A slide show of our practice note

Fuzzy Data Processing

Practice 2020 - online

Brest State Technical University Akira Imada, Professor

Last modified on 18 October 2020

I. How to control two virtual metro cars?

Assume 5 triangle membership functions for each of 3 categories

Membership of 3 specific values of speed, distance and brake

Under one rule

IF x = slow AND y = long THEN z = weak

Assume now x = 7, y = 500, z = 4

Then the membership value of this rule is min{0.72, 0.35} x 0.31 = 1.085

When Speed = 7 and distance = 500

under one rule

IF Speed is slow AND Distance is long THEN Brake is weak

Membership of 3 specific values of speed, distance and brake

Under two rules

IF x = slow AND y = long THEN z = weak OR

IF x = medium AND y = medium THEN z = medium

Assume now x = 7, y = 500, z = 4

Then the membership value of these two rules is

 $\max\{\min(0.72, 0.35) \times 0.31, \min(0.27, 0.71) \times 0.69\} = \max\{0.1085, 0.1823\} = 0.1823$

When Speed = 7 and distance = 500

under two rules

IF Speed is slow AND Distance is long THEN Brake is weak IF Speed is medium AND Distance is medium THEN Brake is medium

0	1	2	3	4	5	6	7	8	9	10		
				0.182								
Â	∧ Ⅱ	A II	∧ Ⅱ		A II	Â	Â	A II	Â	∧ Ⅱ		
0.000	0.000	0.175	0.350		0.135	0.000	0.000	0.000	0.000	0.000		
The best appropriate value of brake?												
		34	4	56	7	8	9	•				
	/				· · · ·			U				
	∧ Ⅱ 0.000	A A II II 0.000 0.000	Â Â Â 0.000 0.000 0.175 The best ap Image: Second colspan="3">X	∩ ∩ ∩ ∩ ∩ ∩ 0.000 0.000 0.175 0.350 The best appropriate of the stapping of tapping of	1 1 0.182 1 1 1 0.000 0.000 0.175 0.350 The best appropriate value	1 1 0.182 1 1 1 1 0.000 0.000 0.175 0.350 0.135 The best appropriate value o	Image: Image	Image: Constraint of the best appropriate value of brake?	1 1	Image: Image		

0.175(x-2) + 0.350(x-3) + 0.182(x-4) + 0.135(x-5) = 0 => 0.842x = 2.803 => x = 3.03

Let's plot one point of speed-distance-brake in the previous pagein 3D space!

What about all other combination of speed and distance?

Practice

Calculate Brake for all possible combinations of speed and distance under 2 rules in the previous page!

spood	distance -		membership value of all possible brake											
speed	uistance	0	1	2	3	4	5	6	7	8	9	10	brake	
	100													
	200													
	300													
	400													
1	500													
	600													
	700													
	800													
	900													
	:	:	:	:	:	:	:	:	:	:	:	:	:	
	100													
F	200	5 		5 										
	300													
2.57	400													
7	500	0.000	0.000	0.175	0.350	0.182	0.135	0.000	0.000	0.000	0.000	0.000	3.03	
	600													
	700													
	800													
	900													
:	:	:	÷	÷	:	:	:	:	:	:	:	:	:	
	100													
	200													
	300													
	400													
9	500													
2015	600					8								
	700													
	800													
	900													

A snapshot of the table under 3 rules

By Bogutskaya Yulia (2016)

