same one after evolution.

For example, the probability of (1, 1) pair to be (1, 1) is 1/2, while the probability of (1,
0) pair to be (1, 0) is 1/4. The former is calculated as

1× ((1/4)× (1/2) + (1/4)× (1/2) + (1/4)× 0),

while the latter as

(1/2)× ((1/4)× (1/2) + (1/4)× (1/2) + (1/4)× 0).

Hence, we can expect a more homozygous gene pair after a longer evolution, If, in our
context, all the pair become to have the same chromosome, it implies the number of
comparison is 60.
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10 Visualization of high-dimensional space

Visualization of data in a high-dimensional space is important. Maybe you have already
learned such methds like Kohonen’s Self Organizing Map (SOM) or Principal Components
Analysis (ICA).

10.1 Why we need to reduce the dimension?

We, human, couldn’t imagine the world of more than 3-dimensional space. In many sci-
entic field, however, it is crucially important to grasp an image in high dimensional space.
This is not only in scientic fields but also in real world around us.

Let me show an example. We now assume to assign newly employed soldires to appropriate
mission according to their examination, say, of Mathematics and English.

A B C D E F G H I J K L M
Mathematics 95 32 89 52 12 20 3 99 42 91 26 95 60

English 92 90 21 48 14 5 11 97 50 92 89 13 55

Table 21: A fictitious result of 2 examinations given to newly employed soldires.

The task of this classifiyng soldiers will be easier if you visualize the data.
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Figure 22: A visualization. It’s easy to classify soldires into 5 groups.

What if, then, we have one additional score for each soldier, say, phisical examination.
In order to make a task like an espionage, it would be better to have a strong phisical
capability. In this situation we have to classify them with 3-dimensional data, or on
3-dimensional space if we want make it like the above mentioned 2-dimansuional case.
Moreover, to be more practical, assume we have a set of scores of 10 different examina-
tions. In this case, we cannot visualize any more in a usual sence.
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So, visualization of high-dimensional space, or dimension reduction technique is very
important topic, and so far many such techniques has been proposed, among which Ko-
honen’s Self Organizing Map is very popular above all.

10.2 Sammon Mapping by GA

Here we learn about Sammon Mapping. Sammon Mapping is a mapping a set of points
a in high-dimensional space to the 2-dimensional space with the distance relation being
preserved as much as possible, or equivalently, the distances in the n-dimensional space
are approximated by distances in the 2-dimensional distance with a minimal error.

This method was proposed in 1980’s as an optimization problem to which they approached
by Operations Research technique suchas Steepest Descend, which is not so simple. Here,
on the other hand, we employ Evolutionary Computatins which is quite simple. Let’s see
now what is the original Sammon Mapping look like.

Algorithm (Sammon Mapping)

1. Assume N points are given in the n-D space.

2. Calculate distance matrix R (N × N) whose i-j element is the Euclidean distance
between the i-th and j-th point.

3. Also think of a tentative N points in the 2-D space that are located at random at the
beginning.

4. The distance matrix Q is calculated in the same way as R.

5. Then the error matrix P = R−Q is defined.

6. Search for the locations of N points in the 2-D space that minimizes the sum of
element P .

This is an optimization problem which we now can solve quite simply by using EC. That
is, by creating N points in 2-D space each of which corresponding N points in the n-D
space with the distance relation being preserved as much as possible, or equivalently, such
that the n-D distances are approximated by 2-D distances with a minimal error.

In an actual GA implementation of Sammon Mapping, chromosomes might be made up of
n genes each of which corrisonds to x−y coordinate of a candidate solution of n optimally
distributed points in 2-dimensional space. Uniform crossover is employed and from time
to time mutation is given by replacing one gene with other random x− y coordinate. See
the Figure 2. See also the Figure bellow.
Examples in 492 = 2401 dimensional space:
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Chromosome:

(x y1 1 ), (x y2 2 ), (x y3 3 ), (x yN N ),.........

Recombination with Uniform Crossover:

(x y1 1 ), (x y2 2 ), (x y3 3 ), (x yN N ),.........

(x y1 1 ), (x y2 2 ), (x y3 3 ), (x yN N ),.........

Figure 23: A chromosome representation and uniform crossover
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Figure 24: Six Examples of Mapping from 2401-dimensional space to the 2-dimensional
space. Further explanations are shown in the text.
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11 Multi Modal Problem

What if we have multiple meaningful different solutions?

In Traveling Salesperson Problem, we are interested in the result of minimum path, even
if we have multiple possible paths. However, we sometimes are interested in all of possible
solutions at a time in a run. For example, when we want a set of fuzzy rules for designing
a fuzzy controller. The topic of this section is regarding this problem. Let’s start with a
simple mathematical functions.

11.1 Yet another Testfunction

A 2-D function but multi peaks

The question is how we design our chromosomes. In the multi-dimensional function
y = f(x1, x2, · · · , xn) our genes might be continuos value each of which corresponds to
the independent variable xi (i = 1, 2, · · ·n), that is, our chromosomes are made up of n
genes. On the other hand how should we design our chromosomes when the number of
independent variable is only one. A chromosome with only one gene? How we crossover
two parents?

