
(Brest State Technical University 2013 Spring Semester: Course Practice)

Lecture notes for Contemporary Intelligent Information Techniques
in 2013

Akira Imada
Brest State Technical University, Belarus

(last modified on)

May 14, 2013

1

(Evolutionary Comuptation) 2

1 All One Problem

In order to study what will be going on under the computational evolution, let’s start
very simple experiment.

We now evolve binary chromosomes. We start with the initial population with, say, 100
binary chromosomes with, say, 40 genes, – all created at random. The fitness is the num-
ber of “1” in chromosome— the more the better. That is our target is all-one-chromosome.

Try a standard evolution with (i) one-point-crossover and (ii) uniform-crossover, with
mutation rate being 1/N where N is the number of genes in one chromosome.

Algorithm 1 (All-One-Problem)

1. Create, say, 100 binary-chromosomes at random where the number of gene is 40.

2. Fitness is the number of “1” in one chromosome – the more the better.

3. Select 2 chromosomes at random from the better half of the population of 100 chro-
mosomes.

4. Create a child chromosome by a crossover.

· Compare two performances one with one-point-crossover and the other with
uniform-crossover.

5. Give the child a mutation with a probability of 1/40 = 0.025.

6. Repeat from 2. to 5. 40 times and create the next generation.

7. Repeat 6. until the fitness value reaches 40.

8. Show the result:

(1) Desplay the best chromosome in each generation from generation to generation.

(2) Desplay the best-fitness vs. generation and average-fitness vs. generation.

(Evolutionary Comuptation) 3

2 The Simplest Test Function — Sphere Model

The first task of this practice is to obtain the minimul value of a multi-dimensional func-
tion.

To be more specific, we now assume that we have the following function defined in a

20-dimensional space:

y = x21 + x22 + x23 + · · ·+ x220. (1)

Then obtain which point of (x1, x2, x3, · · · , x20) gives a minimum value of y and how
much is the value of minimum y. Now, try the following algorithm.

Algorithm 2 (The minimization of the simplest high-D function)

1. Create, say, 100 chromosomes at random.

· The number of gene is 20.

Thus our chromosomes here have the form (x1, x2, x3, · · · , x20).

· Assume here each of xi takes the continuous value from −1 to 1, that is

−1 < xi < 1.

2. Calculate fitness value by y = x2
1 + x2

2 + x2
3 + · · · + x2

20. Note that the smaller the
better.

3. Select 2 chromosomes at random from the better half of the population of 100 chro-
mosomes.

4. Create a child chromosome by a crossover.

5. Give the child a mutation

6. Repeat from 2. to 5. 100 times and create the next generation.

7. Repeat 6. until the fitness value reaches 0.

Then the question is as follows.

Excersize 1 (Obtaining the global minimum)
(1) Plot the average fitness value of all the 100 chromosomes versus generation. (2) Also
plot the minimum fitness value of each generation.

(Evolutionary Comuptation) 4

3 A little more tricky function

Let’s try a little more tricky function. for example, the one called Rastrigin’s Function.

y = nA +

n∑
i=1

(x2i − A cos(2πxi)), xi ∈ [−5.12− 5.12].

Dimensionality n is arbitorary, but to see how its graph look like, see the Figure when
n = 1.

-6 -4 -2 0 2 4 6

0

5

10

15

20

25

30

35

Figure 1: A 2-D version of Rastrigin function

Excersize 2 (Obtaining the global minimum)
(0) Try in the case of n = 20. (1) Plot the average fitness value versus generation. (2)
Also plot the minimum fitness value of each generation. (3) Make an experiment with
different value of mutation rate.

(Evolutionary Comuptation) 5

4 2-D Functioon

We now try a 2-D Function in order to observe what will be going on under an evolution.
Let’s try to find the minimum point of the following function as an example.

y = x4 − 5x3 − 6x2 + 8x+ 15

The graph looks like when x ∈ [−2, 5]

Figure 2: Yet another test function: y = x4 − 5x3 − 6x2 + 8x+ 15 with x ∈ [−2, 5].

How you design chromosome to solve this problem?

In the previous problem, the number of genes is n if the function is difiened on n dimen-
sional space. Then our chromosome here has only one gene? How, on earth, we crossover
two chromosomes?

The answer is, we use binary chromosome. In the above example, ...