Speed	Distance	Brake	Rule 1	: IF x=med	dium AND y=small '	THEN z=strong	Rule 2:	IF x=mediu	ım AND y=medium T	HEN z=medium	Rule 3	: IF x=med	lium AND y=large	THEN z=week	Max of rules	Balance
			mSp1	mDs1	mBr1	min(mSp;mDs)*mBr	mSp2	mDs2	mBr2	min(mSp;mDs)*mBr	mSp3	mDs3	mBr3	min(mSp;mDs)*mBr		
		0	0,75	0	0	0	0,75	0,5	0	0	0,75	0,5	0	0	0	
	[1	0,75	0	0	0	0,75	0,5	0	0	0,75	0,5	0	0	0	
	[2	0,75	0	0	0	0,75	0,5	0	0	0,75	0,5	0,25	0,125	0,125	
	[3	0,75	0	0	0	0,75	0,5	0	0	0,75	0,5	1	0,5	0,5	
	[4	0,75	0	0	0	0,75	0,5	0,75	0,375	0,75	0,5	0,25	0,125	0,375	
11,00	500,00	5	0,75	0	0,3	0	0,75	0,5	0,75	0,375	0,75	0,5	0	0	0,375	3,727273
		6	0,75	0	1	0	0,75	0,5	0	0	0,75	0,5	0	0	0	
		7	0,75	0	0,3	0	0,75	0,5	0	0	0,75	0,5	0	0	0	
		8	0,75	0	0	0	0,75	0,5	0	0	0,75	0,5	0	0	0	
		9	0,75	0	0	0	0,75	0,5	0	0	0,75	0,5	0	0	0	
		10	0,75	0	0	0	0,75	0,5	0	0	0,75	0,5	0	0	0	
		0	0,75	0	0	0	0,75	0,25	0	0	0,75	0,75	0	0	0	
		1	0,75	0	0	0	0,75	0,25	0	0	0,75	0,75	0	0	0	
		2	0,75	0	0	0	0,75	0,25	0	0	0,75	0,75	0,25	0,1875	0,1875	
		3	0,75	0	0	0	0,75	0,25	0	0	0,75	0,75	1	0,75	0,75	
	4	0,75	0	0	0	0,75	0,25	0,75	0,1875	0,75	0,75	0,25	0,1875	0,1875	Sec. and a	
11,00	550,00	5	0,75	0	0,3	0	0,75	0,25	0,75	0,1875	0,75	0,75	0	0	0,1875	3,285714
		6	0,75	0	1	0	0,75	0,25	0	0	0,75	0,75	0	0	0	
		7	0,75	0	0,3	0	0,75	0,25	0	0	0,75	0,75	0	0	0	
		8	0,75	0	0	0	0,75	0,25	0	0	0,75	0,75	0	0	0	
		9	0,75	0	0	0	0,75	0,25	0	0	0,75	0,75	0	0	0	
		10	0,75	0	0	0	0,75	0,25	0	0	0,75	0,75	0	0	0	
		0	0,75	0	0	0	0,75	0	0	0	0,75	1	0	0	0	
		1	0,75	0	0	0	0,75	0	0	0	0,75	1	0	0	0	
		2	0,75	0	0	0	0,75	0	0	0	0,75	1	0,25	0,1875	0,1875	
		3	0,75	0	0	0	0,75	0	0	0	0,75	1	1	0,75	0,75	
		4	0,75	0	0	0	0,75	0	0,75	0	0,75	1	0,25	0,1875	0,1875	
11,00	600,00	5	0,75	0	0,3	0	0,75	0	0,75	0	0,75	1	0	0	0	3
		6	0,75	0	1	0	0,75	0	0	0	0,75	1	0	0	0	100 00000 000 000
		7	0,75	0	0,3	0	0,75	0	0	0	0,75	1	0	0	0	
		8	0,75	0	0	0	0,75	0	0	0	0,75	1	0	0	0	
		9	0,75	0	0	0	0,75	0	0	0	0,75	1	0	0	0	
		10	0,75	0	0	0	0,75	0	0	0	0,75	1	0	0	0	

3D plot of previous page

By Bogutskaya Yulia (2016)

Another example under 24 rules

By Kurilenko Nikita (2016)

distance 0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000 0 250		
	io 500 750 1000 0 250 500 750	1000
break 4,5 2,285714 0,875 0,875 0,875 0,875 4,5 3,043478 2,77277 1,214286 0,875 6 5,764706 3,625 1,214286 0,875 8,636364 8,324324	4 4,85 2,521739 2,285714 8,636364 6 4,5 1,214286	0,875

IF speed IS	vSLOW	vSLOW	vSLOW	vSLOW	vSLOW	SLOW	SLOW	SLOW	SLOW	SLOW	MEDIUM	MEDIUM	MEDIUM	MEDIUM	MEDIUM	FAST	FAST	FAST	FAST	FAST	vFAST	vFAST	vFAST	vFAST	vFAST
AND distance IS	vSHORT	SHORT	MEDIUM	LONG	vLONG	vSHORT	SHORT	MEDIUM	LONG	vLONG	vSHORT	SHORT	MEDIUM	LONG	vLONG	vSHORT	SHORT	MEDIUM	LONG	vLONG	vSHORT	SHORT	MEDIUM	LONG	vLONG
THEN break IS	MEDIUM	MEDIUM	WEAK	WEAK	WEAK	MEDIUM	MEDIUM	MEDIUM	WEAK	vWEAK	STRONG	STRONG	MEDIUM	WEAK	vWEAK	vSTRONG	vSTRONG	STRONG	MEDIUM	WEAK	vSTRONG	vSTRONG	STRONG	MEDIUM	WEAK

practice How about under your own 10 rules ?