O.K. we usually use binary chromosome in this situation. Any (decimal) real-valued
variable xi ∈ [a, b] could be encoded by n-bit binary strings where a and b is represented
by (00 · · · 0) and (11 · · · 1), respectivley, and therfore accuracy (or granularity) is (b −
a)/(2n−1). For example, if our concern is the above x ∈ [0, 1] then 10 bit of binary strings
from 0000000000 to 1111111111 are expresses decimals with the precision of 1/1024. Or
you might use and compare Gray Code where gray-code a1a2 · · · an is tlanslated from
binary number b1b2 · · · bn as

ai =

{
bi if i = 1
bi−1 ⊕ bi otherwise

(3)

where ⊕ is addition modulo 2. In gray code a pair of adjusent decimals are different only
with Hamming distance 1, while in the standard binary encode this does not hold.

The test-functions we studied in Section. 3 are what evolutionary computations are es-
pecially good at, since we can treat high dimensional function whatever large it may be,
simply by setting the number of genes in a chromosome to the dimensionality.

Then what should we do, if we are interested in a 2-D function? For example,

y = sin6(5πx) (4)

or

y = −2((x− 0.2)/0.8)2 sin6(5πx) (5)
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are interesting functions in order for us to observe how randomly created chromosomes
in the 1st generation evolve to find peaks. See Figure 2.
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Figure 25: A multi-peak 2-D function and its variation

11.2 Multi-modal Optimization.

Sometimes we have multiple solutions. But EC usually converges only one solution out of
them. Hence, to get those multiple solution we run the algorithm multiple time. Here we
learn the technique in which individual construct niches and each species found a different
solution at a run.

For the purpose, multiple species will be created and maintained in a population. These
species independently search for a peak (hopefully an optimum solution), construct their
niche and stay around the peak during a run.

In comparatively early days, essentially the following three methods were proposed. So-far
proposed methods are

• Fitness sharing (Goldberg & Richardson, 1987)

· Similar individuals share fitness with each other.

• Crowding (De Jong, 1975)

· Similar individuals are replaced with random individuals

• Species Method.

· Mating is restricted to among similar individuals.

These days, IMHO, the following two are popular among others.
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• Detterministic Crowding (Mahfoud, 1992)

• Sequential Niching

Let’s see some of the aspects more in detail.

Fitness Sharing Fitness of each individual is derated by an amount related to the number
of similar individuals in the population. That is, shared fitness Fs(i) of the individual i is

Fs(i) =
F (i)

µ∑
j=1

s(dij)

where F (i) is fitness of individual i; dij is distance between individual i and j; Typically
dij is Hamming distance if in genotypic space Euclidean distance if in phenotypic space
and s(·) is called sharing function and defined as:

s(dij) =

{
1− (dij/σshare)

α if dij < σshare
0 otherwise

where σshare is interpreted as size of niche, and α determines the shape of the function.
The denominator is called niche count. You see shape dependency of s(dij) on α in
Figure 11.2.

0

σ share

α = 1

α = 1/2
α = 1/10

d ij

d ijs ( )

1

Figure 26: A shape dependency of s(dij) on α.

To be short (not so short though): Similar individual should share fitness. The number
of individuals that can stay around any one of peaks (niche) is limited.
The number of individuals stay near any peak will theoretically be proportional to the
hight of the peak
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Deterministic Crowding: If the parents will be replaced or not with their childeren
will be determined under a criteria of the distance between parents and children,
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Figure 27: A typical two cases of distance between parents and children.

Algorithm Assuming crossover, mutation and fitness function are already defiened

1. Choose two parents, p1 and p2, at random, with no parent being chosen more than
once.

2. Produce two children, c′1 and c′2.

3. Mutate the children yielding c1 and c2, with a crossover.

4. Replace parent with child as follows:

- IF d(p1, c1) + d(p2, c2) > d(p1, c2) + d(p2, c1)

∗ IF f(c1) > f(p1) THEN replace p1 with c1
∗ IF f(c2) > f(p2) THEN replace p2 with c2

- ELSE

∗ IF f(c2) > f(p1) THEN replace p1 with c2
∗ IF f(c1) > f(p2) THEN replace p2 with c1

where d(ζ1, ζ2) is the Hamming distance between two points (ζ1, ζ2) in pattern configura-
tion space. The process of producing child is repeated until all the population have taken
part in the process. Then the cycle of reconstructing a new population and restarting the
search is repeated until all the global optima are found or a set maximum number of gen-
eration has been reached.

Sequential Niche: Single run is repeated sequentially, keeping the best individual at
each run.

Algorithm

1. Define niche radius r.

2. Define modified-fitness function m(x) by equating it to the original fitness function
f(x) here at the start.
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3. Run the GA and pick up the best individual at the end of the run.

4. Update m(x) as 6

mn+1(x) = mn(x) · g(x, sn) (7)

where n is the number of so-far run, sn is the best individual in the n-th run and

g(x, sn) =

{
(dxs/r)

α if dxs < r
1 otherwise

(8)

is called derating function where dxs is a distance between x) and sn) while m0 is
the original raw fitness function of each individual.

5. Run the GA using the modified fitness function and keep the best individual found
in the run,

6. Update the modified fitness function

7. If the raw fitness of the best individual exceeds the solution threshold, (See also below)
then display this as a solution.

8. If all solutions have not been found, then return to step 5.

• Solution Threshold is

· Lower fitness limit for maxima of interest, assuming we know how many peaks.
If it’s not of the case, set the threshold to zero.

