A slide show of our practice note
 Fuzzy Data Processing

Practice 2020 - online
Brest State Technical University Akira Imada, Professor

Last modified on 18 October 2020

I. How to control two virtual metro cars?

Assume 5 triangle membership functions for each of 3 categories

brake
very weak medium very strong

Membership of 3 specific values of speed, distance and brake

Under one rule

IF $x=$ slow AND $y=$ long THEN $z=$ weak

$$
\text { Assume now } x=7, y=500, z=4
$$

Then the membership value of this rule is $\rightarrow \min \{0.72,0.35\} \times 0.31=1.085$

When Speed $=7$ and distance $=500$

under one rule

IF Speed is slow AND Distance is long THEN Brake is weak

brake	0	1	2	3	4	5	6	7	8	9	10
The membership value					1.085						

Fuzzify! => The best appropriate value of brake?

$$
0.175(x-2)+0.350(x-3)+1.085(x-4)=0 \quad \Rightarrow \quad 1.610 x=5.740 \quad \Rightarrow \quad x=3.57
$$

Membership of 3 specific values of speed, distance and brake

Under two rules

IF $x=$ slow AND $y=$ long THEN $z=$ weak
OR
IF $\mathrm{x}=$ medium AND $\mathrm{y}=$ medium THEN $\mathrm{z}=$ medium

$$
\text { Assume now } x=7, y=500, z=4
$$

Then the membership value of these two rules is
$\max \{\min (0.72,0.35) \times 0.31, \min (0.27,0.71) \times 0.69\}=\max \{0.1085,0.1823\}=0.1823$

When Speed $=7$ and distance $=500$

 under two rulesIF Speed is slow AND Distance is long THEN Brake is weak
IF Speed is medium AND Distance is medium THEN Brake is medium

The best appropriate value of brake?

$$
0.175(x-2)+0.350(x-3)+0.182(x-4)+0.135(x-5)=0 \quad \Rightarrow 0.842 x=2.803 \quad \Rightarrow \quad x=3.03
$$

Let's plot one point of speed-distance-brake in the previous pagein 3D space!

What about all other combination of speed and distance?

Calculate Brake for all possible combinations of speed and distance under 2 rules in the previous page!

speed	distance	membership value of all possible brake											defuzzifiedbrake
		0	1	2	3	4	5	6	7	8	9	10	
1	100												
	200												
	300												
	400												
	500												
	600												
	700												
	800												
	900												
!	\vdots	\vdots	!	\vdots	!	:	:	:	:	:	!	!	:
7	100												
	200												
	300												
	400												
	500	0.000	0.000	0.175	0.350	0.182	0.135	0.000	0.000	0.000	0.000	0.000	3.03
	600												
	700												
	800												
	900												
\vdots	\vdots	!	\vdots	\vdots	\vdots	\vdots	!	!	:	:	!	!	!
9	100												
	200												
	300												
	400												
	500												
	600												
	700												
	800												
	900												

A snapshot of the table under 3 rules

By Bogutskaya Yulia (2016)