(Evolutionary Comuptation) 6

5 Neural Network for Even-n-Parity

Even-n-Parity is a boolean function to check whether number of 1 of n-bit binary is even
or not.

We now assume n = 4 for the sake of simplisity. Again our binary made up of −1 and 1

instead of 0 and 1 for a convenience. Hence, as in previous section, transfer function is

yi = 2 · sgn(
N∑
j=1

wijxj − θj)− 1,

where yi is output of neuron-i, wij is weight of the synapse from neuron-j to neuron-i, xj

is state of neuron-j, θ is threashold of neuron-j, and N is the number of neurons connected
to neuron-i. We assmue here θj = 0.5 for all j.

x1 x2 x3 x4 y
−1 −1 −1 −1 +1
−1 −1 −1 +1 −1
−1 −1 +1 −1 −1
−1 −1 +1 +1 +1
−1 +1 −1 −1 +1
−1 +1 −1 +1 −1
−1 +1 +1 −1 −1
−1 +1 +1 +1 +1
+1 −1 −1 −1 +1
+1 −1 −1 +1 −1
+1 −1 +1 −1 −1
+1 −1 +1 +1 +1
+1 +1 −1 −1 +1
+1 +1 −1 +1 −1
+1 +1 +1 −1 −1
+1 +1 +1 +1 +1

We now exploit a feedfoward Neural Network with 4 input neurons, 4 hidden neurons,
and one output neurons. So, we have 20 synapsis and as such our chromosome has 20
genes. Create 100 chromosomes with random weight from −1 to 1. Fitness evaluation is
by counting the correct answer after giving all the possible 16 cases of 4 inputs, one by
one. Then evolve the population.

Excersize 3 (Neural Network for Even-4-Parity)
(1) Plot the average fitness in the population as a function of generation. (2) Plot the
maximum fitness in the population as a function of generation. (3) Demonstrate the
finally obtained neural network by giving 4 inputs from keybord.

(Evolutionary Comuptation) 7

6 Navigoation in gridworld

Assume now that we want to make an agent, or a robot, in a gridworld, a possible
chromosome can be made up of integer gene from 1 to 4 where 1, 2, 3, and 4 correspond
to one cell movement of the agent to north, south, east and west. Take a look at the
below as an example.

(311113323322333131442411141)

start

goal

Figure 3: An example of chromosome and the trace of the robot whose has this chromo-
some.

Search for a path of maximum Manhattan distance

. Starting with the center of a huge 2-dimensional gridworld, a robot navigate following
its chromosome. The length of the chromosome is 40 for example. That is, the robot
explore the gridworld with 40 steps.

At the beginning, robots explore with random walk because its chromosome is given at
random.

Some robot would just explore around the starting points. Think of the robot, for example,
whose chromosome is

(12)

The goal is to find a robot who reaches to the point with the maximum (40) Manhattan
distance from the starting point.

(Evolutionary Comuptation) 8

Search for a path to the goal with minimum Manhattan distance

In this problem, the point robots start with, and the goal they should reach are pre-
specified.

The goal is to find a robot who reaches the goal with the minimum Manhattan distance.
Sea the Figure below as an example.

96x96 grid 178 steps 96x96 grid 48 steps

Figure 4: In the grid-world of 96 starting from (24,24) a robot walks aiming the goal
at (72,72) of which the robot had no a-priori information. Left: The path of minimum
length among 100 trials by random walk. Right: Minimal path the robot found after an
evolutionary learning as shown in Fig. 3. (Marginal area is omitted.)

(Evolutionary Comuptation) 9

7 Traveling Salesperson Promblem (TSP)

Assuming N cities all of whose cordinate are given, Traveling Salse-person Problem (TSP)
is a problem in which a sales-person should visit all of these cities once but only once with
its goal being to look for the shortest tour.

We now take a look at 4 cities – A, B, C, and D – as a simplest example. We now assume
the cities location are given as follows, for instance.

(x, y)

A (0.83, 7.79)
B (3.28, 8.32)
C (1.52, 4.48)
D (7.65, 3.46)

Then the Eucledean distances between all possible pair of cities are calculated using a
formula:

rij =
√
(xi − xj)2 + (yi − yj)2 (2)

where rij is the distance between city i and city j and (xi, yi) and (xj, yj) are coordinate
of city i and city j, respectively. The distances are:

A B C D

A 0.000 2.505 3.382 8.074
B 2.505 0.000 4.232 6.539
C 3.382 4.232 0.000 6.214
D 8.074 6.539 6.214 0.000

0

2

4

6

8

10

0 2 4 6 8 10

B

C

A

D

Figure 5: An example of 4 cities and a possible tour therein.