Excersize Like Figure 11.2, draw a graph of y = (x/r)α with r = 1 and α = 0.5, 1, 2, 4, 8
to know what g(x, sn) looks like.

It would be interesting to try a multi-modal EC to the following two test functions.

(1) y = sin6(5πx)

(2) y = −2((x− 0.2)/0.8)2 sin6(5πx)

6This is called a Power Derating Function when we think of another alternative called Exponential
Derating Function:

ge(x, s) =

{
exp((logm(x, s)) · (r − dxs/r)) if dxs < r
0 otherwise

(6)
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12 Multi Objective Genetic Algorithm (MOGA)

So far we have learned how to get the possible solution(s) which fulfills one objective
function for the problem, that is, the goal is maximize the fitness function. In real world
problem, however, we have usually multiple objectives or criteria to be fulfilled simulta-
neously.

Those objectives sometimes conflict with each other. Like “time” and “money”: The
more we want to earn money, the less time to spent the money; or “reliability” of the
product and “cost” to produce it in a manufactural factory. Or, suppose an Opera Com-
pany trys to employ one Soprano singer. The criteria is voice, beauty-or-not), slim-or-not,
language-capability (Italian, German, etc). However God tend not to give us two talents
at a time, alas.

Then, first of all, when we have multiple objective function, we must define an important
concept of parate optimal or equvalently non-dominated solution.

Definition (Parate Optimal or Non-dominated Solution) A candidate solution is
called a non-dominated iff there is no ohter better solution w.r.t. all the objectives.

To be more specific, assume we have n objective functions;

f1(x), f2(x), f3(x), · · · fn(x)

where x is a candidate solution. Now if a new candidate solution y improves all the
objetives for x, i.e.,

fi(y) > fi(x) for ∀i

we say

“y dominate x.”

When no such y exists, we say

“x is non-dominated” or “Parete Optimum.”

A toy example: We now assume the two objective functions as follows.{
f1(x) = x2

f2(x) = (x− 2)2

· x=0 is optimum w.r.t. f1 but not so good w.r.t. f2.

· x=2 is optimum w.r.t. f2 but not so good w.r.t. f1.
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test-1 test-1 test-1 test-1 test-1 dominated by dominates rank
A 9 9 9 8 7 0 3 1
B 5 4 5 3 6 1 2 2
C 3 3 4 2 3 2 1 3
D 2 2 3 1 2 3 0 4
E 1 1 1 1 9 0 0 4

Table 28: An example of who dominates whom and how rank is counted.

· Any other point in between is a compromise or trade-off and is a Pareto-optimum.

· But the solution x=3, e.g., is not a Pareto-optimum since this point is not better
than the solution x = 2 w.r.t. either objective.

· If we plot in the f1-f2 space, an increase in f1 in some reagion means a decrease in
f2, or vice versa which implys that the solutions in the region are Parete optimum,
while in other region an increase in f1 make f2 increas (decrease). See Figure ??.
This f1-f2 space is called a Trade-off Space.
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Figure 29: Trade-off space for f1(x) = x2 and f2(x) = (x− 2)2.

Thought Experiment: What if we plot all individuals of generation 0 and, say, gener-
ation 100?
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How an implementation goes? Evolution is rather similar more or less to a GA with
single fitness function. The main difference is we have multiple objective function. Hence
we merge these multiple objective function into one fitness function. So far many ideas
have been proposed. Among all:

• Weighted sum approach.

· The fitness function is caluculated as

f(x) =
N∑
i=1

wifi(x) (9)

where wi expresses an importance of the i-th objectives.

· Note that for any set of weight > 0, the optimum is always a non-dominated
solution but opposite is not always true.

• The minimax approach

· The fitness function is caluculated by minimizing the maximum of n objective
functions.

• Target vector approach

· The fitness function is caluculated by minimizing the vector

(f1, f2, f3, · · · , fn)

from a pre-difined goal.

• Median/Average ranking approach

· The rank r(xi) of each individual xi in the population w.r.t. i-th objective
function is calculated. Then the fitness is defined as median/average of these
ri (i = 1, · · · , n).

• Parete ranking approach

· Ranking is according to “how many individuals in the population they are dom-
inated by.

We now take a look at a typical implemetation of MOGA.

Algorithm (A Multi Objective GA)

1. Initialize the population.

2. Select individuals uniformly from population.

3. Perform crossover and mutation to create a child.
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4. Calculate the rank of the new child.

5. Find the individual in the entire population that is most similar to the child. Replace
that individual with the new child if the child’s ranking is better, or if the child
dominates it. 7

6. Update the ranking of the population if the child has been inserted.

7. Perform steps 2-6 according to the population size.

8. If the stop criterion is not met go to step 2 and start a new generation.

7Step 5 implies that the new child is only inserted into the population if it dominates the most similar
individual, or if it has a lower ranking, i.e. a lower degree of dominance.
The restricted replacement strategy also constitutes an extreme form of elitism, as the only way of

replacing a non-dominated individual is to create a child that dominates it.
The similarity of two individuals is measured using a distance function.
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13 Data Mining

Data mining is a method to extract information or knowledge from a mountain of data.