Speed	Distance	Brake	Rule 1: IF $\mathrm{x}=$ medium $\mathrm{AND} \mathrm{y}=$ small THEN $\mathrm{z}=$ strong				Rule 2: If $\mathrm{x}=$ medium $\mathrm{AND} \mathrm{y}=$ medium THEN $\mathrm{z}=$ medium				Rule 3: IF $\mathrm{x}=$ medium AND $\mathrm{y}=$ large THEN $\mathrm{z}=$ week				Max of rules	Balance
			mSp1	mDs1	mBr 1	min(mspomDs) mbr	mSp 2	mDs2	mbr 2	mln(mSpomDs) mbr	mSp3	mDs3	mbr 3	minjmSomDsj/mEr		
11.00	500,00	0	0,75	0	0	0	0,75	0.5	0	0	0,75	0,5	0	0	0	3,727273
		1	0,75	0	0	0	0.75	0.5	0	0	0.75	0.5	0	0	0	
		2	0,75	0	0	0	0,75	0.5	0	0	0,75	0.5	0,25	0.125	0.125	
		3	0,75	0	0	0	0,75	0.5	0	0	0,75	0.5	1	0,5	0,5	
		4	0,75	0	0	0	0,75	0.5	0,75	0,375	0,75	0.5	0,25	0.125	0,375	
		5	0,75	0	0,3	0	0,75	0.5	0,75	0,375	0,75	0.5	0	0	0,375	
		6	0,75	0	1	0	0,75	0.5	0	0	0,75	0.5	0	0	0	
		7	0,75	0	0,3	0	0,75	0.5	0	0	0,75	0.5	0	0	0	
		8	0,75	0	0	0	0.75	0.5	0	0	0,75	0.5	0	0	0	
		9	0,75	0	0	0	0,75	0.5	0	0	0,75	0.5	0	0	0	
		10	0,75	0	0	0	0,75	0.5	0	0	0,75	0,5	0	0	0	
11,00	550,00	0	0,75	0	0	0	0,75	0,25	0	0	0,75	0,75	0	0	0	3,285714
		1	0,75	0	0	0	0,75	0,25	0	0	0,75	0,75	0	0	0	
		2	0,75	0	0	0	0.75	0,25	0	0	0,75	0,75	0,25	0,1875	0,1875	
		3	0,75	0	0	0	0,75	0,25	0	0	0,75	0,75	1	0,75	0.75	
		4	0,75	0	0	0	0,75	0,25	0,75	0,1875	0,75	0,75	0,25	0,1875	0.1875	
		5	0,75	0	0,3	0	0,75	0,25	0,75	0,1875	0,75	0,75	0	0	0,1875	
		6	0,75	0	1	0	0,75	0,25	0	0	0,75	0,75	0	0	0	
		7	0,75	0	0,3	0	0,75	0,25	0	0	0,75	0,75	0	0	0	
		8	0.75	0	0	0	0.75	0,25	0	0	0,75	0,75	0	0	0	
		9	0,75	0	0	0	0,75	0,25	0	0	0,75	0,75	0	0	0	
		10	0,75	0	0	0	0,75	0,25	0	0	0,75	0,75	0	0	0	
11.00	600,00	0	0,75	0	0	0	0,75	0	0	0	0,75	1	0	0	0	3
		1	0,75	0	0	0	0,75	0	0	0	0,75	1	0	0	0	
		2	0,75	0	0	0	0,75	0	0	0	0,75	1	0.25	0,1875	0.1875	
		3	0,75	0	0	0	0,75	0	0	0	0,75	1	1	0,75	0,75	
		4	0,75	0	0	0	0,75	0	0,75	0	0,75	1	0.25	0,1875	0.1875	
		5	0,75	0	0,3	0	0,75	0	0,75	0	0,75	1	0	0	0	
		6	0,75	0	1	0	0,75	0	0	0	0,75	1	0	0	0	
		7	0,75	0	0,3	0	0.75	0	0	0	0,75	1	0	0	0	
		8	0,75	0	0	0	0,75	0	0	0	0,75	1	0	0	0	
		9	0,75	0	0	0	0,75	0	0	0	0,75	1	0	0	0	
		10	0,75	0	0	0	0,75	0	0	0	0,75	1	0	0	0	

3D plot of previous page
 By Bogutskaya Yulia (2016)

Another example under 24 rules

By Kurilenko Nikita (2016)

speed	0	0	0	0	0	5	5	5	5	5	10	10	10	10	10	15	15	15	15	15	20	20	20	20	20
distance	0	250	500	750	1000	0	250	500	750	1000	0	250	500	750	1000	0	250	500	750	1000	0	250	500	750	1000
break	4,5	2,285714	0,875	0,875	0,875	4,5	3,043478	2,772727	1,214286	0,875	6	5,764706	3,625	1,214286	0,875	8,636364	8,324324	4,85	2,521739	2,285714	8,636364	6	4,5	1,214286	0,875

practice

How about under your own 10 rules?

X : speed Y : distance Z_{i} : defuzzified brake Z : brake

X	Y	Rule 1													Rule 2													Rule 10											$\begin{gathered} \operatorname{Max} Z_{i} \\ =Z \end{gathered}$
		$\mu_{1(Z)}$												Z1	$\mu_{2(Z)}$											Z2		$\mu_{10}(\mathrm{Z})$										Z10	
		0	1	2	23	3	4	56	6	7	8	91	10		0	1	2	3	4	5	6	7	8	9	10			0	1	2	3	4	56	67	78	89	910		
	100																																						
	200																																						
	300																																						
	400																																						
2	500																										\ldots												
	600																																						
	700																																						
	800																																						
	900																																						
	100																																						
	200																																						
	300																																						
	400																																						
4	500																		-																				
	600																																						
	700																																						
	800																																						
	900																																						
	\vdots																				\vdots						\vdots						:						\vdots
	100																																						
	200																																						
	300																																						
	400																																						
18	500																										\ldots												
	600																																						
	700																																						
	800																																						
	900																																						