X: speed Y: distance Z_i : defuzzified brake Z: brake

Two metro cars in one loop with constant speed - animation

By Navrosjuk Kostia (2016)

Two metros in one loop when speed changes at random By Navrosjuk Kostia (2016)

Then avoid crash of two metro cars by using appropriate value of your own 10 rules in each step!

II. Classify Iris Flowers!

Iris Flower Database to design

	Set	osa			Versi	color			Virg	inica	
x_1	x_2	x_3	x_4	x_1	x_2	x_3	x_4	x_1	x_2	x_3	x_4
0.56	0.66	0.20	0.08	0.84	0.66	0.67	0.52	0.85	0.57	0.84	0.72
0.62	0.70	0.22	0.04	0.66	0.61	0.57	0.56	0.91	0.82	0.88	1.00
0.68	0.84	0.22	0.08	0.63	0.45	0.51	0.40	0.82	0.73	0.74	0.80
0.61	0.77	0.23	0.08	0.75	0.68	0.61	0.60	0.81	0.61	0.77	0.76
0.61	0.68	0.20	0.04	0.76	0.50	0.58	0.40	0.86	0.68	0.80	0.84
0.54	0.68	0.16	0.04	0.77	0.66	0.68	0.56	0.72	0.57	0.72	0.80
0.73	0.91	0.17	0.08	0.71	0.66	0.52	0.52	0.73	0.64	0.74	0.96
0.72	1.00	0.22	0.16	0.85	0.70	0.64	0.56	0.81	0.73	0.77	0.92
0.68	0.89	0.19	0.16	0.71	0.68	0.65	0.60	0.82	0.68	0.80	0.72
0.65	0.80	0.20	0.12	0.73	0.61	0.59	0.40	0.97	0.86	0.97	0.88
0.72	0.86	0.25	0.12	0.78	0.50	0.65	0.60	0.97	0.59	1.00	0.92
0.65	0.86	0.22	0.12	0.71	0.57	0.57	0.44	0.76	0.50	0.72	0.60
0.68	0.77	0.25	0.08	0.75	0.73	0.70	0.72	0.87	0.73	0.83	0.92
0.65	0.84	0.22	0.16	0.77	0.64	0.58	0.52	0.71	0.64	0.71	0.80
0.58	0.82	0.14	0.08	0.80	0.57	0.71	0.60	0.97	0.64	0.97	0.80
0.65	0.75	0.25	0.20	0.77	0.64	0.68	0.48	0.80	0.61	0.71	0.72
0.61	0.77	0.28	0.08	0.81	0.66	0.62	0.52	0.85	0.75	0.83	0.84

The original x1 values of 3 families of iris flower and determination the range of Large, Medium and Small.

Original data of x₁ Setosa Versicolor Virginica Large Medium short 0.56 0.84 0.85 0.97 0.78 0.68 0.62 0.66 0.91 0.97 0.77 0.68 => 0.82 0.68 0.63 0.97 0.68 0.77 Sort 0.61 0.75 0.81 0.91 0.77 0.66 all data in 3 columns 0.61 0.76 0.86 0.87 0.76 0.65 0.54 0.72 0.86 0.77 0.76 with descending order 0.65 0.73 0.71 0.73 0.85 0.75 0.65 and then 0.72 0.85 0.81 0.85 0.75 0.66 devided into 3 category 0.68 0.82 0.85 0.71 0.73 0.63 0.65 0.73 0.97 0.84 0.73 0.62 0.72 0.78 0.97 0.82 0.73 0.61 0.65 0.76 0.71 0.82 0.72 0.61 0.68 0.75 0.87 0.81 0.72 0.61 0.97 ... 0.80 0.78 ... 0.71 0.68 ... 0.64 0.65 0.81 0.77 0.71 0.72 0.58 Medium Large short 0.58 0.80 0.97 0.81 0.71 0.56 0.80 0.65 0.77 0.80 0.71 0.64 0.85 0.61 0.81 0.80 0.71 0.71

> avg 0.853 0.741 0.629 std 0.0599 0.0244 0.0422

In this way we get:

		Large	Medium	short
x1		0.97 0.80	0.78 ••• 0.71	0.68 ••• 0.64
~1	avg	0.853	0.741	0.629
	std	0.0599	0.0244	0.0422
x2		1.00 ••• 0.75	0.73 ••• 0.66	0.64 ••• 0.45
72	avg	0.821	0.683	0.578
	std	0.0690	0.0271	0.0584
x3		1.00 ••• 0.71	0.70 ••• 0.51	0.28 ··· 0.14
X3	avg	0.806	0.613	0.213
	std	0.0949	0.0571	0.0355
x4		1.00 0.72	0.60 0.40	0.20 ··· 0.04
λ4	avg	0.831	0.520	0.101
	std	0.0900	0.0700	0.0472

