A slide show of our lecture note Intelligent Data Processing

Brest State Technical University Akira Imada, professor

Last modified on 18 October 2020

In order for data processing to be Intelligent

- In order for data processing to be Intelligent
- Collect a set of rules from experts by human language
- Then translate it to numerical expression so that machine can understand
 - => let's use here Fuzzy logic

Membership Function

temperature of beer is 10° C, and $\mu_A = 0$ when temperature of beer is 15° C.

In Fuzzy logic the probability of "how likely A is true" is called membership value of A and expressed as μ_A . E.g., assuming A = "beer is cold," $\mu_A = 1$ when temperature of beer is 5°C, while $\mu_A = 0.5$ when

AND and OR

- Membership of A AND B and A OR B are given, respectively, as
 - $\mu_{A\cap B}(x) = \min\{\mu_A(x), \mu_B(x)\}$ and
 - $\mu_{A\cup B}(x) = \max\{\mu_A(x), \mu_B(x)\}$

IF-THEN

Membership of IF A THEN B has proposed by many but here we use this Larsen's proposal. $\mu_{A\to B}(x) = \mu_A(x) \times \mu_B(x)$

4. De-fuzzification

When A has some different possibility, we determine most possible value of A by calculating the center of gravity of these membership values.

Controll two metro cars

Let's create a virtual metro system with 2 cars on a loop line with 1000 pixels. Each car has a pair of 3 parameters of speed x, distance to the car in front y and strength of brake z.

Membership function of Speed, Distance and Brake assumed here.

An example of Membership value of one rule

Membership value of brake = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 when speed = 20 and distance = 650 under the rule IF speed = medium AND distance = long THEN brake = medium.

	Pulless.	1.21	Pu/Se as	Here an also	P.Jana	Ta di alle di bal
63	63		63		6.3	
-	-	-		-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
244.8	63.74	* 1/ . / 3	63.74		4.5	()
1000	0.5	0.00	0.5	-1	2	8
2428.8	1.1.1.1	4.41.44.4				
27.63	0.0	*5*553	63.65	-8	0.0	13.2103
20	2.2	222	2.2	20		0.25
Lef 4.3	40.20		L. L.	1	0	
2463	63.7+	* \$17 . 6 \$	63.1.	24		()
2463	63.20	4.32.14.3	63.20	24	6.3	
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
40	0	1000	0		0	

From the work by Korol Andrey (2015 Fall)

An example of Membership value of one rule

	Purious.	1 3	Port and	H	Pulless	To draff.A
			63		63	
-	-	-		-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
2443	63.7		63.14		4.9	
142.4.4	9.5		0.5	-1	0	9
	43.7					
21.03	0.0		0.6	-4	0.6	0.20
14 C.	0.5		0.0	L.		L. L.
2463	n.*		n.e.	-	n.n	C1. 24 PM
Laf C.A	0,1	,	0,5	-	0	0
2463	63.1		63.64	24		
2-12.8	6.8.2		63.20	2.4	6.3	
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-4.03		1000	0		0	

Membership value of brake = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 when speed = 20 and distance = 650 under the rule IF speed = medium AND distance = long THEN brake = medium.

From the work by Korol Andrey (2015 Fall)

Membership value of two rules Error included below. Later will be corrected. IF x = slow AND y = long THEN z = weak

Assume now x = 7, y = 500, z = 4

Then the membership value of this rule is + (0.72 + 0.35) x 0.31 = 0.3317

Membership value of 3 rules for a pair of speed & distance

Speed	Dislance	Brake	Rule	1: IF s=med	ium AND y=small T	HEN z=strong	Rule 2: I	F x=mediu	n AND y=medium T	HEN z=medium	Rule	3: IF x=med	dium AND y=large 1	HEN z=week	Viax of
			mSp1	mDs1	mBr1	mintri SpimDs("mBr	mSp2	mDs2	mBr2	nin(māp, mūs/*mē)	mSp3	mDs3	mBr3	nininis, nDs/mBr	
		0	0,75	0	0	0	0,75	0.25	0	0	0,75	0,75	0	0	(
		1	0,75	1	0	0	0.75	0.25	0	0	0,75	0,75	0	0	0
		2	0,75	0	0	0	0,75	0.25	0	0	0,75	0,75	0,25	0.1875	0,18
		3	0,75	0	0	0	0,75	0.25	0	0	0,75	0,75	1	0.75	0.7
1000		- 4	0,75	0	0	0	0,75	0.25	0,75	0,1875	0,75	0,75	0,25	0,1875	0,18
11,00	550,00	5	0,75	0	0,3	0	0,75	0.25	0,75	0,1875	0,75	0,75	0	0	0,18
		6	0,75	0	1	0	0,75	0.25	0	0	0,75	0,75	0	0	0
		7	0,75	0	0,3	0	0,75	0.25	0	0	0,75	0,75	0	0	(
		8	0,75	0	0	0	0,75	0.25	0	0	0,75	0,75	0	0	0
		9	0,75	0	0	0	0.75	0.25	0	0	0,75	0,75	0	0	1
		10	0.75	0	0	0	0.75	0.25	0	0	0,75	0.75	0	0	0

From the work by Yulia Bogutskaya (2016 Fall)

Defuzzified value of break for a pair of a speed and a distance

			Speed is very slow / Br	AND Distance is very shake is strong	NORT THEN	Speed is very slow AND	Distance is short THE	H Brake Is	Speed is medium AND	Distance is short There strong	EN Brake is
Speed	Distance	Brake	µ1 Speed	µ1 Distance	u1 Brak	µ2 Speed	µ2 Distance	u3 Brake	µ3 Speed	µ3 Distance	µS Brake
0	150	0	1	0;4	0		0.6	0	0	0.6	0
0	150	1	1	0.4	0	1	0.6	0	0	0.6	0
0	150	2		0.4	0	1	0.6	0	0	0.6	0
0	150	3	1	0.4	0		0.6	Ŭ.	0	0.6	0
0	150	4	(1999)	0.4	0		0.6	0	0	0.6	0
0	150	5	1	0.4	0		0.6	0	0	0.6	0
0	150	6	1	0.4	0.5	1	0.6	0.6	0	0.6	0
0	150	7	1	0.4	1	1	0.6	1	0	0.6	0
0	150	8	1	0.4	0.5		0.6	0.6	0	0.6	0.5
0	150	9	1	0.4	0	1	0.6	0	0	0.6	1

Center of grevity (Brake = 7)

Membership value of 3 rules for 3 pairs of speed & distance

Sec. 1	Distance	Denim	Rule 1	-	Numeral Cold manual	There is an	Rule 7	P semato	an ANIO yearsonthin	a Thiffi comation	Photo 7	· #	tion ANS yelege	THEN consult	Max of rules	Galano
	Conterior		mBal	- milled	in the l	was with relationship	mAn7	1 -0.2	8-0	and and a relative	mpph	mPa3	mBell	International Contraction		10000
		40	31,741	4			0,79	10, M	-	CONTRACTOR & DOCIDERATION	- 21 T P1	0,6			CONTRACTOR OF THE OWNER.	
			41.744			0	18,758	10,81	-	Concernence & Concernence	81,781	11,41			Contract of Contra	
		-	0.76			U	9.79	9.6		1 m m	8.76	0,6	0.25	0.125	0.121	
		2	0.75	0			0.75	9.5		Q	0.76	0.5	A contract of the second se	Design of the second second	0.5	
			0.78	0	0	0	0.75	0.5	0.78	0.3*8	0.78	0.8	0.25	0.125	0.375	
\$1,00	500.00		0.78	8	0.5	0	0.75	0.8	0.78	0.375	0.75	0.5	0	0	0,375	3.72727
			0.78		1	0	13,778	0,8			0.76	0,6	1	8	A	
			23,745	-	0.8	Contraction of the second second	18,275	(0,6)	-		0.76	11,41	18	B	-	
			BL/B			0	0,750	4.6		and the second se	. 81.75	8,6				
			0.75			Q	0.70	9.6			9.75	0,0			9	
			0.75			and some state of the second se	9.75	0.5		and the second se	9.75	9.5	9		0	_
		0	0.75	8	0		0.75	0.25		CONTRACTOR OF TAXABLE	0.75	0.78	0	Concerning Officer and		
			0.76		0	0	0,78	0,26			0.78	0,78	0	0		
		- P	0,76		18	0	15,775	0,24			0.76	1,76	19, 194	0.1878	0.1876	
		N N	81,745	- 4	18	Enclose Enclosed	10,210	(0,194)		and the second se	0.7%	48, 176,		6.76	8,78	
			0.76		u u	0	0.70	0.36	9.76	0.1870	9.75	9.79	9.95	0.10.70	CONTRACTOR OF A DESCRIPTION OF A DESCRIP	
11.00	500.0D		0.75		0.0	0	0.75	0.25	0.75	0.507.0	9.79	9.78	9		THE R. LEWIS CO., Name	3.20071
			0.75	0		0	0.75	0.25		0	0.75	0.75	0		States and states	
			0.75	0	0.5	0	0.75	0.25		0	0.75	0.75	0	0		
			0,78			0	13,778	0,28			0.78	0,78		n	100 March 100 Ma	
			21,74h	- 0		0	13,775	(0,249)			0.791	10,776		Concernent Processing		
		10	B. 76			0	10,710	(0, 1Hz		0	8.75	34,734		U.S. State	States of States in States	
			0.70			0	0.70	0			9.76	-	0		and the second second	
			0.75	0	9	Normal States and State	0.75	0	· · · · ·	0	0.75		0			
		2	0.78	0	0	0	0.75	0		0	0.75		0.25	0,1075	0.4875	
			0.75		0	0	0,75	0		0	0.78			0.78	0.75	
			0,76			0	13,778	n	0,78		0.78		11,7%	0,1878	0.1878	1.00
11,000	10000.000	41	B.76	-0	0,8	Ð	13,745	43	0.76	0	0.7%		11	Inclusion II formation	States a second	
		- 40	B.rb.		1	0	U. Ala	0	9	6	10.1%			U	A CONTRACTOR OF A CONTRACTOR A C	10000
		1	9.75	9	0.2	0	0.75	0		Concerning Processing	9.75		9		Contractor of Streements	
			0.75	0		Q	0.75	0	0	Contraction (Quantum sector)	0.75		0	0	Statement & Statement	
			0.75	0	0	0	0.75	0	4	0	0.78		0	0	Contraction (Based on the	
		4.8	0.78		0	0	0,78	0		0	0.74		0	0	1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A	1.0