All possible routes in this example are

(A-B-C-D-A), (A-B-D-C-A), (A-C-B-D-A), (A-C-D-B-A), (A-D-B-C-A), and (A-D-C-B-A).

(Evolutionary Comuptation) 10

Notice here that lengths of a pair of tours is identical such as a pair (A-B-C-D-A) and
(A-D-C-B-A). That is, we have 3!/2 = 3 routes in total in this example.

Let’s see now one root A-C-B-D-A out of them, in the map shown in Figure 5.

The length of the tour in the figure is

rA−C−B−D−A = 3.382 + 4.232 + 6.539 + 8.074 = 22.227

In the same way, we can calculate the other two route. That is,

rA−B−D−C−A = 2.505 + 6.539 + 6.214 + 3.382 = 15.640

rA−B−C−D−A = 2.505 + 4.232 + 6.214 + 8.074 = 21.025

So, the tour of minimum length is A-B-D-C-A (or A-C-D-B-A).

But what if we have larger number of cities? Now you know even in case of 10 cities, we
have 9!/2 = 181, 440 possible differnt route. Do you want calculate those distances of all
the possible tour? Of course not! Further more, what about 1000 cities, for example?

Then let’s apply our evolutionary algorithm. Note that, however, chromosomes like

(B D C)

for tour A-B-D-C-A and

(D C B)

for tour A-D-C-B-A, would not work, because possible child after one-point crossover by
cutting between 1st and 2nd genes will be

(B C B) and (D D C)

would not be feasible, because both are not a leagal tour – visits one city twice neglecting
one city.

Then a possible design of chromosome is as follows.

Step-1. Set i = 1.

Step-2. If i-th gene is n then n-th city in the list is the city to be currently visited.

Step-3. Remove the city from the list.

Step-4. Set i = i+ 1 and repeat Step-2 to Step-4 while i < n.

For example, when the list of cities besides the starting city A is

{B, C, D}

(Evolutionary Comuptation) 11

chromosome: (121) is the tour:

A-B-D-C-A.

Note that genes can be any integer and mutation might be by simply replacing a gene with
another random integer. The probability might be 1/number-of-genes (you may change
the ratio as an experiment, of course.)

Excersize 4 (TSP)

(1) Create 14 cities by assign random coordinate (xi, yi).

(2) Calculate the distance between all the possible two cities.

(3) Then evolve them until the total distance of tour converges one value.

(4) Repeat (3) until fitness value (= total distance of tour) converges a value.

Results you should show me.

• Coordinates of All the cities.

• Matric of distance between any 2 cities.

• Graphic of the location of all the cities and the shortest tour.

(Evolutionary Comuptation) 12

8 Knapsack Problem

We now assume n items whose i-th item has weight wi and profit pi, then we pick up xi

of the i-th item i = 1, 2, · · · , n and xi is non-negative integer. The goal is to maximizes

n∑
i=1

xipi. (3)

such that
n∑

i=1

xiwi < C (4)

where C is the capacity of the knapsack.

GA implementation is quite simple. Our chromosomes are in the form

(x1x2x3 · · · xn) (5)

with each xi being the number of the i-th items to be in the knapsack.

Kill infeasible chromosomes

One important aspect is if a chromosome does not fulfill the condition of Eq.(4), simply
kill the choromosome and repeat the procedure which resulted in the infeasible child chro-
mosome (cross-over, mutation, or whatever.) untill creating a feasible child chromosome.

Excersize 5 (Knapsack Problem) Assumming the size of knapsack is, say, 60.

(1) Create, say, 100 items, by giving each of whose price pi and size wi at random, both
raging from 0 to 1. For example:

item price size

1st 0.37 0.62
2nd 0.52 0.45
3rd 0.95 0.38
· · · · · · · · ·

100th 0.72 0.32

(2) Creat 40 chromosomes each of which has 100 integer genes, like

(5, 7, 13, · · · 2)

which means five 1st items, seven 2nd items 13 3rd items, · · · , two 100th items.