Membership function of Small, Medium and Large for x1, x2, x3, and x4

Now let's translate numerical values into human language

x4

large

medium

Setosa	ł
--------	---

x1 x2 x3 x4 small medium small small small medium small small large small small small small large small small small medium small small small medium small small small small medium large medium small small large large small small small small large small small medium large small small small large small small large small small small small large small small small small small large small small small large small large small small small large small small

Versicolor x1 x2 x3 medium medium medium large small medium medium medium large small medium medium large medium large large medium medium medium large medium medium small medium medium large small large medium medium medium medium medium large large medium medium medium medium large medium medium medium large medium medium medium medium large large large large medium medium medium large large large medium medium

Virginica x1 x2 x3 x4 large small large large large large large large large medium large large small large large large large medium large large large large large small medium small large large medium large medium large medium large large large large large large large large large small large large medium large large medium large medium medium medium large large large medium small large large large large small large large large large small large large large large

Rules to classify iris flowers E.g.

which family the next irises belongs to?

x1 = 0.80, x2 = 0.75, x3 = 0.87 and x4 = 1.00

	x1	x2	x3	x4	У	$\left(\mathbf{r}^{H} \right) \left(\mathbf{r} \right) \left(\mathbf{r}^{H} \right) \left(\mathbf{r}^$	
R1:	small	large	small	small	1	$= \{ \Sigma_{k=1}^{H} (M_{k}(x) \cdot g_{k}) \} / \{ \Sigma_{k=1}^{H} (M_{k}(x)) \} (H = 4)$ where	and j = 1,2,3,4)
R2:	medium	large	medium	medium	2		
R3:	large	small	large	large	3	$M_{k}(\mathbf{x}) = \prod_{i=1}^{n} \mu_{ik}(\mathbf{x}_{i}) \qquad (M = 4)$	J
R4:	large	medium	large	large	3	k = index of rule, H = number of rule, M = num	nber of attribute
	;	X1		X2		×3 ×5	
Large:	exp(-0.5((x-	-0.853)/0.059	99)**2) e	exp(-0.5((x-0.8	21)/0.06)**2) exp(-0.5((x-0.806)/0.0949)**2) exp(-0.5((x-0.8	31)/0.0900)**2)
Medium:	exp(-0.5((x-	-0.741)/0.024	l4)**2) ε	exp(-0.5((x-0.6	83)/0.02)**2) exp(-0.5((x-0.614)/0.0571)**2) exp(-0.5((x-0.5	20)/0.0700)**2)
Small:	exp(-0.5((x	-0.629)/0.042	22)**2) e	exp(-0.5((x-0.5	78)/0.05)**2) exp(-0.5((x-0.213)/0.0355)**2) exp(-0.5((x-0.1	01)/0.0472)**2)

 $\mu 11 = \exp(-0.5 ((0.80 - 0.629)/0.0422)^{2}) = 0.000 : \mu 12 = \exp(-0.5 ((0.75 - 0.821)/0.0690)^{2}) = 0.589 : \mu 13 = \exp(-0.5 ((0.87 - 0.213)/0.0355)^{2}) = 0.000 : \mu 14 = \exp(-0.5 ((1.00 - 0.101)/0.0472)^{2}) = 0.000 : \mu 21 = \exp(-0.5 ((0.80 - 0.741)/0.0244)^{2}) = 0.054 : \mu 22 = \exp(-0.5 ((0.75 - 0.821)/0.0690)^{2}) = 0.589 : \mu 23 = \exp(-0.5 ((0.87 - 0.614)/0.0571)^{2}) = 0.000 : \mu 24 = \exp(-0.5 ((1.00 - 0.520)/0.0700)^{2}) = 0.000 : \mu 31 = \exp(-0.5 ((0.80 - 0.853)/0.0599)^{2}) = 0.068 : \mu 32 = \exp(-0.5 ((0.75 - 0.578)/0.0584)^{2}) = 0.013 : \mu 33 = \exp(-0.5 ((0.87 - 0.806)/0.0949)^{2}) = 0.797 : \mu 34 = \exp(-0.5 ((1.00 - 0.831)/0.0900)^{2}) = 0.172 : \mu 41 = \exp(-0.5 ((0.80 - 0.853)/0.0599)^{2}) = 0.068 : \mu 42 = \exp(-0.5 ((0.75 - 0.683)/0.0271)^{2}) = 0.047 : \mu 43 = \exp(-0.5 ((0.87 - 0.806)/0.0949)^{2}) = 0.797 : \mu 44 = \exp(-0.5 ((1.00 - 0.831)/0.0900)^{2}) = 0.172 : \mu 41 = \exp(-0.5 ((1.00 - 0.831)/0.0900)^{2}) = 0.172 : \mu 44 = \exp(-0.5 ((1.00 - 0.831)/$