From the work by Yulia Bogutskaya (2016 Fall)

Membership function of 25 rules

Too small to be visible but all combination of speed, distance and brake.

	A DECEMBER OF LOSS			- Support and a support of the suppo

From the work by Lishko Aleksandr (2016 Fall)

6. 3-D bar-graph of speed-distance-brake with 25 rules

From the work by Bokhanov Evgenii (2015 Fall)

3-D surface of speed-distance-brake with limited domain

Distance	Speed	Drake	Mass	Ceriter
-100	12	0	0	
-100	12	4	0	6.0
400	4 18	24	0	14.1
400	12	3	0.25	6.
400	12	4	0.5	
400	12		0,25	
100	12	G	0,333333	
400	1.2	7	0,166667	
400	12	8	a	
400	112		0	
400	12	10	0	
400	24	0	0	
-100	2.4	- 1	0	0.0
-100	P-4	2	0	22
400	24	. R	0	
400	52.4	-4	0	0.4
400	24	5	0.3333333	0.5
400	24	6	0.666667	¥.4
-100	24	7	0,333333	*.
-100	SP-18	8	0,333333	
400	24		O.ARARAR	
400	244	10	0.333333	
400	36	0	0	
400	26	1	0	
-100	36	2	0	Q.1
-100	- 36	·. 3	0	
400	36	-4	0	
400	36	5	0.0555555	9.0
400	36	6	0.111111	
400	36	7	0.444444	
-100	36	0	0,000002	
400	.36	8	0,000000	
400	36	10	0.888880	1

From the work by Bokhanov Evgenii (2015 Fall)

An example of how to draw for a fixed speed and three diferent value of distances

3-D surface of speed-distance-brake with limited domain (continued)

Distance	speed		Final Bra
100		12	
100		52-1	
100		36	
200		1.2	
200		22-4	
200		00	
300		1.54	
300		24	
300		36	
400		1 😫	
400		24	
400		36	
500		12	
±00		22.4	
600		36	
666		1.2	
600		24	
600		20	
200		1.24	
200		24	
700		-10	
800		122	
000		24	
800		36	
000		-1 52	
200		22.4	
000		36	

From the work by Bokhanov Evgenii (2015 Fall)

A 3-D surface of speed-distance-brake over whole domain

\$5 points in 20 condicate

From the work by Yulia Bogutskaya (2016 Fall)

Another 3-D surface of speed-distance-brake over whole domain

From the work by Kolesnikov Dmitry (2016 Fall)

Rules to classify as an example

 R_3 : IF X_1 = large AND X_2 = small THEN C

R1: IF X1 - medium AND X2 - small THEN A R2: IF X_1 = small AND X_2 = medium THEN B

Memership function for the size of two parts

 $\mu(x) = \exp\{$

$$\{\frac{(x - (avg)^2)}{(std)^2}\}$$

How to estimate avg and std from dataset How we specify avg and std for each of membership function from dataset given?

Algorithm 1

- 1. Select maximum data + minimum data + other randomly chose 5N 2 data. 2. Sort these 5N data from small to large in each attribute.
- 3. Devide the data in each attribute into 5 groups, that is, very small, small, medium, large, and very large.
- 4. Calculate average and studard deviation in eact devision.

Question: Which family is this new fish?

Takagi Sugeno Formula R_k : If x_1 is A_1^k , and x_2 is A_2^k and \cdots and x_N is A_N^k then y is g^k .

Takagi-Sugeno rules: Estimation of a single input

 $M_k(\mathbf{x}) =$

Estimation of y for an input $\mathbf{x} = (x_1, x_2, \cdots, x_N)$

$$(M_k(\mathbf{x}) \cdot g_k)$$

$$\prod_{i=1}^{N} \mu_{ik}(x_i)$$

where μ_{ik} is *i*-th attribute of *k*-th rule

A rule set to classify R_k : IF $x_1 = A_1^k$ AND $x_2 = A_2^k$ AND $\cdots x_N = A_N^k$ THEN $y = g^k$ E.g. R_1 : IF x_1 = medium AND x_2 = small THEN y = 1 R_2 : IF x_1 = small AND x_2 = medium THEN y = 2 R_3 : IF x_1 = large AND x_2 = small THEN y = (Membership functions for x_1 and x_2 μ (x) = exp { - (x- (avg)²) / (std)² }

Takagi-Sugeno rules Estimation of y for $x = (x_1, x_2, \dots, x_N)$ $Y_{j} = \{ \Sigma_{k=1}^{H} (M_{k}(x) \cdot g_{k}) \} / \{ \Sigma_{k=1}^{H} (M_{k}(x)) \}$ where $M_{k}(x) = \prod_{j=1}^{n} \mu_{ik}(x_{j})$ where μ_{ik} is membership of i-th attribute A_i^k of the k-th rule

Three rules to classify

y =

A benchmark – Iris database

- Iris flower dataset (taken from University of California Urvine Machine Learning Repository) consists of three species of iris flower
 - setosa, versicolor and virginica.
 - Each sample represents four attributes of the iris flower sepal-length, sepal-width, petal-length, and petal-width.

Iris Flower Database to design

	Set	osa			Versi	color			Virg	inica	
x_1	x_2	x_3	x_4	x_1	x_2	x_3	x_4	x_1	x_2	x_3	x_4
0.56	0.66	0.20	0.08	0.84	0.66	0.67	0.52	0.85	0.57	0.84	0.72
0.62	0.70	0.22	0.04	0.66	0.61	0.57	0.56	0.91	0.82	0.88	1.00
0.68	0.84	0.22	0.08	0.63	0.45	0.51	0.40	0.82	0.73	0.74	0.80
0.61	0.77	0.23	0.08	0.75	0.68	0.61	0.60	0.81	0.61	0.77	0.76
0.61	0.68	0.20	0.04	0.76	0.50	0.58	0.40	0.86	0.68	0.80	0.84
0.54	0.68	0.16	0.04	0.77	0.66	0.68	0.56	0.72	0.57	0.72	0.80
0.73	0.91	0.17	0.08	0.71	0.66	0.52	0.52	0.73	0.64	0.74	0.96
0.72	1.00	0.22	0.16	0.85	0.70	0.64	0.56	0.81	0.73	0.77	0.92
0.68	0.89	0.19	0.16	0.71	0.68	0.65	0.60	0.82	0.68	0.80	0.72
0.65	0.80	0.20	0.12	0.73	0.61	0.59	0.40	0.97	0.86	0.97	0.88
0.72	0.86	0.25	0.12	0.78	0.50	0.65	0.60	0.97	0.59	1.00	0.92
0.65	0.86	0.22	0.12	0.71	0.57	0.57	0.44	0.76	0.50	0.72	0.60
0.68	0.77	0.25	0.08	0.75	0.73	0.70	0.72	0.87	0.73	0.83	0.92
0.65	0.84	0.22	0.16	0.77	0.64	0.58	0.52	0.71	0.64	0.71	0.80
0.58	0.82	0.14	0.08	0.80	0.57	0.71	0.60	0.97	0.64	0.97	0.80
0.65	0.75	0.25	0.20	0.77	0.64	0.68	0.48	0.80	0.61	0.71	0.72
0.61	0.77	0.28	0.08	0.81	0.66	0.62	0.52	0.85	0.75	0.83	0.84