See for example a headline from the New York Times on 13 November 2012. It reads:

Secret of the Obama Victory? Rerun Watchers, for One Thing ... By JIM
RUTENBERG The Obama campaign found supporters by culling never-before-
used data about viewing habits and combining it with more personal informa-
tion.

13.1 Data classification

Specifically, here, we take a look at data classification. One method to classify data set
int a set of classes, we exploit a rule set, such as

IF <condition> THEN <class>.

As an example, let’s classify Iris flowers. Iris flower dataset8 is made up of 150 samples
consists of three species of iris flower, that is, setosa, versicolor and virginica. Each of
these three families includes 50 samples. Each sample is a four-dimensional vector rep-
resenting four attributes of the iris flower, that is, sepal-length, sepal-width, petal-length,
and petal-width. All data are given as crisp as below.

Figure 30: A part of the iris flower data-base.

x1 x2 x3 x4 class
0.65 0.80 0.20 0.08 1
0.62 0.68 0.20 0.08 1
0.89 0.73 0.68 0.56 2
0.87 0.70 0.71 0.60 2
0.80 0.75 0.87 1.00 3
0.73 0.61 0.74 0.76 3

8University of California Urvine Machine Learning Repository.
ics.uci.edu: pub/machine-learning-databases.
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Now, for the time being we use only x1 and x2 just for the sake of simplisity to describe
rules, unless otherwise notified. For example

IF0.81 ≤ x1 ≤ 0.89 AND 0.70 ≤ x2 ≤ 0.73 THEN this is Class 2

classifies x1 = 0.89, x2 = 0.73 properly to Class 2 while x1 = 0.65, x2 = 0.80 and
x1 = 0.80, x2 = 0.75 are not.

So far so good, but what if the region overlaps with each other between more than two
spieces? Or, what if unknown somewhat irregular data are given?

13.1.1 Evaluation of how good is a rule

The rule for class 1 should accept all data of class 1, but at the same time this rule
should reject all data of class 2 and class 3. So count (i) how many data from class 1 are
successfully accepted, and then (ii) how many data from class 2 are successfully rejected
and (iii) how many data from class 2 are successfully rejected.

One method to make it will be to evaluate the rule by

TP

TP + FN
× TN

FP + TN
(10)

where TP stands for true-positive, FN stands for false-negative, TN stands for true-
negative, and FP stands for false-positive, and true-positive is the number of cases cov-
ered by the rule that have the class predicted by the rule; false-positives is the number of
cases covered by the rule that have a class different from the class predicted by the rule;
false-negatives is the number of cases that are not covered by the rule but that have the
class predicted by the rule; true-negatives is the number of cases that are not covered by
the rule and do not have the class predicted by the rule.

Our mission is to train our classifiers with known data shown in Appendix as ”data for
training” and then evaluate how good is the classifieyrs with ”data for checking” also
shown in appendix.

Evaluation is how the system appropriately classifies 69 data. Ask system which family
by giving 69 data one by one. Score is incremented if the result is correct. Hence the
maximum score is 69 and minimum is 0. Please note that even random guessing would
score one out of three. So score 23 might be the most stupid classifier.

What you should show me are (1) run the algorithm and result of input x1, x2, x3, and
x4 (2) a rule set, and (3) success rate (true-positive, true-negative, false-positive, false-
negative).
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13.1.2 Genetic Algorithm (GA) Approach

• Specify region of attributes by chromosom
Let’s specify <condition> like

IF a1 < x1 < a1 + δ1 AND a2 < x2 < a2 + δ2 THEN class i

Then our chromosome might be

(a1 δ1 a2 δ2)

13.1.3 Fuzzy Logic Approach

• Still with an evolution of chromosomes
With our chromosome being like

(large midium)

we can evolve a population of such chromosomes again with fitness being the Eq. (10).

• More fuzzy approach - membership fuction
If we can calculate a membershipfunction of, for example

IF x1 is LARGE AND x2 is MEDIUM THEN class 1

We can know the likelinass of this rule. While membership function of each linguistic
term is assumed as

0 0.50

x

µ (x)
small

1.0

0.5

very small medium
large

very Large

0.17 0.33 0.67 0.84 1.00

and use formulae of Fuzzy set theory

µA∩B(x) = max{1, µA(x) + µB(x)} (11)

µA∪B(x) = min{1, µA(x) + µB(x)}, (12)

µA→B(x) = µA(x)× µB(x) (13)
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13.1.4 Articial Immune System (AIS) Approach

• Clonal Selection in general
Assume an antigen invaded in our body. Then B cells with high affinity to the antigen are
activated. These B cells are stimulated to proliferate producing large number of clones
(Note that these clones are an exact copy of their parent) and these clones mutate and
turn into plasma cells.

We now difine a measure of how an anitbody matches to the invading antigen. Let’s call
it affinity.

Although the maturation process produces a small number of high affinity matches it
must also produce a large number of low affinity B cells.

This algorithm is proposed by ... for the purpose of pattern classification being based on
the algorithm called CLONALG proposed by ... for the purpose of pattern recognition.

Algorithm 3 Artificial Clonal Selection algorithm
Assume we have a set of Antigens Ag9.