(3) Try to check by replace with one item with price being 0.99 and size being 0.01
Imagine this item is like diamonds small and precious. Hence all items should
converge this one. And then replace all items with price being 0.01 and size being
0.01 In this case you know clearly the results.

(Evolutionary Comuptation) 13

(4) Try evolution and plot maximum fitness vs. generation, as well as average fitness
vs. generation

(5) Visualize the inside of the knapsack.

(Evolutionary Comuptation) 14

9 Sammon Mapping by GA

Here we learn about Sammon Mapping. Sammon Mapping is a mapping a set of points
a in high-dimensional space to the 2-dimensional space with the distance relation being
preserved as much as possible, or equivalently, the distances in the n-dimensional space
are approximated by distances in the 2-dimensional distance with a minimal error.

This method was proposed in 1980’s as an optimization problem to which they approached
by Operations Research technique suchas Steepest Descend, which is not so simple. Here,
on the other hand, we employ Evolutionary Computatins which is quite simple. Let’s see
now what is the original Sammon Mapping look like.

Algorithm (Sammon Mapping)

1. Assume N points are given in the n-D space.

2. Calculate distance matrix R (N × N) whose i-j element is the Euclidean distance
between the i-th and j-th point.

3. Also think of a tentative N points in the 2-D space that are located at random at the
beginning.

4. The distance matrix Q is calculated in the same way as R.

5. Then the error matrix P = R−Q is defined.

6. Search for the locations of N points in the 2-D space that minimizes the sum of
element P .

This is an optimization problem which we now can solve quite simply by using EC. That
is, by creating N points in 2-D space each of which corresponding N points in the n-D
space with the distance relation being preserved as much as possible, or equivalently, such
that the n-D distances are approximated by 2-D distances with a minimal error.

In an actual GA implementation of Sammon Mapping, chromosomes might be made up of
n genes each of which corrisonds to x−y coordinate of a candidate solution of n optimally
distributed points in 2-dimensional space. Uniform crossover is employed and from time
to time mutation is given by replacing one gene with other random x− y coordinate. See
the Figure 2. See also the Figure bellow.
Examples in 492 = 2401 dimensional space:

(Evolutionary Comuptation) 15

Chromosome:

(x y1 1), (x y2 2), (x y3 3), (x yN N),.........

Recombination with Uniform Crossover:

(x y1 1), (x y2 2), (x y3 3), (x yN N),.........

(x y1 1), (x y2 2), (x y3 3), (x yN N),.........

Figure 6: A chromosome representation and uniform crossover

-20

-10

0

10

20

30

40

-40 -20 0 20 40 60

A
rb

it
ra

ry
 u

n
it

Arbitrary unit

N = 121

A
rb

it
ra

ry
 u

n
it

Arbitrary unit

A
rb

it
ra

ry
 u

n
it

Arbitrary unit

A
rb

it
ra

ry
 u

n
it

Arbitrary unit

p = 1

A
rb

it
ra

ry
 u

n
it

Arbitrary unit

p = 90

A
rb

it
ra

ry
 U

n
it

Arbitrary Unit

Figure 7: Six Examples of Mapping from 2401-dimensional space to the 2-dimensional
space. Further explanations are shown in the text.

(Evolutionary Comuptation) 16

10 Multi Modal Genetic Algorithms

– When we have multipul meaningful solution?

10.1 Target Functions

Assuming our goal is maximization, that is, we want to know when y takes the maximum
value and for which x, we try two test functions.

y = sin6(5πx) (6)

and

y = −2((x− 0.2)/0.8)2 sin6(5πx) (7)

Now take a look what do these two function look like.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

0 0.2 0.4 0.6 0.8 1

Figure 8: A multi-peak 2-D function and its variation

We have two such algorithms for the current purpose of finding multiple solutions at
a run.

10.2 Fitness Sharing

Fitness of each individual is derated by an amount related to the number of similar
individuals in the population. That is, shared fitness Fs(i) of the individual i is

Fs(i) =
F (i)

µ∑
j=1

s(dij)

(Evolutionary Comuptation) 17

where F (i) is fitness of individual i; dij is distance between individual i and j; Typically
dij is Hamming distance if in genotypic space Euclidean distance if in phenotypic space
and s(·) is called sharing function and defined as:

s(dij) =

{
1− (dij/σshare)

α if dij < σshare
0 otherwise

where σshare is interpreted as size of niche, and α determines the shape of the function.
The denominator is called niche count. You see shape dependency of s(dij) on α in
Figure 11.1.