Avg and std of each column

		80	1058			Versi	color		12	Virg	inica	
-	x1	×2	x3	x4	x1	x2	x3	×4	x1	×2	x3	x4
	0.56	0.66	0.2	0.08	0.84	0.66	0.67	0.52	0.85	0.57	0.84	0.72
	0.62	0.7	0.22	0.04	0.66	0.61	0.57	0.56	0.91	0.82	0.88	1
	0.68	0.84	0.22	0.08	0.63	0.45	0.51	0.4	0.82	0.73	0.74	0.8
	0.61	0.77	0.23	0.08	0.75	0.68	0.61	0.6	0.81	0.61	0.77	0.76
	0.61	0.68	0.2	0.04	0.76	0.5	0.58	0.4	0.86	0.68	0.8	0.84
	0.54	0.68	0.16	0.04	0.77	0.66	0.68	0.56	0.72	0.57	0.72	0.8
	0.73	0.91	0.17	0.08	0.71	0.66	0.52	0.52	0.73	0.64	0.74	0.96
	0.72	1	0.22	0.16	0.85	0.7	0.64	0.56	0.81	0.73	0.77	0.92
	0.68	0.89	0.19	0.16	0.71	0.68	0.65	0.6	0.82	0.68	0.8	0.72
	0.65	0.8	0.2	0.12	0.73	0.61	0.59	0.4	0.97	0.86	0.07	0.88
	0.72	0.86	0.25	0.12	0.78	0.5	0.65	0.6	0.97	0.50	1	0.00
	0.65	0.86	0.22	0.12	0.71	0.57	0.57	0.44	0.76	0.5	0.72	0.52
	0.68	0.77	0.25	0.08	0.75	0.73	07	0.72	0.87	0.73	0.83	0.02
	0.65	0.84	0.22	0.16	0.77	0.64	0.58	0.52	0.71	0.64	0.03	0.92
	0.58	0.82	0.14	0.08	0.8	0.57	0.71	0.6	0.07	0.64	0.07	0.0
	0.65	0.75	0.25	0.2	0.77	0.64	0.68	0.48	0.8	0.64	0.91	0.75
	0.61	0.77	0.28	0.08	0.81	0.66	0.62	0.52	0.85	0.01	0.92	0.12
Avg:	0.64	0.80	0.21	0.10	0.75	0.62	0.62	6.52	0.03	0.75	0.03	0.64
Deviation:	0.04	0.07	0.03	0.04	0.04	0.06	0.05	0.07	0.04	0.07	0.01	0.62

added by Evgene Borisiuk (on 05 February 2019)
Iris Flower Database to validate

	Setosa				Versicolor				Virginica			
x_1	x_2	x_3	x_4	x_1	x_2	x_3	x_4	x_1	x_2	x_3	x_4	
0.65	0.80	0.20	0.08	0.89	0.73	0.68	0.56	0.80	0.75	0.87	1.00	
0.62	0.68	0.20	0.08	0.81	0.73	0.65	0.60	0.73	0.61	0.74	0.76	
0.59	0.73	0.19	0.08	0.87	0.70	0.71	0.60	0.90	0.68	0.86	0.84	
0.58	0.70	0.22	0.08	0.70	0.52	0.58	0.52	0.80	0.66	0.81	0.72	
0.63	0.82	0.20	0.08	0.82	0.64	0.67	0.60	0.82	0.68	0.84	0.88	
0.68	0.89	0.25	0.16	0.72	0.64	0.65	0.52	0.96	0.68	0.96	0.84	
0.58	0.77	0.20	0.12	0.80	0.75	0.68	0.64	0.62	0.57	0.65	0.68	
0.63	0.77	0.22	0.08	0.62	0.55	0.48	0.40	0.92	0.66	0.91	0.72	

class	*1	×2	88	*4	×5	×6	×7	*8	н9	×10	*11	×12	×13
	14,23	1,71	2,43	15,6	127	2,8	3,06	0,28	2,29	5,64	1,04	3,92	1065
	13,2	3,78	2,14	11,2	100	2,65	2,76	0,26	3,28	4,38	1,05	3,4	1050
	13,16	2,36	2,67	18,6	101	2,8	3,24	0,3	2,81	5,65	1,03	3,17	1185
	34,37	3,95	2,5	10,8	113	3,85	3,49	0,24	2,18	7,8	0,86	3,45	1480
	13,24	2,59	2,87	21	118	2,8	2,69	0,39	1,82	4,32	1,04	2,93	735
-	34,2	1,76	2,45	15,2	112	3,27	3,39	0,34	1,97	6,75	1,05	2,85	1450
	14,39	1,87	2,45	14,6	96	2,5	2,52	0,3	1,98	5,25	1,02	3,58	1290
	14,06	2,15	2,61	17,6	121	2,6	2,51	0,31	1,25	5,05	1,06	3,58	1295
	34,83	3,64	2,17	14	97	2,8	2,98	0,29	1,98	5,2	1,08	2,85	1045
A.	13,86	1,35	2,27	16	98	2,98	3,15	0,22	1,85	7,22	1,01	3,55	1045
	12,37	0,94	1,36	10,6	88	1,98	0,57	0,28	0,42	1,95	1,05	1,82	520
	32,33	3,3	2,28	10	101	2,05	1,09	0,63	0,41	3,27	3,25	3,07	680
	12,64	3,30	2,02	10,8	100	2,02	1,41	0,53	0,62	5,75	0,98	1,59	450
	33,07	3,25	3,92	3.0	548	2,1	1,79	0,32	0,73	3,8	3,23	2,40	630
	32,37	3,33	2,10	3.9	87	3,5	3,3	0,19	3,87	4,45	3,22	2,87	420
-	12,17	1,45	2,53	19	104	1,89	1,75	0,45	1,03	2,95	1,45	2,23	355
	12,37	1,21	2,56	18,1	98	2,42	2,65	0,37	2,08	4,6	1,19	2,3	678
	13,13	1,01	1.7	15	78	2,98	3,18	0,26	2,28	5,3	1,12	3,18	502
	12,37	1,17	1,92	19,6	78	2,11	2	0,27	1,04	4,68	1,12	3,48	510
	13,34	0,94	2,36	17	110	2,53	1,3	0,55	0,42	3,17	1,02	1,93	750
	12,86	1,35	2,82		122	1,51	1,25	0,21	0.94	4,1	0,76	1,29	630
	12,88	2,99	2,4	20	104	1,3	1,22	0,24	0,83	5,4	0,74	1,42	530
	12,81	2,31	2,4	24	98	1,15	1,09	0,27	0,83	5,7	0.66	1,36	560
	12,7	3,55	2,36	21,5	106	1,7	1,2	0,17	0,84	5	0,78	1,29	600
	12,51	1,24	2,25	17,5	85	2	0,58	0,6	1,25	5,45	0,75	1.51	650
-	12,6	2,46	2,2	18,5	94	1,62	0,66	0,63	0,94	7,1	0,73	1,58	695
	12,25	4,72	2,54	21	89	1,38	0,47	0,53	0,8	3,85	0,75	1,27	720
	12,53	5,51	2,64	25	96	1,79	0,6	0,63	1,1	5	0,82	1,69	515
	13,49	3,59	2,19	19,5	88	3,62	0,48	0,58	0,88	5,7	0,81	1,82	580
	12,84	2,96	2,61	24	101	2,32	0,6	0,53	0,81	4,92	0,89	2,15	5/90

From the work by Savchuk Artem (2016 Fall)

Wine dataset to design rules

Two sets of membership function from 13 attributes (1)

Membership functions for attribute x1(Alcohol):

	very small	small	medium	lar
average	12,43	12,98	13,435	14,0
std	0,024	0,024	0,0263	0,0

From the work by Savchuk Artem (2016 Fall)

	very small	small	medium	larg
average	468,67	661,5	0	107
std	3670,89	3003,91	0	291

From the work by Savchuk Artem (2016 Fall)