1. Generate an initial population of N antibodies Ab

2. Select an antigen Agi

3. For every member of Ab calculate its affinity to the Agi

4. Select the n highest affinity antibodies and generate a number of clones for each
antibody in proportion to its affinity and construct a new population Ci (a population
specifically for Agi)

5. Mutate every member of C i with a probability being inversely proportional to its
affinity. Let’s call this population a mature population Ci∗

6. Measure again affinity of the member Ci∗ to the Agi. (If its affinity is greater than
the current memory cell Abmi it become the new memory cell.

7. (a) Replace p highest affinity antibodies in Ab with p highest affinity matured anti-
bodies in C i∗

(b) Replace (N − p) low affinity antibodies in Ab with a new set of (N − p) random
antibodies.

8. Repeat 2-7 for all antigens Agi (i=1, 2, ... , M)

9. Repeat 1-8 for all different antigens10.

Thus we can create N mature antibody population Ci∗ for each of antigen Agi. And one
memory cell for each antigen.

9Here we take each of three different iris flowers as antigen, that is, we have three Antigens called
Setosa, Versicolor, and Virsinica.

10That is, Setosa, Versicolor, and Virsinica.
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13.1.5 Ant Colony Optimization (ACO) Approach

• ACO in general
This subsection is edited from G. Sarigiannidis11.

A

B

C D

30 ants

30 ants

Which path the ants should choose
Each ant who is at the city s choose the next city j from J(s) – its not-yet-visited-city
from city s – with a probability:

psj ∝ τsj(t){η(s, j)}β.

Or, to normalize it:

psj =
τsj(t){η(s, j)}β∑

j∈J(s) τij(t){η(s, j)}β

where τij(t) is the amount of pheromone on the path from city s to city j, η(s, j) = 1/dsj
while dsj is the distance between city s and city j, and β is a parameter which determines
the importance of balance between pheromone and distance.

Local pheromon update
When all the ants reach the next city, the amount of pheromon is updated as:

τrs = (1− ρ) · τrs + ρ · τ0

Global pheromon update
After all ants have completete their tours, they remain to the position for the next iter-
ation, and the global pheromone updaite is applied to all the path (r, s) one by one as
follows:

τrs = (1− α) · τrs + α ·∆τrs

where ∆τrs = 1/(LBS) if the path (r, s) belongs to the best tour so far, otherwise 0 where
LBS is the minimum total tour length found so far. An interpretation of 0 < α < 1 can

11G. Sarigiannidis ”Discussion on the implementation of the Ant Colony System for the Traveling
Salesman Problem.” Delft University of Technology
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be the pheromone decay parameter, that is, evaporation rate of pheromone.

Parameters
Typically, the number of ants is 10, and the other parameters are β = 2, α = ρ = 0.1,
τ0 = 1/(n · LNN) where LNN is the total tour length by Nearest Neighbor heuristic and n
is a number of cities.

The ant who is in the node i chooses the next node to move from a set of possible nodes
directly reachable with a probability pij which are pre-specified in advance a run constant
during a run, by considering (i) ηij – how the path to the node j looks good (called
heuristic term) and (ii) τij – how the path accumulate pheromon those previous ants left.

• TSP by ACO In order to understand how Ant Colony Optimization works, let’s take
a brief look at its application to the Traveling Salesperson Problem. We now assume N
cities that a salesperson must visit once and only once. Now imagine N ants are assigned
to each of those N cities – one ant at one city. The following parameters are to be used.

⋆ probability for one ant at node i to choose node j

pij ∝ ηijτ
β
ij

where β(> 0) determines the relative importance of pheromone versus heuristics, and
η is called heuristic parameter. The larger value, the more preferable. In the TSP ηij
simply takes a value 1/dij where dij is the distance between city i and city-j. τ is called
pheromone density and updated during a run in the following way.

• Data Classification by ACO
We use Iris-flower data again and the rules to classify iris-flower data are described with
fuzzy linguistic term. A general form of such rule is:

IF x1 is small & x2 is large & · · · THEN y1 is strong & y2 is weak & · · ·

Here, we assume those linguistic terms such as small, large, etc for xi, and strong, weak,
etc. for yj are all pre-defiend by a membership function.

Remember here how we define, for example, a membership function of

IF A & B THEN C & D.

Then we can define a membership function of these rules.

µA∪B⇒C∪D.

Our purpose here is to classify iris-flower data with four features into either of three fam-
ilies. So the form of our rule is specifically like:

IF x1 is A1 & x2 is A2 & x3 is A3 & x4 is A4 THEN y is Bj
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x

µ (x) small

1.0

0.5

medium large

0.75 1.000.25

Figure 31: Three membership function of ”small”, ”medium”, ”large” for all x1, x2,x3

and x4 in commone.

where Ai is either of small, medium, or large and Bj is either of 1, 2, or 3.

Then the number of all possible such rules is 34 × 3 = 243. Now let’s denote IF-part of
the i-th roule as Ri. Now we assign heuristic term for each of those links from Ai to Bj

as

ηij = µRi⇒Bj
(x1, x2, x3, x4, y1) (14)

For example
ηij = maxmin(µA1(x1), µA2(x2), µA3(x3), µA4(x4))

See Figure 33.

R1 R2 R3 RN

...

B1 B2 B3

η ij

Figure 32: A schematic diagram of all possible link between IF-part and THEN-part of
rule set. Heuristic term ηij are assingend to those links.