0

σ share

α = 1

α = 1/2
α = 1/10

d ij

d ijs ()

1

Figure 9: A shape dependency of s(dij) on α.

To be short (not so short though): Similar individual should share fitness. The number
of individuals that can stay around any one of peaks (niche) is limited.
The number of individuals stay near any peak will theoretically be proportional to the
hight of the peak

10.2.1 Results you should show.

(1) You create a table where (i) chromosome, (ii) its x value, (iii) its y value, (iv) original
fitness f , and (iv) shared fitness F . Give me three such table at the first generation,
intermediate generation, and final generation. See the table below. (2) Also give me a
graph of shared fitness vs. generation curve.

(Evolutionary Comuptation) 18

No. chromosome f Fx y

#01 (0 1 1 0 1 0 ... 1) 0.34 0.62 0.62 0.48

#40 (1 0 1 0 0 1 ... 0) 0.86 0.13 0.13 0.23

............

............

Figure 10: A table of chromosome, its x-value, y-value, original fitness f and shared
fitness F .

(Evolutionary Comuptation) 19

10.3 Deterministic Crowding

If the parents will be replaced or not with their childeren will be determined under a
criteria of the distance between parents and children.

Algorithm Assuming crossover, mutation and fitness function are already defiened

1. Choose two parents, p1 and p2, at random, with no parent being chosen more than
once.

2. Produce two children, c′1 and c′2.

3. Mutate the children yielding c1 and c2, with a crossover.

4. Replace parent with child as follows:

- IF d(p1, c1) + d(p2, c2) > d(p1, c2) + d(p2, c1)

∗ IF f(c1) > f(p1) THEN replace p1 with c1

∗ IF f(c2) > f(p2) THEN replace p2 with c2

- ELSE

∗ IF f(c2) > f(p1) THEN replace p1 with c2

∗ IF f(c1) > f(p2) THEN replace p2 with c1

where d(ζ1, ζ2) is the Hamming distance between two points (ζ1, ζ2) in pattern configura-
tion space. The process of producing child is repeated until all the population have taken
part in the process. Then the cycle of reconstructing a new population and restarting the
search is repeated until all the global optima are found or a set maximum number of gen-
eration has been reached.

Hopefully the following two figures would help you understand why.

p
1

p
2

c
1

c
2

1
p

1
p

2

c
2

c
1

1

Figure 11: Two cases of parents-children’s distance relation.

10.3.1 Results you should show.

Hopefully you apply two algorithms to each of two test functions. Besides fitness-
generation graph, as usual, you try visualize how your individual change their location as
generation goes.

(Evolutionary Comuptation) 20

11 Multi Objective Genetic Algorithm (MOGA)

So far we have learned how to get the possible solution(s) which fulfills one objective
function for the problem, that is, the goal is maximize the fitness function. In real world
problem, however, we have usually multiple objectives or criteria to be fulfilled simulta-
neously.

Those objectives sometimes conflict with each other. Like “time” and “money”: The
more we want to earn money, the less time to spent the money; or “reliability” of the
product and “cost” to produce it in a manufactural factory. Or, suppose an Opera Com-
pany trys to employ one Soprano singer. The criteria is voice, beauty-or-not), slim-or-not,
language-capability (Italian, German, etc). However God tend not to give us two talents
at a time, alas.

Then, first of all, when we have multiple objective function, we must define an important
concept of parate optimal or equvalently non-dominated solution.

Definition (Parate Optimal or Non-dominated Solution) A candidate solution is
called a non-dominated iff there is no ohter better solution w.r.t. all the objectives.

To be more specific, assume we have n objective functions;

f1(x), f2(x), f3(x), · · · fn(x)

where x is a candidate solution. Now if a new candidate solution y improves all the
objetives for x, i.e.,

fi(y) > fi(x) for ∀i

we say

“y dominate x.”

When no such y exists, we say

“x is non-dominated” or “Parete Optimum.”

A toy example: We now assume the two objective functions as follows.{
f1(x− 2) = x2

f2(x− 4) = (x− 2)2

· x=2 is optimum w.r.t. f1 but not so good w.r.t. f2.