Rules to classify a wine dataset

#	If X1	AND XZ	AND X3	AND X4	AND X5	AND X6	AND X7	AND X8	AND X9	AND X10	AND X11	AND X12	AND X1
1	large	small	large	very small	small	large	very large	small	large	very large	large	medium	very large
2	very large	small	large	medium	medium	medium	large	very small	large	medium	large	large	large
3	very small	very small	medium	very large	very small	small	medium	small	large	medium	large	very small	small
4	medium	very small	small	medium	medium	medium	small	large	very small	small	large	small	small
5	small	medium	large	large	small	small	very small	medium	small	very large	small	medium	very smal
6	very small	small	very large	very large	large	very small	very small	large	very small	medium	small	small	small
7	very large	large	small	small	very large	very large	small	large	very large	large	medium	very large	medium

From the work by Savchuk Artem (2016 Fall)

Wine data for validation

class	x1	x2	x3	x4	x5	x6	x7	x8	x9	x10	x11	x12	x13
	14,1	2,16	2,3	18	105	2,95	3,32	0,22	2,38	5,75	1,25	3,17	
	14,12	1,48	2,32	16,8	95	2,2	2,43	0,26	1,57	5	1,17	2,82	
1	13,75	1,73	2,41	16	89	2,6	2,76	0,29	1,81	5,6	1,15	2,9	1
	14,75	1,73	2,39	11,4	91	3,1	3,69	0,43	2,81	5,4	1,25	2,73	
	14,38	1,87	2,38	12	102	3,3	3,64	0,29	2,96	7,5	1,2	3	(
	12,21	1,19	1,75	16,8	151	1,85	1,28	0,14	2,5	2,85	1,28	3,07	
	12,29	1,61	2,21	20,4	103	1,1	1,02	0,37	1,46	3,05	0,906	1,82	
2	13,86	1,51	2,67	25	86	2,95	2,86	0,21	1,87	3,38	1,36	3,16	
	13,49	1,66	2,24	24	87	1,88	1,84	0,27	1,03	3,74	0,98	2,78	
	12,99	1,67	2,6	30	139	3,3	2,89	0,21	1,96	3,35	1,31	3,5	
	12,93	2,81	2,7	21	96	1,54	0,5	0,53	0,75	4,6	0,77	2,31	
	13,36	2,56	2,35	20	89	1,4	0,5	0,37	0,64	5,6	0,7	2,47	
3	13,52	3,17	2,72	23,5	97	1,55	0,52	0,5	0,55	4,35	0,89	2,06	
	13,62	4,95	2,35	20	92	2	0,8	0,47	1,02	4,4	0,91	2,05	
	12,25	3,88	2,2	18,5	112	1,38	0,78	0,29	1,14	8,21	0,65	2	

From the work by Savchuk Artem (2016 Fall)

Result of validate rules

No.	Family A	Family B	Family C	Evaluation
#1	A	B	С	Good
#12	A	С	С	Not Good
#3	A	A	С	Not Good
##-1	A	B	С	Good
#5	A	Other	С	Not Good
Success rate	100%	40,00%	100%	40%

by Savchuk Artem (2016 Fall)

From the work

Practice 3

To design dessification rules

- 1. Select one dataset from those given
- 22. Create table with raw data from upper hall of the dataset

by corting data in each column from the emplest to the largest 3. Each column is devided into 5 categories: VS, S, M, L and VL by (max-min)/5 4. Evolution the contrast monitorial provides $j \in 1, 2, ..., N$ and j = 1, 2, 4, 4, 4, 5whene he is the number of attributes.

LAFIER

i = 1, M. M. A. A. DOMADO MA, A. M. L. M., DESPECTIVELY

- D. Translate the table in P. Into fuzzy variables VG, G, M. L, VI.
- C. Create P rules from upper half of the dataset

To validate the rules

- 7. Apply Takagl-Sugeno formula to lower half of the dataset
- M. Greate table with columns being 361, 362, ... 368 real class , calculated class
- O Calculate executi success rare.

work by Savchuk Artem (2016 Fall)

From the

III. Time Series Prediction

Forecasting values from their history

Assume y(t) is a valuable y at time t such as price of a stock during a day

/

 R_i : If y(t-1) is A_1^i and y(t-2) is A_2^i and \cdots and y(t-n+1) is A_n^i then y(t) is g^i .

An example of time-series forecasting

Create yo If y(t-1) = medium AND

Original time series	Sorte and c	ed original ategorize	Human language of orginal
13725 13816 13739 13403 13443	14000 13943 13943 13943 13943	Very High avg = 13947 std - 34.3	medium high medium law law
13425 13305 13271 13658	13851 13851 13851 13816	High avg = 13842 std = 17.5	law very law very law law
13904 13469 13182 13463 13786 13943 13851	13786 13786 13786 13739 13725 13717 13717	Medium avg = 13750 std = 33.7	very high law very law law medium very high high
13786 13717 13943 13851 13362 13212 13358	13658 13474 13469 13463 13443 13425 13403	Law avg = 13476 std = 84.0	medium medium very high high very law very law very law
13265 13474 13786 13717 13943 13851 14000	13362 13358 13305 13271 13265 13212 13182	Very Law avg = 13279 std = 68	very law law medium medium very high high very high

Create your set own set of rules such as

If y(t-1) = medium AND y(t-2) = law AND y(t-3) = medium they y(t) = 2

Then estimate y(t+1), y(t+2), ... By using Takagi-Sugeno Formula

$$y_j = \frac{\sum_{k=1}^{H} (M_k(\mathbf{x}) \cdot g_k)}{\sum_{k=1}^{H} M_k(\mathbf{x})}$$

where
$$M_k(\mathbf{x}) = \prod_{i=1}^{N} \mu_{ik}(x_i)$$

where μ_{ik} is *i*-th attribute of *k*-th rule

Create your own set of rules!

such as

 $\begin{array}{l} \mathsf{IF}\ \mathsf{y}(\mathsf{t}\text{-1}) = \mathsf{low}\ \mathsf{AND}\ \mathsf{y}(\mathsf{t}\text{-2}) = \mathsf{low}\ \mathsf{AND}\ \mathsf{y}(\mathsf{t}\text{-3}) = \mathsf{low}\ \mathsf{THEN}\ \mathsf{y}(\mathsf{t}) = 2\ (\mathsf{low})\\ \mathsf{OR}\\ \mathsf{IF}\ \mathsf{y}(\mathsf{t}\text{-1}) = \mathsf{low}\ \mathsf{AND}\ \mathsf{y}(\mathsf{t}\text{-2}) = \mathsf{medium}\ \mathsf{AND}\ \mathsf{y}(\mathsf{t}\text{-3}) = \mathsf{high}\ \mathsf{THEN}\ \mathsf{y}(\mathsf{t}) = 5\ (\mathsf{very}\ \mathsf{high})\\ \mathsf{OR}\\ \mathsf{OR}\end{array}$

.

y(t-1) = 13449, y(t-2) = 13352, y(t-3) = 13029, y(t-4) = 13227, y(t-5) = 13918 Try to predict y(t-2), y(t-1) and compare real vlaue Also predict y(t)

Forecasting a value at time t from some related items at time t

 R_i : If $x_1(t)$ is A_1^i and $x_2(t)$ is A_2^i and \cdots and $x_n(t)$ is A_n^i then y(t) is g^i .

E.G.

Forecasting BRY today from EUR, USD, RUB and JPY today

EUR	USD	RUB	JPY	BRY
	8		8	8
	8		2	8
			2	2
			2	20

Yet another forecasting

0			F	(t) (degree	of membersh	nip by vect	or representat	ion)	
year	enrolled	actual change	big decrease	decrease	no change	increase	big increase	too big increase	predicted change
1971	13055								
1972	13563	+508	0	0	0	0.5	1	0.5	
1973	13867	+304	0	0	0	1	0.5	0	
1974	14696	+829	0	0	0	0	0.5	1	
1975	15460	+764							
1976	15311	-149							
1977	15603	+292							
1978	15861	+258							10.
1979	16807	+946							
1980	16919	+112							
1981	16388	-531							2
1982	15433	-955							
1983	15497	+64							
1984	15145	-352							
1985	15163	+18							
1986	15984	+821							
1987	16859	+875							
1988	18150	+1291							
1989	18970	+820							
1990	19328	+358							
1991	19337	+9							
1992	18876	-461							

very small F(t) =0.5 0 [1

very small

	-	An exa	amples of	prediction	By Soloduh	a Pavel		
	big decrease	low decrease	not change	low increase	medium increase	big increase	Prediction	Original
1971								
1972								508
1973	ju i							304
1974								829
1975								764
1976								-149
1977	ji i							292
1978	0	0	0,5	0,5	0	0	250	258
1979	0	0	0	0,25	0	0	500	946
1980	0	0,25	1	0,25	0	0	0	112
1981	0	0,5	0,5	0	0	0	-250	-531
1982	0	0,25	0	0	0	0	-500	-955
1983	0	0,25	1	0,25	0	0	0	64
1984	0	0,5	0,5	0	0	0	-250	-352
1985	0	0,25	1	0,25	0	0	0	18
1986	0	0	0	0,25	0	0	500	821
1987	0	0	0	0,25	0	0	500	875
1988	0	0	0	0	0	0	0	1291
1989	0	0	0	0,25	0	0	500	820
1990	0	0	0,5	0,5	0	0	250	358
1991	0	0,25	1	0,25	0	0	0	9
1992	0	0,5	0,5	0	0	0	-250	-461

IV. Fuzzy Clustering

Another fuzzy arithmetic Fuzzy relation

Let's think of it as a *crisp* logic, that is, the value is 1 (yes) or 0 (no). Then membership function of this relation will be:

Then what about the relation $R: x \approx y$. Let's think of this example with fuzzy logic.

burg R: very far.