With initial pheromone being arbitrary τ0, pheromon on the link from i to j is updated
every time when one ant walks this link (local update) as

τij = (1− ρ) · τij + ρ · τ0. (15)

When one ant finish all the Ri pheromon on all the liks are updated (global update) as

τij = (1− ρ) · τij + ρ ·∆ij (16)

where ∆ij is fitness of the best rule so far found if the link from i to j belongs to the link
of the best rule so far found, and 0 otherwise. Use Eq. (10) for fitness calculation of one
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R 1 :
x

small

1 x
small

1 x
small

1 x
small

1 B
    1

R 2 : small small small small     2

R 3 : small small small small     3

R 4 : small small small medium     1

R 5 : small small small medium     2

R 6 : small small small medium     3

R 7 : small small small large     1

R243 : large large large large     3

...... ...

Figure 33: All possible rules are something like this.

rule. The calculation is made by using the data for training. Note that it is this process
that the system learn how to classify well.

The probability of one ant at the node i to choose the link to the node k is as already
described:

pij =
τij(t){η(i, j)}β∑

j∈J(i) τij(t){η(i, j)}β

with β being, say, 2.

Now let’s denote input-output data set from our 120 training data of iris-flowers as

ek = (xk
1, x

k
2, x

k
3, x

k
4, y

k) k = 1, 2, · · · , 120.

Then our rules are like

Rs: IF x1 is large & x2 is small & x3 is medium & x4 is small THEN 2.

To be more general

Rs: IF x1 is As
1 & x2 is As

2 & x3 is As
3 & x4 is As

4 THEN Bs.

Then
ηij = max

ek
(min(µAi(xk), µBj(yk))) (17)

where
µAi(xk) = min(µAi

1
(xk

1), µAi
2
(xk

2), µAi
3
(xk

3), µAi
4
(xk

4)) (18)

Let me take an example. Assume s = 1 and

R1: IF x1 is small & x2 is small & x3 is small & x4 is small THEN 1.

That is,

A1
1 is small, A1

2 is small, A1
3 is small and A1

4 is small.

Then from the iris-flower data for training for k = 1



(Evolutionary Comuptation) 47

x1 = 0.65, x2 = 0.80, x3 = 0.20, x4 = 0.08 and y = 1.

That is,

e1 = (0.65, 0.80, 0.20, 0.08, 1).

Corresponding values of membership function

µsmall(0.65), µsmall(0.80), µsmall(0.20), µsmall(0.08)

are obtained from Fig. 31.

By repeating this procedure from k = 1 to k = 120, and then take the maximum in
Eq.(17) we can obtain each value of ηij.

As for Bs, they are generally also a fuzzy linguistic value such as strong and its member-
ship function is defined in the same way as Fig. 31, but here Bs is integer value 1, 2, or
3, that is singleton. Therefore, for example µsetosa(y) = 1 if and only if y=1 otherwise
µsetosa(y) = 0. Similary, µversicolor(y) = 1 if and only if y=2 otherwise µversicolor(y) = 0,
and µvirsinica(y) = 1 if and only if y=3 otherwise µvirginica(y) = 0.

Now we are ready to run an ACO algorithm for Iris-flower classification

Algorithm 4 (ACO for iris-flower classification) Initialize τ0, calculate all ηij

1. For k = 1 to K.

2. For i = 1 to 243.

3. Put ant k to the node Ri.

4. Choose link according to pij updating tij locally.

5. Set THEN-part of the ”Ri as Bj.

6. Repeat 2-5.

7. Update all of the τij globally according to the fitness of the rule obtained..

8. Repeat 1-7.
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14 Genetic Programming (GP)

The title of this section suggests Genetic Programming suggests Evolution of Program.
What we want here is when we have specific task and need a program to solve the task,
we start with a population of random programs and then evolve them. We expect from
generation to generation a better programs than previous ones and perfect programeven-
tually emerges.

As previous evolution, (i) we create a population of random chromosomes; (ii) evaluate
fitness of each chromosome; (iii) select chromosomes so that better two are more likely to
be selected; (iv) produce children by crossover and mutation (v) repeat (iii) to (iV) until
the next generation includes the same number of chromosomes as previous generation;
(vi) repeat (ii) to (v) until fitness saturates or pre-determined generations are repeated.

But here, chromosome is not a string like so far, but tree.

14.1 How we create random tree, and how we evolve trees.

We, first of all, prepare for function set and terminal set. Then we follow the below.

(1) Choose one function from the Function Set at ramdom, and assign it to the root
node.

(2) Assign each of arcs a function or a terminal chosen at random from Function Set or
Terminal Set.

(3) If the node is a terminal, then the node will not grow any more, but instead become
a leave. Oterwise repeat (2).

(4) These are repeated until all the end nodes are terminal set.
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14.2 Evolution of program.

Like the program language LISP, some programming languages have a tree-structure.

14.2.1 An Example of Tree represantation of a program

Program in LISP can be represent by a tree. The following is a simple example of one
instruction from LISP program and its tree structure.