(Evolutionary Comuptation) 21

0

5

10

15

20

0 1 2 3 4 5 6

f (x) = (x-2)
2

1
f (x) = (x-4)

2
2

choromosomes=>

Figure 12: Two fitness functions.

· x=4 is optimum w.r.t. f2 but not so good w.r.t. f1.

· Any other point in between is a compromise or trade-off and is a Pareto-optimum.

· But the solution x=5, e.g., is not a Pareto-optimum since this point is not better
than the solution x = 3 w.r.t. either objective.

· If we plot in the f1-f2 space, an increase in f1 in some reagion means a decrease in
f2, or vice versa which implys that the solutions in the region are Parete optimum,
while in other region an increase in f1 make f2 increas (decrease). See Figure ??.
This f1-f2 space is called a Trade-off Space.

We now take a look at a typical implemetation of MOGA.

Algorithm (A Multi Objective GA)

1. Initialize the population.

2. Select individuals uniformly from population.

3. Perform crossover and mutation to create a child.

4. Calculate the rank of the new child.

5. Find the individual in the entire population that is most similar to the child. Replace
that individual with the new child if the child’s ranking is better, or if the child
dominates it. 1

1Step 5 implies that the new child is only inserted into the population if it dominates the most similar
individual, or if it has a lower ranking, i.e. a lower degree of dominance.
The restricted replacement strategy also constitutes an extreme form of elitism, as the only way of

replacing a non-dominated individual is to create a child that dominates it.
The similarity of two individuals is measured using a distance function.

(Evolutionary Comuptation) 22

6. Update the ranking of the population if the child has been inserted.

7. Perform steps 2-6 according to the population size.

8. If the stop criterion is not met go to step 2 and start a new generation.

Excersize 6 (Parate Optimal Solutions)
Try the algorithm above with two objective functions y = (x− 2)2 and y = (x− 4)2. Then
show the possibly parate optimum solutions you found.

11.1 Results you should show.

(1) You create a table where (i) chromosome, (ii) its x value, (iii) its y value, (iii) how
many other points dominate this point (rank). Give me three such table at the first
generation, intermediate generation, and final generation. See the table below. (2) Also
give me a graph of rank-generation curve.

No. chromosome y rankx y

#01 (0 1 1 0 1 0 ... 1) 1.32 2.62 4.58 13

#40 (1 0 1 0 0 1 ... 0) 7.86 4.13 9.13 5

............

............

1 2

Figure 13: A table of chromosome, its x-value, y-value, f1, f2, and rank.

12 Once again Multi Modal Genetic Algorithms with

Lucky Dog

Assume our gridword is square from (0,0)-(1000,1000). Now each of four tasty hams are
put at (100,100), (900,100), (100,900) and (900,900), respectively. A population of 40 dogs
explore the gridworld seeking a ham, starting at the center of the gridworld (500,500).
Dogs are allowded only 500 steps.

Starting with random chromosome whose genes are 1, 2, 3, or 4 corresponding to one step
north, south, east, or west. Fitness is Manhattan-distance of the final location of the path
and nearest ham.

(Evolutionary Comuptation) 23

12.1 Try Fitness Sharing Algorithm.

12.2 Try Deterministic Crowding Algorithm.

13 Once again Sammon Mapping with Iris flower

Now let’s try to visualize 4-dimensional data by reducing the dimension into 2. Now we
have 4 different groups of 4-D points. Each group includes 40 points. Give the points a
different color, say, red, blue and green.

Then our mission is to map these 120 points in 4-D space to 2-D space by Sammon
Mapping.