 $X \setminus Y$ Brest Londor Buenos A

* Example 1 ... $X = \{1, 2\}, Y = \{2, 3, 4\}, R : X < Y$

$X \setminus Y$	2	3	4
1	1	0	0
2	1	1	0
3	0	0	1

* Example 2 ... $X = \{1, 2\}, Y = \{2, 3, 4\}, R : X \approx Y$

$X \setminus Y$	2	3	4
1	2/3	1/3	0
2	1	2/3	1/3
3	2/3	1	2/3

* Example 3 ... X = {Brest, London, BuenosAires} Y=Tokyo, NewYork, Minsk, Johanes-

7	Tokio	New York	Minsk	Johanesburg
n				
ires				

 \mathbf{R}_1

()r

- $X = \{green, yellow, red\}, Y = \{unripe, semiripe, ripe\}.$
- A red apple may be ripe, a yellow apple is probably seme-ripe, and a green apple is most likely unripe.

unripe	semi-ripe	ripe
1	0.5	0
0.3	1	0.4
0	0.2	1

Yet another similar fuzzy relations

Y = {unripe, semi-ripe, ripe}, Z = {sour, sour-sweet, sweet} Let's call this relation R₂

	Y\Z	sour	sour-sweet	sweet
$\mathbf{R}_2 = \begin{bmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	unripe	0.8	0.5	0.1
	semi-ripe	0.1	0.7	0.5
	ripe	0.2	0.3	9

We combine these two relations R1 and R2 by the formula

 $\mu_R(x,z) \ge \max_{y \in X} \{\min\{\mu_R(x,y), \mu_R(y,z)\}\},$

	$X \setminus Y$	unripe	semi-ripe	ripe					
$R_1 =$	green yellow	1 0.3	0.5 1	0		$X \setminus Z$	sour	sour-sweet	sweet
	red	0	0.2	1	$R_3 =$	green	0.8	0.5	0.5
	$Y \setminus Z$	sour	sour-sweet	sweet	0	yellow	0.3	0.7	0.5
R ₂ =	unripe semi-ripe ripe	0.8 0.1 0.2	0.5 0.7 0.3	0.1 0.5 9		Ieu	0.2	0.0	0.0

- This relation could be expressed by our daily language like
 - "If tomato is red then it's most likely sweet, possibly sour-sweet, and unlikely sour."
 - "If tomato is yellow then probably it's sour-sweet, possibly sour, maybe sweet."
 - "If tomato is green then almost always sour, less likely sour-sweet, unlikely sweet."
- Or, we could say:
 - "Now tomato is more or less red, then what is taste like?"

Expression by our daily language

An exercise

A\B	d	е	f	B\C	g	h	i	j	
a	1	0.5	0	d	0.8	0.2	1	0.9	- ?
b	0.3	1	0.4	е	0.3	1	0.6	0.4	- •
с	0	0.2	1	f	1	0.2	0	0.4	

Clustering by similarity

Source matrix :

Arabic	0	1	2	3	4	5	6	7	8	ģ
Bengali	0	5	2	৩	8	¢	હ	٩	6	3
0	1	0,3	0,1	0,7	0,6	0,5	0,4	0,4	0,5	0,4
5	0,3	1	0,8	0,4	0,4	0,2	0,6	0,1	0,3	0,5
2	0,1	0,8	1	0,4	0,3	0,1	0,2	0,1	0,1	0,3
৩	0,7	0,4	0,4	1	0,5	0,4	0,8	0,1	0,2	0,6
8	0,6	0,4	0,3	0,5	1	0,6	0,3	0,8	0,5	0,3
C	0,5	0,2	0,1	0,4	0,6	1	0,3	0,1	0,2	0,6
હ	0,4	0,6	0,2	0,8	0,3	0,3	1	0,5	0,4	0,7
٩	0,4	0,1	0,1	0,1	0,8	0,1	0,5	1	0,5	0,1
Ъ	0,5	0,3	0,1	0,2	0,5	0,2	0,4	0,5	1	0,4
3	0,4	0,5	0,3	0,6	0,3	0,6	0,7	0,1	0,4	1

An example of a forign alphabet we usually don't know ... By Ilya Marchanka Original matrix $R^{(0)}$ of how resemble with each other

Clustering by Fuzzy Relation of Proximity

Algorithm 2 0. Initialize I and C

- 1. Calculate a max-min similarity-relation $R^{(0)} = [a_{ij}]$
- 2. Set $a_{ij} = 0$ for all $a_{ij} < \alpha$ and i = j
- at random

WHILE $a_{st} \neq 0$ DO put s and t into the same cluster $C = \{s, t\}$ ELSE 4. *ELSE all indices* \in *I into separated clusters and STOP*

4. Choose $u \in I - C$ such that

When a tie, select one such u at random.

5. Let I = I - C and GOTO 3.

3. Select s and t such that $a_{st} = \max\{a_{ij} | i < jANDi, j \in I\}$. When the tie, select one of these pairs

$$\sum_{i\in C}a_{iu}=\max_{j\in I-C}\{\sum_{i\in C}a_{ij}|a_{ij}\neq 0\}$$

WHILE such a u exists, put u into $C = \{s, t, u\}$ and REPEAT 4.

0. Initialize I = $\{1, 2, 3, ..., N\}$ and C = $\{\}$

(if some are equal, select one at random) Find maximum a_{ii} $a_{11}a_{12}a_{13}a_{14}a_{15}a_{16}a_{17}a_{18}a_{19}$ Look for $a_{21}a_{22}a_{23}a_{24}a_{25}a_{26}a_{27}a_{28}a_{29}a_{2$ Maximum a_{ii} was a_{st} $a_{31}a_{32}a_{33}a_{34}a_{35}a_{36}a_{37}a_{38}a_{39}$ $a_{41}a_{42}a_{43}a_{44}a_{45}a_{46}a_{47}a_{48}a_{49}$ Put s and t to C{ } $a_{51}a_{52}a_{53}a_{54}a_{55}a_{56}a_{57}a_{58}a_{59}$ Assume now e.g. a47 $a_{61}a_{62}a_{63}a_{64}a_{65}a_{66}a_{67}a_{68}a_{69}$ So $a_{71}a_{72}a_{73}a_{74}a_{75}a_{76}a_{77}a_{78}a_{79}a_{7$ $C = \{4, 7\}$ $a_{81}a_{82}a_{83}a_{84}a_{85}a_{86}a_{87}a_{88}a_{89}$ $a_{91}a_{92}a_{93}a_{94}a_{95}a_{96}a_{97}a_{98}a_{99}$ $I = \{1, 2, 3, 5, 6, 8, 9\}$