+

IF1 2

> 3 4

time 10

(+ 1 2 (IF (> time 10) 3 4))

14.2.2 Crossover and Mutation

We now look at how we crossover and mutate two trees. See the figure below.

x =

->

crossover

mutation
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14.3 Eolution of hardware

14.3.1 Even-n-parity

Sometimes, we need automatic error-detection coding. Assume we need (n − 1) binary
bits for our encoding. Then in order to detect an accidental assignment of a code we add
one additioanl bit called parity-check-bit. 0 or 1 will be assigned so that total number of
bit 1 becomes even. Hence we can know the incorrectly coded line, though some lucky
mistake can avoid this detection.

EQXORXORx1

x3 x2x3

y1 y2

y3

EQXOR

XORx2

x3

y1

y2

y3x1

x1



(Evolutionary Comuptation) 51

APPENDIX

I. The other commmonly used test-function

Shcwefel function

The function bellow is called Schwefel function and enormous amount of local minimum
and the only unique global minimum at the Origin. Search for the global minimum when
the function is difined on, say, xi ∈ [−500, 500].

y =
n∑

i=1

(xi sin(|xi|)) (19)

You might try to explore this hyper-surface by setting n to 20, for example. Then the

surface is defiened on 20-dimensional Eucledean space. If, however, you want to know the

image of the hyper-surface, see a two dimensional version of this function. The graph of

y = x sin(|x|) (20)

is shown in Figure 1.

-500 0 500
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-400

-300
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-100
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200
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400

500

Figure 34: A two-dimensional version of the Schwefel’s Function’s graph.

14.4 Rastrigin’s Function

⋆ Rastrigin’s Function

y = nA +

n∑
i=1

(x2i − A cos(2πxi)), xi ∈ [−5.12− 5.12].

· Ruggedness might be controlled by modifying the value of A.
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· A two dimensional example (n = 1):

y = 3 + x2 − 3 cos(2πx).

-6 -4 -2 0 2 4 6
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35

Figure 35: A 2-D version of Rastrigin function

⋆ Griewangk’s Function F8:

y =

n∑
i=1

x2i/4000−
n∏

i=1

cos(xi/
√
i) + 1, xi ∈ [−600, 600].

· A two dimensional example:

y = x2/4000− cos x+ 1.

⋆ Ackley’s Function F9:

y = −20

n∑
i=1

exp (−0.2
√

x2i/n)− exp ((

n∑
i=1

cos 2πxi)/n) + 20+ e,

xi ∈ [−30, 30].
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Figure 36: A 2-D version of Griewangk function
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· A two dimensional example:

y = −20 exp (−0.2
√
x2)− exp (cos 2πx) + 20 + e.
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5
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15

20
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Figure 37: A 2-D version of Ackley function
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II. Iris Flower Database

Data for training - 3×40 = 120 data

Setosa Versicolor Virginica
x1 x2 x3 x4 x1 x2 x3 x4 x1 x2 x3 x4

0.65 0.80 0.20 0.08 0.89 0.73 0.68 0.56 0.80 0.75 0.87 1.00
0.62 0.68 0.20 0.08 0.81 0.73 0.65 0.60 0.73 0.61 0.74 0.76
0.59 0.73 0.19 0.08 0.87 0.70 0.71 0.60 0.90 0.68 0.86 0.84
0.58 0.70 0.22 0.08 0.70 0.52 0.58 0.52 0.80 0.66 0.81 0.72
0.63 0.82 0.20 0.08 0.82 0.64 0.67 0.60 0.82 0.68 0.84 0.88
0.68 0.89 0.25 0.16 0.72 0.64 0.65 0.52 0.96 0.68 0.96 0.84
0.58 0.77 0.20 0.12 0.80 0.75 0.68 0.64 0.62 0.57 0.65 0.68
0.63 0.77 0.22 0.08 0.62 0.55 0.48 0.40 0.92 0.66 0.91 0.72
0.56 0.66 0.20 0.08 0.84 0.66 0.67 0.52 0.85 0.57 0.84 0.72
0.62 0.70 0.22 0.04 0.66 0.61 0.57 0.56 0.91 0.82 0.88 1.00
0.68 0.84 0.22 0.08 0.63 0.45 0.51 0.40 0.82 0.73 0.74 0.80
0.61 0.77 0.23 0.08 0.75 0.68 0.61 0.60 0.81 0.61 0.77 0.76
0.61 0.68 0.20 0.04 0.76 0.50 0.58 0.40 0.86 0.68 0.80 0.84
0.54 0.68 0.16 0.04 0.77 0.66 0.68 0.56 0.72 0.57 0.72 0.80
0.73 0.91 0.17 0.08 0.71 0.66 0.52 0.52 0.73 0.64 0.74 0.96
0.72 1.00 0.22 0.16 0.85 0.70 0.64 0.56 0.81 0.73 0.77 0.92
0.68 0.89 0.19 0.16 0.71 0.68 0.65 0.60 0.82 0.68 0.80 0.72
0.65 0.80 0.20 0.12 0.73 0.61 0.59 0.40 0.97 0.86 0.97 0.88
0.72 0.86 0.25 0.12 0.78 0.50 0.65 0.60 0.97 0.59 1.00 0.92
0.65 0.86 0.22 0.12 0.71 0.57 0.57 0.44 0.76 0.50 0.72 0.60
0.68 0.77 0.25 0.08 0.75 0.73 0.70 0.72 0.87 0.73 0.83 0.92
0.65 0.84 0.22 0.16 0.77 0.64 0.58 0.52 0.71 0.64 0.71 0.80
0.58 0.82 0.14 0.08 0.80 0.57 0.71 0.60 0.97 0.64 0.97 0.80
0.65 0.75 0.25 0.20 0.77 0.64 0.68 0.48 0.80 0.61 0.71 0.72