Iris Flower Data

Setosa Versicolor Virginica
x1 x2 x3 x4 x1 x2 x3 x4 x1 x2 x3 x4

0.65 0.80 0.20 0.08 0.89 0.73 0.68 0.56 0.80 0.75 0.87 1.00
0.62 0.68 0.20 0.08 0.81 0.73 0.65 0.60 0.73 0.61 0.74 0.76
0.59 0.73 0.19 0.08 0.87 0.70 0.71 0.60 0.90 0.68 0.86 0.84
0.58 0.70 0.22 0.08 0.70 0.52 0.58 0.52 0.80 0.66 0.81 0.72
0.63 0.82 0.20 0.08 0.82 0.64 0.67 0.60 0.82 0.68 0.84 0.88
0.68 0.89 0.25 0.16 0.72 0.64 0.65 0.52 0.96 0.68 0.96 0.84
0.58 0.77 0.20 0.12 0.80 0.75 0.68 0.64 0.62 0.57 0.65 0.68
0.63 0.77 0.22 0.08 0.62 0.55 0.48 0.40 0.92 0.66 0.91 0.72
0.56 0.66 0.20 0.08 0.84 0.66 0.67 0.52 0.85 0.57 0.84 0.72
0.62 0.70 0.22 0.04 0.66 0.61 0.57 0.56 0.91 0.82 0.88 1.00
0.68 0.84 0.22 0.08 0.63 0.45 0.51 0.40 0.82 0.73 0.74 0.80
0.61 0.77 0.23 0.08 0.75 0.68 0.61 0.60 0.81 0.61 0.77 0.76
0.61 0.68 0.20 0.04 0.76 0.50 0.58 0.40 0.86 0.68 0.80 0.84
0.54 0.68 0.16 0.04 0.77 0.66 0.68 0.56 0.72 0.57 0.72 0.80
0.73 0.91 0.17 0.08 0.71 0.66 0.52 0.52 0.73 0.64 0.74 0.96

(to be cont’d to the next page)

(Evolutionary Comuptation) 24

(cont’d)

Setosa Versicolor Virginica
x1 x2 x3 x4 x1 x2 x3 x4 x1 x2 x3 x4

0.72 1.00 0.22 0.16 0.85 0.70 0.64 0.56 0.81 0.73 0.77 0.92
0.68 0.89 0.19 0.16 0.71 0.68 0.65 0.60 0.82 0.68 0.80 0.72
0.65 0.80 0.20 0.12 0.73 0.61 0.59 0.40 0.97 0.86 0.97 0.88
0.72 0.86 0.25 0.12 0.78 0.50 0.65 0.60 0.97 0.59 1.00 0.92
0.65 0.86 0.22 0.12 0.71 0.57 0.57 0.44 0.76 0.50 0.72 0.60
0.68 0.77 0.25 0.08 0.75 0.73 0.70 0.72 0.87 0.73 0.83 0.92
0.65 0.84 0.22 0.16 0.77 0.64 0.58 0.52 0.71 0.64 0.71 0.80
0.58 0.82 0.14 0.08 0.80 0.57 0.71 0.60 0.97 0.64 0.97 0.80
0.65 0.75 0.25 0.20 0.77 0.64 0.68 0.48 0.80 0.61 0.71 0.72
0.61 0.77 0.28 0.08 0.81 0.66 0.62 0.52 0.85 0.75 0.83 0.84
0.63 0.68 0.23 0.08 0.84 0.68 0.64 0.56 0.91 0.73 0.87 0.72
0.63 0.77 0.23 0.16 0.86 0.64 0.70 0.56 0.78 0.64 0.70 0.72
0.66 0.80 0.22 0.08 0.85 0.68 0.72 0.68 0.77 0.68 0.71 0.72
0.66 0.77 0.20 0.08 0.76 0.66 0.65 0.60 0.81 0.64 0.81 0.84
0.59 0.73 0.23 0.08 0.72 0.59 0.51 0.40 0.91 0.68 0.84 0.64
0.61 0.70 0.23 0.08 0.70 0.55 0.55 0.44 0.94 0.64 0.88 0.76
0.68 0.77 0.22 0.16 0.70 0.55 0.54 0.40 1.00 0.86 0.93 0.80
0.66 0.93 0.22 0.04 0.73 0.61 0.57 0.48 0.81 0.64 0.81 0.88
0.70 0.95 0.20 0.08 0.76 0.61 0.74 0.64 0.80 0.64 0.74 0.60
0.62 0.70 0.22 0.04 0.68 0.68 0.65 0.60 0.77 0.59 0.81 0.56
0.63 0.73 0.17 0.08 0.76 0.77 0.65 0.64 0.97 0.68 0.88 0.92
0.70 0.80 0.19 0.08 0.85 0.70 0.68 0.60 0.80 0.77 0.81 0.96
0.62 0.70 0.22 0.04 0.80 0.52 0.64 0.52 0.81 0.70 0.80 0.72
0.56 0.68 0.19 0.08 0.71 0.68 0.59 0.52 0.76 0.68 0.70 0.72
0.65 0.77 0.22 0.08 0.70 0.57 0.58 0.52 0.87 0.70 0.78 0.84