Then calculate $\max \{\sum_{i=1}^{2} (a_{is} + a_{it})\}$

 $a_{11}a_{12}a_{13}a_{14}a_{15}a_{16}a_{17}a_{18}a_{19}$ $a_{21}a_{22}a_{23}a_{24}a_{25}a_{26}a_{27}a_{28}a_{29}a_{2$ $a_{31}a_{32}a_{33}a_{34}a_{35}a_{36}a_{37}a_{38}a_{39}$ $a_{41}a_{42}a_{43}a_{44}a_{45}a_{46}a_{47}a_{48}a_{49}a_{4$ $a_{51}a_{52}a_{53}a_{54}a_{55}a_{56}a_{57}a_{58}a_{59}$ $a_{61}a_{62}a_{63}a_{64}a_{65}a_{66}a_{67}a_{68}a_{69}$ $a_{71}a_{72}a_{73}a_{74}a_{75}a_{76}a_{77}a_{78}a_{79}a_{79}a_{78}a_{79}a_{79}a_{78}a_{79}a_{79}a_{78}a_{79}a_{79}a_{78}a_{79}a_{79}a_{78}a_{79}a_{79}a_{78}a_{79}a_{79}a_{78}a_{79}a_{79}a_{78}a_{79}a_{79}a_{78}a_{79}a_{79}a_{78}a_{79}a_{79}a_{78}a_{79}a_{79}a_{78}a_{79}a_{79}a_{78}a_{79}a_{79}a_{78}a_{79}a_{79}a_{78}a_{79}a_{79}a_{78}a_{79}a_{7$ $a_{81}a_{82}a_{83}a_{84}a_{85}a_{86}a_{87}a_{88}a_{89}$ $a_{91}a_{92}a_{93}a_{94}a_{95}a_{96}a_{97}a_{98}a_{99}$

- I.e. max { $(a_{si} + a_{ti}), (a_{si} + a_{ti}), \dots, (a_{si} + a_{ti})$ If multiple such j then select one at random
 - Assume now e.g. $a_{94} + a_{97}$ is such maximum
 - Then put 9 into C
 - $C = \{4, 7, 9\}$
 - $I = \{1, 2, 3, 5, 6, 8\}$

Choose u from such that $\sum_{i \in C} a_{ii} \max_{j \in \{I-C\}} \{\sum_{i \in C} a_{ij} \mid a_{ij} \neq 0\}$

 $a_{11}a_{12}a_{13}a_{14}a_{15}a_{16}a_{17}a_{18}a_{19}a_{19}$ $a_{21}a_{22}a_{23}a_{24}a_{25}a_{26}a_{27}a_{28}a_{29}$ $a_{31}a_{32}a_{33}a_{34}a_{35}a_{36}a_{37}a_{38}a_{39}$ $a_{41}a_{42}a_{43}a_{44}a_{45}a_{46}a_{47}a_{48}a_{49}$ $a_{51}a_{52}a_{53}a_{54}a_{55}a_{56}a_{57}a_{58}a_{59}$ $a_{61}a_{62}a_{63}a_{64}a_{65}a_{66}a_{67}a_{68}a_{69}$ $a_{71}a_{72}a_{73}a_{74}a_{75}a_{76}a_{77}a_{78}a_{79}a_{7$ $a_{81}a_{82}a_{83}a_{84}a_{85}a_{86}a_{87}a_{88}a_{89}$ $a_{91}a_{92}a_{93}a_{94}a_{95}a_{96}a_{97}a_{98}a_{99}$

If multiple such u then select one at random

Assume now $a_{24} + a_{27} + a_{29}$ is such maximum Put 2 into C $C = \{2, 4, 7, 9\}$ $I = \{1, 3, 5, 6, 8\}$

Repeat this prosedure

 $a_{11}a_{12}a_{13}a_{14}a_{15}a_{16}a_{17}a_{18}a_{19}$ $a_{21}a_{22}a_{23}a_{24}a_{25}a_{26}a_{27}a_{28}a_{29}$ $a_{31}a_{32}a_{33}a_{34}a_{35}a_{36}a_{37}a_{38}a_{39}$ Assume now $a_{11} + a_{12} + a_{14} + a_{17} + a_{19}$ $a_{41}a_{42}a_{43}a_{44}a_{45}a_{46}a_{47}a_{48}a_{49}$ is such maximum $a_{51}a_{52}a_{53}a_{54}a_{55}a_{56}a_{57}a_{58}a_{59}$ Put 2 into C $a_{61}a_{62}a_{63}a_{64}a_{65}a_{66}a_{67}a_{68}a_{69}$ a₇₁a₇₂a₇₃a₇₄a₇₅a₇₆a₇₇a₇₈a₇₉ $C = \{1, 2, 4, 7, 9\}$ $a_{81}a_{82}a_{83}a_{84}a_{85}a_{86}a_{87}a_{88}a_{89}$ $a_{91}a_{92}a_{93}a_{94}a_{95}a_{96}a_{97}a_{98}a_{99}$ $I = \{3, 5, 6, 8\}$

Till **a_{ii}** included is/are 0 Or no such maximum

 $a_{11}a_{12}a_{13}a_{14}a_{15}a_{16}a_{17}a_{18}a_{19}$ $a_{21}a_{22}a_{23}a_{24}a_{25}a_{26}a_{27}a_{28}a_{29}a_{2$ $a_{31}a_{32}a_{33}a_{34}a_{35}a_{36}a_{37}a_{38}a_{39}$ $a_{41}a_{42}a_{43}a_{44}a_{45}a_{46}a_{47}a_{48}a_{49}$ $a_{51}a_{52}a_{53}a_{54}a_{55}a_{56}a_{57}a_{58}a_{59}$ $a_{61}a_{62}a_{63}a_{64}a_{65}a_{66}a_{67}a_{68}a_{69}$ a₇₁ a₇₂ a₇₃ a₇₄ a₇₅ a₇₆ a₇₇ a₇₈ a₇₉ $a_{81}a_{82}a_{83}a_{84}a_{85}a_{86}a_{87}a_{88}a_{89}$ $a_{91}a_{92}a_{93}a_{94}a_{95}a_{96}a_{97}a_{98}a_{99}$

 $a_{11} + a_{12} + a_{14} + a_{17} + a_{19}$ is such maximum like previous slide but incase $a_{11} = 0$ for example Stop And start again from the beginning searching for another cluster with $I = \{2, 4, 7, 9\}$ $C = \{ \}$

Example: Let's Start with the following $R^{(0)}$,

1	.7	.5	.8	.6	.6	.5	.9	.4	.5
.7	1	.3	.6	.7	.9	.4	.8	.6	.6
.5	.3	1	.5	.5	.4	.1	.4	.7	.6
.8	.6	.5	1	.7	.5	.5	.7	.5	.6
.6	.7	.5	.7	1	.6	.4	.5	.8	.9
.6	.9	.4	.5	.6	1	.3	.7	.7	.5
.5	.4	.1	.5	.4	.3	1	.6	.2	.3
.9	.8	.4	.7	.5	.7	.6	1	.4	.4
.4	.6	.7	.5	.8	.7	.2	.4	1	.7
.5	.6	.6	.6	.9	.5	.3	.4	.7	1

Now assuming $\alpha = 0.55$ apply [1.] and [2.]

- $\begin{bmatrix} 0 & .7 & 0 & .8 & .6 & .6 & 0 & .9 & 0 & 0 \\ .7 & 0 & 0 & .6 & .7 & .9 & 0 & .8 & .6 & .6 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & .7 & .6 \\ .8 & .6 & 0 & 0 & .7 & 0 & 0 & .7 & 0 & .6 \\ .6 & .7 & 0 & .7 & 0 & .6 & 0 & 0 & .8 & .9 \\ .6 & .9 & 0 & 0 & .6 & 0 & 0 & .7 & .7 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & .6 & 0 & 0 \\ .9 & .8 & 0 & .7 & 0 & .7 & .6 & 0 & 0 & 0 \\ 0 & .6 & .7 & 0 & .8 & .7 & 0 & 0 & 0 & .7 \\ 0 & .6 & .6 & .6 & .9 & 0 & 0 & 0 & .7 & 0 \end{bmatrix}$

Then repeat $R^{(n+1)} = R^{(n)} \circ R^{(n)}$ till $R^{(n)} = R^{(n+1)}$.