- M1 = 0.000x0.589x0.000x0.000 = 0.00000000
- M2 = 0.054x0.589x0.000x0.000 = 0.00000000
- M3 = 0.068x0.013x0.797x0.172 = 0.00012118
- M4 = 0.068x0.047x0.797x0.171 = 0.00043812
- y = (0.0000000x1+0.000000x2+0.00012118x3+0.00043812x3) / (0.0000000+0.0000000+0.00012118+0.00043812)
 - = 0.00167790 / 0.0005593
- = 3.0

Banana dataset

(extracted from UCI (University of California, Irvine) Machine Learning Repository)

- Sort values in both of A and B respectively
- Divide these sorted values into 3 groups large, medium & small
- Calculate avg & std of these 6 groups
- Draw Gaussian membership functions for each of these 6 groups
- Translate all numerical values into natural language: large, medium & small
- Create rules to classify data
- Then guess that the data [x1 = -1.620 & x2 = 0.468 is class A or B

ŀ	4	E	3
X ₁	X ₂	X1	X ₂
-1.520	-1.150	1.140	-0.114
-0.916	0.397	-1.050	0.720
-1.090	0.437	1.830	0.452
-0.584	0.094	1.790	-0.459
-1.250	-0.286	-0.122	-0.808
1.700	1.210	-0.768	-1.040
-0.482	-0.485	0.724	0.989
0.081	1.930	0.444	1.990
-0.541	-0.332	-1.010	-1.360
-1.690	-1.150	1.280	0.691
1.260	1.210	0.925	0.895
-0.863	0.496	-0.687	-1.290
1.160	0.458	1.710	-0.044
-0.595	-0.651	1.120	0.626
-0.770	0.364	1.300	0.196
-0.871	-0.825	1.130	1.480
0.996	-1.700	0.763	0.921
1.740	0.964	-1.410	1.110
1.180	-0.335	-0.750	-0.881
2.520	1.430	1.116	0.978
0.271	-0.591	1.130	0.405
-1.590	0.68	-0.522	-1.340
0.408	0.067	-1.310	1.250
0.009	-0.434	0.041	-1.130
-2.140	-1.430	0.048	0.866
0.007	0.012	-2.110	0.193
-0.352	-0.490	0.522	1.460
1.330	1.510	0.028	1.620
1.090	-1.370	0.536	0.921
-1.670	-1.260	-0.123	-1.070
-0.508	-9.715	0.526	1.480

0.526

1.480

-0.508 -9.715

Mammo graphic dataset

(extracted from UCI (University of California, Irvine) Machine Learning Repository)

	N	lorma	al			N	ot no	ormal	ĺ.	
X 1	Χz	X ₃	X 4	X 5	8	X 1	X ₂	X ₃	X 4	X 5
5	57	3	5	3		4	28	1	1	3
5	58	4	5	3		4	36	3	1	2
5	57	1	5	3		4	60	2	1	2
5	76	1	4	3		4	54	1	1	3
3	42	2	1	3		3	52	3	4	3
4	59	2	1	3		5	86	4	4	3
4	54	1	1	3		5	66	4	4	4
5	56	4	3	1		5	60	3	1	3
5	42	4	4	3		3	45	2	1	3
4	59	2	4	3		3	43	2	1	3
5	75	6	5	3		2	49	2	1	3
6	71	4	4	3		4	47	3	1	3
5	62	3	5	2		4	24	2	1	3
5	80	3	5	3		6	41	2	1	3
5	74	1	1	2		4	19	1	1	3

- Sort values in both Normal and Not normal
- Divide these sorted values into 2 groups - Large & Small
- Calculate avg & std of these 10 groups
- Draw Gaussian membership functions of each of these 10 groups
- Translate all numerical values into Large or Small
- Create rules to classify data
- Then guess that data (4, 62, 3, 3, 3) is Normal or Not normal

X 1: BI-RADS, X 2: Age, X 3: Shape, X 4: Margin, X 5: Density