(to be cont’d to the next page)
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(cont’d)

Setosa Versicolor Virginica
x1 x2 x3 x4 x1 x2 x3 x4 x1 x2 x3 x4

0.61 0.77 0.28 0.08 0.81 0.66 0.62 0.52 0.85 0.75 0.83 0.84
0.63 0.68 0.23 0.08 0.84 0.68 0.64 0.56 0.91 0.73 0.87 0.72
0.63 0.77 0.23 0.16 0.86 0.64 0.70 0.56 0.78 0.64 0.70 0.72
0.66 0.80 0.22 0.08 0.85 0.68 0.72 0.68 0.77 0.68 0.71 0.72
0.66 0.77 0.20 0.08 0.76 0.66 0.65 0.60 0.81 0.64 0.81 0.84
0.59 0.73 0.23 0.08 0.72 0.59 0.51 0.40 0.91 0.68 0.84 0.64
0.61 0.70 0.23 0.08 0.70 0.55 0.55 0.44 0.94 0.64 0.88 0.76
0.68 0.77 0.22 0.16 0.70 0.55 0.54 0.40 1.00 0.86 0.93 0.80
0.66 0.93 0.22 0.04 0.73 0.61 0.57 0.48 0.81 0.64 0.81 0.88
0.70 0.95 0.20 0.08 0.76 0.61 0.74 0.64 0.80 0.64 0.74 0.60
0.62 0.70 0.22 0.04 0.68 0.68 0.65 0.60 0.77 0.59 0.81 0.56
0.63 0.73 0.17 0.08 0.76 0.77 0.65 0.64 0.97 0.68 0.88 0.92
0.70 0.80 0.19 0.08 0.85 0.70 0.68 0.60 0.80 0.77 0.81 0.96
0.62 0.70 0.22 0.04 0.80 0.52 0.64 0.52 0.81 0.70 0.80 0.72
0.56 0.68 0.19 0.08 0.71 0.68 0.59 0.52 0.76 0.68 0.70 0.72
0.65 0.77 0.22 0.08 0.70 0.57 0.58 0.52 0.87 0.70 0.78 0.84
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Data for evaluating the system after training - 3×23 = 69 data

Setosa Versicolor Virginica
x1 x2 x3 x4 x1 x2 x3 x4 x1 x2 x3 x4

0.63 0.80 0.19 0.12 0.70 0.59 0.64 0.48 0.85 0.70 0.81 0.96
0.57 0.52 0.19 0.12 0.77 0.68 0.67 0.56 0.87 0.70 0.74 0.92
0.56 0.73 0.19 0.08 0.73 0.59 0.58 0.48 0.73 0.61 0.74 0.76
0.63 0.80 0.23 0.24 0.63 0.52 0.48 0.40 0.86 0.73 0.86 0.92
0.65 0.86 0.28 0.16 0.71 0.61 0.61 0.52 0.85 0.75 0.83 1.00
0.61 0.68 0.20 0.12 0.72 0.68 0.61 0.48 0.85 0.68 0.75 0.92
0.65 0.86 0.23 0.08 0.72 0.66 0.61 0.52 0.80 0.57 0.72 0.76
0.58 0.73 0.20 0.08 0.78 0.66 0.62 0.52 0.82 0.68 0.75 0.80
0.67 0.84 0.22 0.08 0.65 0.57 0.43 0.44 0.78 0.77 0.78 0.92
0.63 0.75 0.20 0.08 0.72 0.64 0.59 0.52 0.75 0.68 0.74 0.72
0.62 0.70 0.22 0.04 0.80 0.52 0.64 0.52 0.81 0.70 0.80 0.72
0.56 0.68 0.19 0.08 0.71 0.68 0.59 0.52 0.76 0.68 0.70 0.72
0.65 0.77 0.22 0.08 0.70 0.57 0.58 0.52 0.87 0.70 0.78 0.84
0.63 0.80 0.19 0.12 0.70 0.59 0.64 0.48 0.85 0.70 0.81 0.96
0.57 0.52 0.19 0.12 0.77 0.68 0.67 0.56 0.87 0.70 0.74 0.92
0.56 0.73 0.19 0.08 0.73 0.59 0.58 0.48 0.73 0.61 0.74 0.76
0.63 0.80 0.23 0.24 0.63 0.52 0.48 0.40 0.86 0.73 0.86 0.92
0.65 0.86 0.28 0.16 0.71 0.61 0.61 0.52 0.85 0.75 0.83 1.00
0.61 0.68 0.20 0.12 0.72 0.68 0.61 0.48 0.85 0.68 0.75 0.92
0.65 0.86 0.23 0.08 0.72 0.66 0.61 0.52 0.80 0.57 0.72 0.76
0.58 0.73 0.20 0.08 0.78 0.66 0.62 0.52 0.82 0.68 0.75 0.80
0.67 0.84 0.22 0.08 0.65 0.57 0.43 0.44 0.78 0.77 0.78 0.92
0.63 0.75 0.20 0.08 0.72 0.64 0.59 0.52 0.75 0.68 0.74 0.72