1	.2	.5	.8	.6	.2	.3	.9	.4	.3
.2	1	.3	.6	.7	.9	.2	.8	.3	.2
.5	.3	1	.5	.3	.4	.1	.3	.7	.6
.8	.6	.5	1	.7	.3	.5	.4	.1	.3
.6	.7	.3	.7	1	.2	.4	.5	.8	.9
.2	.9	.4	.3	.2	.4	.1	.3	.7	.2
.3	.2	.1	.5	.4	.1	1	.6	.1	.3
.9	.8	.3	.4	.5	.3	.6	1	0	.2
.4	.3	.7	.1	.8	.7	.1	0	1	.1
.3	.2	.6	.3	.9	.2	.3	.2	.1	1

First, set $I = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ and $C = \{\}$. Then Step 3. Now $a_{18} = a_{26} = a_{5\ 10} = 0.9$ are maximum and a_{18} is randomly selected. Then $C = \{1, 8\}$. Step 4. $a_{12} + a_{82} = a_{14} + a_{84} = 1.5$ are maximum and j = 4 is randomly selected. Then $C = \{1, 8, 4\}$. Step 4. $a_{12} + a_{42} + a_{82} = 2.1$ is maximum, then $C = \{1, 8, 4, 2\}$. Step 4. There are no j such that $a_{1j} + a_{2j} + a_{4j} + a_{8j}$ is maximum. Then final $C = \{1, 8, 4, 2\}$.

$$\begin{array}{l} \star \ a_{16} + a_{26} + a_{46} + a_{86} = 0.6 + 0.9 + \\ a_{46} = 0 \end{array}$$

Note that $\sum_{i \in C} a_{iu} = \max_{j \in I \setminus C} \{ \sum_{i \in C} a_{ij} | a_{ij} \neq 0 \}$

0 + 0.7 = 2.2 seems maximum but actually not because

Step 5. Let $I = \{3, 5, 6, 7, 9, 10\}$ Step 3. $a_{5\ 10} = 0.9$ is maximum. Then renew C as $\{5, 10\}$. Step 4. $a_{59} + a_{10}_9 = 1.5$ is maximum. Then $C = \{5, 10, 9\}$. Step 4. There are no j in $\{3, 6, 9\}$ such that $a_{5j} + a_{9j} + a_{10j}$ is maximum. Then final $C = \{5, 10, 9\}$. Step 5. Let $I = \{3, 6, 7\}$. Step 3. Now $a_{36} = a_{37} = a_{67} = 0$. Then $\{3\}$, $\{6\}$ and $\{7\}$ are three separated clusters. In fact,

> a_{33} $a_{63}\ a_{73}$

So $\sum_{i \in \{3,6,7\}} a_{iu} = \max_{j \in \{3,6,7\}} \{ \sum_{i \in C} a_{ij} | a_{ij} \neq 0 \}$ does not exit any more. In this way, when $\alpha = 0.55$, we have 5 clasters $\{1, 8, 4, 2\}, \{5, 10, 9\}, \{3\}, \{6\}$ and $\{7\}$ are obtained.

a_{36}	a_{37}		0	0	0
a_{66}	a_{67}	=	0	0	0
a_{76}	a_{77}		0	0	0

will be calculated as:

 $R^{(0)} = \begin{bmatrix} 1 & .7 & .5 & .8 & .6 & .6 & .5 & .9 & .4 & .5 \\ .7 & 1 & .3 & .6 & .7 & .9 & .4 & .8 & .6 & .6 \\ .5 & .3 & 1 & .5 & .5 & .4 & .1 & .4 & .7 & .6 \\ .8 & .6 & .5 & 1 & .7 & .5 & .5 & .7 & .5 & .6 \\ .6 & .7 & .5 & .7 & 1 & .6 & .4 & .5 & .8 & .9 \\ .6 & .9 & .4 & .5 & .6 & 1 & .3 & .7 & .7 & .5 \\ .5 & .4 & .1 & .5 & .4 & .3 & 1 & .6 & .2 & .3 \\ .9 & .8 & .4 & .7 & .5 & .7 & .6 & 1 & .4 & .4 \\ .4 & .6 & .7 & .5 & .8 & .7 & .2 & .4 & 1 & .7 \\ .5 & .6 & .6 & .6 & .9 & .5 & .3 & .4 & .7 & 1 \end{bmatrix}$

Now apply [1.] and [2.]

 $\mu_R(x,z) \geq \max_{y\in X}\{\min\{\mu_R(x,y),\mu_R(y,z)\}\}$

By repeating $R^{(n+1)} = R^{(n)} \circ R^{(n)}$ till $R^{(n)} = R^{(n+1)}$. In this way, similarity-relation $R^{(n)}$

$$R^{(n)} = \begin{bmatrix} 1 & .2 & .5 & .8 & .6 & .2 & .3 & .9 & .4 & .3 \\ .2 & 1 & .3 & .6 & .7 & .9 & .2 & .8 & .3 & .2 \\ .5 & .3 & 1 & .5 & .3 & .4 & .1 & .3 & .7 & .6 \\ .8 & .6 & .5 & 1 & .7 & .3 & .5 & .4 & .1 & .3 \\ .6 & .7 & .3 & .7 & 1 & .2 & .4 & .5 & .8 & .9 \\ .2 & .9 & .4 & .3 & .2 & .4 & .1 & .3 & .7 & .2 \\ .3 & .2 & .1 & .5 & .4 & .1 & 1 & .6 & .1 & .3 \\ .9 & .8 & .3 & .4 & .5 & .3 & .6 & 1 & 0 & .2 \\ .4 & .3 & .7 & .1 & .8 & .7 & .1 & 0 & 1 & .1 \\ .3 & .2 & .6 & .3 & .9 & .2 & .3 & .2 & .1 & 1 \end{bmatrix}$$

0	.7	0	.8	.6	.6	0	.9	0	0]
.7	0	0	.6	.7	.9	0	.8	.6	.6
0	0	0	0	0	0	0	0	.7	.6
.8	.6	0	0	.7	0	0	.7	0	.6
.6	.7	0	.7	0	.6	0	0	.8	.9
.6	.9	0	0	.6	0	0	.7	.7	0
0	0	0	0	0	0	0	.6	0	0
.9	.8	0	.7	0	.7	.6	0	0	0
0	.6	.7	0	.8	.7	0	0	0	.7
0	.6	.6	.6	.9	0	0	0	.7	0

First, set I

Then

Summary-2

 $C = \{1, 8\}.$

- 0 $.6 \quad 0 \quad 0 \quad .7 \quad 0 \quad 0 \quad .7 \quad 0$.8 .6 $.7 \quad 0 \quad .7 \quad 0 \quad .6 \quad 0 \quad 0 \quad .8 \quad .9$.6 .9 0 0 .6 0 0 .7 .7.6 0 $0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$ 0 0 .8 0 .7 0 .7 .6 0 0 0 .9 0

 - fact,

obtained.

$$=\{1,2,3,4,5,6,7,8,9,10\} \text{ and } C=\{ \ \}.$$

3. Now $a_{18} = a_{26} = a_{5\ 10} = 0.9$ are maximum and a_{18} is randomly selected. Then

4. $a_{12} + a_{82} = a_{14} + a_{84} = 1.5$ are maximum and j = 4 is randomly selected. Then $C = \{1, 8, 4\}.$

4. $a_{12} + a_{42} + a_{82} = 2.1$ is maximum, then $C = \{1, 8, 4, 2\}$.

4. There are no j such that $a_{1j} + a_{2j} + a_{4j} + a_{8j}$ is maximum. Then final $C = \{1, 8, 4, 2\}$.

* $a_{16} + a_{26} + a_{46} + a_{86} = 0.6 + 0.9 + 0 + 0.7 = 2.2$ seems maximum but actually not because $a_{46} = 0$

Note that $\sum_{i \in C} a_{iu} = \max_{j \in I \setminus C} \{ \sum_{i \in C} a_{ij} | a_{ij} \neq 0 \}$

5. Let $I = \{3, 5, 6, 7, 9, 10\}$

3. $a_{5\ 10} = 0.9$ is maximum. Then renew C as $\{5, 10\}$.

4. $a_{59} + a_{10} = 1.5$ is maximum. Then $C = \{5, 10, 9\}$.

4. There are no j in $\{3, 6, 9\}$ such that $a_{5j} + a_{9j} + a_{10j}$ is maximum. Then final $C = \{5, 10, 9\}.$

5. Let $I = \{3, 6, 7\}$.

3. Now $a_{36} = a_{37} = a_{67} = 0$. Then $\{3\}, \{6\}$ and $\{7\}$ are three separated clusters. In

$$\begin{bmatrix} a_{33} & a_{36} & a_{37} \\ a_{63} & a_{66} & a_{67} \\ a_{73} & a_{76} & a_{77} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

So $\sum_{i \in \{3,6,7\}} a_{iu} = \max_{j \in \{3,6,7\}} \{ \sum_{i \in C} a_{ij} | a_{ij} \neq 0 \}$ does not exit any more.

In this way, when $\alpha = 0.55$, we have 5 clasters $\{1, 8, 4, 2\}, \{5, 10, 9\}, \{3\}, \{6\}$ and $\{7\}$ are

Let's take 6 KANJ as an example

			H			
	1	0.4	0.9	0.3	0.7	0.6
	0.4	1	0.6	0.7	0.8	0.2
\square	0.9	0.6	1	0.4	0.7	0.6
E	0.3	0.7	0.5	1	0.9	0.1
	0.7	0.8	0.7	0.9	1	0.1
	0.6	0.2	0.6	0.1	0.1	1

Calculate R(m+1)=R(m)_oR(m) till R(m+1)=R(m)

R⁽¹⁾ 1 0.7 0.9 0.7 0.7 0.6 0.7 1 0.7 0.8 0.8 0.6 0.9 0.7 1 0.7 0.7 0.6 0.7 0.8 0.7 1 0.9 0.5 0.7 0.8 0.7 0.9 1 0.6

0.6 0.6 0.6 0.5 0.6 1

to continue

$R^{(1)}$

0 0.7 0.8 0.7 1

1 0.7 0.9 0.7 0.7 0.6 0.7 1 0.7 0.8 0.8 0.6 0.9 0.7 1 0.7 0.7 0.6 0.7 0.8 0.7 1 0.9 0.5 0.7 0.8 0.7 0.9 1 0.6 0.6 0.6 0.6 0.5 0.6 1

 $R^{(1)}$ 1 0.7 0.9 0.7 0.7 0.6 0.7 1 0.7 0.8 0.8 0.6 0.9 0.7 1 0.7 0.7 0.6 0.9 0.5 0.7 0.8 0.7 0.9 1 0.6 0.6 0.6 0.6 0.5 0.6 1

 $R^{(2)}$ 1 0.7 0.9 0.7 0.7 0.6 0.7 1 0.7 0.8 0.8 0.6 0.9 0.7 1 0.7 0.7 0.6 0.7 0.8 0.7 1 0.9 0.6 0.7 0.8 0.7 0.9 1 0.6 0.6 0.6 0.6 0.6 1

to continue

R⁽²⁾

1 0.7 0.9 0.7 0.7 0.6 0.7 1 0.7 0.8 0.8 0.6 0.7 0.7 0.6 0.9 0.7 1 0 0.7 0.8 0.7 1 0.9 0.6 0.7 0.8 0.7 1 0.7 0.8 0.7 0.9 1 0.6 0.6 0.6 0.6 0.6 0.6 1

$R^{(2)}$

1 0.7 0.9 0.7 0.7 0.6 0.7 1 0.7 0.8 0.8 0.6 0.9 0.7 1 0.7 0.7 0.6 0.9 0.6 0.7 0.8 0.7 0.9 1 0.6 0.6 0.6 0.6 0.6 0.6 1

$R^{(3)}$

1 0.7 0.9 0.7 0.7 0.6 0.7 1 0.7 0.8 0.8 0.6 0.9 0.7 1 0.7 0.7 0.6 0.7 0.8 0.7 1 0.9 0.6 0.7 0.8 0.7 0.9 1 0.6 0.6 0.6 0.6 0.6 0.6 1

Now R(2) = R(3)

R⁽²⁾=

Now apply step 1 and step 2

0.7 0.9 0.7 0.7 0.6 1 0.7 0.8 0.8 0.6 0.7 1 0.9 0.7 1 0.7 0.7 0.6 0.9 0.6 0.7 0.8 0.7 0.7 0.8 0.7 0.9 1 0.6 0.6 0.6 0.6 0.6 0.6 1

Replace all Aii with 0 Replace all Aij < α with 0

Now assume Ш V $\alpha = 0.75$

0.9 0 0 0 0 0 0.8 0.8 0 0 0 0 0.9 0 0 0 0 0 0 0.8 0 0 0.9 0 0.8 0 0.9 0 0 0 0 0 0 0 0

- $C = \{\}$
- 0 0.9 0 0 0 0 0 0 0.8 0.8 0 0.9 0 0 0 0 0 0.8 0 0 0.9 0 0.8 0 0.9 0 0 0 0 0 0 0 0

- such that A2s+A4s+A5s is maximum S with s $\in I - C = \{1, 3, 6\}$ and As $\neq 0$

$I = \{1, 2, 3, 4, 5, 6\}$

- A13=A45=0.9 is maximum (Don't forget s must be smaller than t)
- A45 is randomely selected
- Then $C = \{4, 5\}$
- Now A42+A52=1.6 is maximum
- Then $C = \{2, 4, 5\}$

to continue

with s \in I-C = {6} and As \neq 0

(1) (3) (6) (1) 0 0.9 0(3) 0.9 0 0 (6) 0 0

 $I = \{1, 3, 6\}$ $C = \{\}$ A13=0.9 is maximum Then $C = \{1, 3\}$ no s such that Als+A3s is maximum

Result of clustering

$C1 = \{2, 4, 5\}$

$C2 = \{1, 3\}$

 $C3 = \{6\}$

IV. Fuzzy data mining

What is Data Mining?

- Data mining is an automatic or semi-automatic process
- that analyses large amounts of scattered information to make sense of it and
 - turn it into knowledge

- The process starts with giving a certain input of data to the data mining tools
- It is widely used by organizations in building a marketing strategy, by hospitals for diagnostic tools, etc.
- Today most organizations use data mining for analysis of Big Data
- Also known as "Knowledge Discovery in Databases (KDD)"

Data mining

Toy Example: Mining a rule in natural language from data

A profile which is decreasing at the beginning is typically increasing at the end

- Medical Data Analysis
- Phishing Detection
- Invasion Detection
- Commercial Data Analysis

Application

Popular Technique for Data Mining

- Regression
- Association
- Clustering
- Classification
- Outlier analysis
 - Decision tree
- Bayes theory
- etc.

Example (1) Mobile service provider

- From a large amount of data such as billing information, email, text messages, web data transmission, customer service used, the datmining tools can predict predict customers who are looking to change the venders
- With these results a provability score is given. The mobile service providers can provide incentives, offers to customers who are going to change the venders

- Looking at the purchase history reveals the buying preferences of the customers
- special discounts on some products.

Example (2) Retail

 The results help the supermarkets design the placements of products on shelves and offers on items such as coupons on matching products and

Example (3) Market Basket Analysis

- This find the groups of items that are bought together in stores. higher sales volume on certain days such as beer on Fridays
- "Buy 2 get 1 free" or "Get 50% on second purchase" etc

Analysis of the transactions show the patterns such as which things are bought together often like bread and butter, or which items have

• This information helps in planning the store layouts, offering a special discount to the items that are less in demand, creating offers such as

Example (4) e-Commerce

- Many e commerce sites use data mining over the purchasing history of the customers of the website
- The Amazon etc. show "People also viewed", "Frequently bought together" to the customers who are interacting with the site

Example (5) Crime prevention

- Data mining detects outliers across a vast amount of data, the criminal data including all details of the crime that has happened. Data mining will study the criminal patterns and criminal trends and predict future events with better accuracy
- The agencies can find out which area is more prone to crime, how much police pesonnel should be deployed, which age group should be targeted, vehicle numbers to be scrutinized, etc.

Example (6) Research

pollution and the spread of diseases like asthma among people in targeted regions

 Researchers use Data Mining tools to explore the associations between the parameters under research such as environmental conditions like air

Commercial and open-source software

- Weka
- Rapid miner

• Orange data miningtools

E.g. for

Fuzzy Data Mining Anomaly Detection

Data are applied with fuzzy logic rules to classify them as normal or malicious

for the purpose feature sets should be extracted from the row data

Both network traffic and system audit data are used as inputs

Popular two data mining methods

and data mining)

 Association rules and frequency episodes have been used to mine audit data to find normal patterns for anomaly intrusion detection (Lee, Stolfo and Mok (1998) "Mining audit danta tobuild intrusion detection models." in Proceedings of the 4th international conference on knowledge discovery

- When presented with a set of audit data, the system will mine a set of fuzzy association rules from the data.
- These rules will be considered a high level description of patterns of behavior found in the data.
- For anomaly detection, we mine a set of rules from a data set with no intrusions (termed a reference data set) and use this as a description of normal behavior.
- When considering a new set of audit data, a set of association rules is mined from the new data and the similarity of this new rule set and the reference set is computed. If the similarity is low, then the new data will cause an alarm.

Association rule

 an intrusion that deviates only slightly from a pattern derived from the cause a false alarm.

audit data may not be detected of a small change in normal behavior may

False negatives & False positive

- If the system warn when access is normal, it is called Falese negative
- If the system does not warn when access is abnormal, it is called False positive

Examples of features

- The CPU usage time and the connection duration
- host

The number of different TCP/UDP services initiated by the same source

Examples of output

- was high **THEN** an unusual situation exists
- **IF** the DP is high **THEN** and unusual situation exists
- **IF** the number of SYN flags is low **AND** the number of FIN flags is low **THEN** the number of RST flags is low in a 2 second period

• **IF** the number different destination addresses during the last 2 seconds