Two metro cars in one loop with constant speed - animation
By Navrosjuk Kostia (2016)
包 Trains - Constantine Navrosjuk
Start Pause Reset

```
Speed Blue: 2.00
Speed Green: 2.00
Distance From Blue To Green: 500
Distance From Green To Blue: 500
```

Two metros in one loop when speed changes at random By Navrosjuk Kostia (2016)

Then avoid crash of two metro cars by using appropriate value of your own 10 rules in each step!

II. Classify Iris Flowers!

Iris Flower Database to design

Setosa				Versicolor					Virginica			
x_{1}	x_{2}	x_{3}	x_{4}	x_{1}	x_{2}	x_{3}	x_{4}	x_{1}	x_{2}	x_{3}	x_{4}	
0.56	0.66	0.20	0.08	0.84	0.66	0.67	0.52	0.85	0.57	0.84	0.72	
0.62	0.70	0.22	0.04	0.66	0.61	0.57	0.56	0.91	0.82	0.88	1.00	
0.68	0.84	0.22	0.08	0.63	0.45	0.51	0.40	0.82	0.73	0.74	0.80	
0.61	0.77	0.23	0.08	0.75	0.68	0.61	0.60	0.81	0.61	0.77	0.76	
0.61	0.68	0.20	0.04	0.76	0.50	0.58	0.40	0.86	0.68	0.80	0.84	
0.54	0.68	0.16	0.04	0.77	0.66	0.68	0.56	0.72	0.57	0.72	0.80	
0.73	0.91	0.17	0.08	0.71	0.66	0.52	0.52	0.73	0.64	0.74	0.96	
0.72	1.00	0.22	0.16	0.85	0.70	0.64	0.56	0.81	0.73	0.77	0.92	
0.68	0.89	0.19	0.16	0.71	0.68	0.65	0.60	0.82	0.68	0.80	0.72	
0.65	0.80	0.20	0.12	0.73	0.61	0.59	0.40	0.97	0.86	0.97	0.88	
0.72	0.86	0.25	0.12	0.78	0.50	0.65	0.60	0.97	0.59	1.00	0.92	
0.65	0.86	0.22	0.12	0.71	0.57	0.57	0.44	0.76	0.50	0.72	0.60	
0.68	0.77	0.25	0.08	0.75	0.73	0.70	0.72	0.87	0.73	0.83	0.92	
0.65	0.84	0.22	0.16	0.77	0.64	0.58	0.52	0.71	0.64	0.71	0.80	
0.58	0.82	0.14	0.08	0.80	0.57	0.71	0.60	0.97	0.64	0.97	0.80	
0.65	0.75	0.25	0.20	0.77	0.64	0.68	0.48	0.80	0.61	0.71	0.72	
0.61	0.77	0.28	0.08	0.81	0.66	0.62	0.52	0.85	0.75	0.83	0.84	

The original x 1 values of 3 families of iris flower and determination the range of Large, Medium and Small.

Original data of x_{1}								
Setosa Versicolor Virginica						Large	Medium	short
0.56	0.84	0.85				0.97	0.78	0.68
0.62	0.66	0.91		=>		0.97	0.77	0.68
0.68	0.63	0.82				0.97	0.77	0.68
0.61	0.75	0.81		Sort		0.91	0.77	0.66
0.61	0.76	0.86		in 3 colu		0.87	0.76	0.65
0.54	0.77	0.72		cending		0.86	0.76	0.65
0.73	0.71	0.73		and then		0.85	0.75	0.65
0.72	0.85	0.81		into 3 ca		0.85	0.75	0.66
0.68	0.71	0.82		into 3 cat		0.85	0.73	0.63
0.65	0.73	0.97				0.84	0.73	0.62
0.72	0.78	0.97				0.82	0.73	0.61
0.65	0.71	0.76				0.82	0.72	0.61
0.68	0.75	0.87				0.81	0.72	0.61
0.65	0.77	0.71	Large	Medium	short	0.81	0.72	0.58
0.58	0.80	0.97				0.81	0.71	0.56
0.65	0.77	0.80				0.80	0.71	0.64
0.61	0.81	0.85				0.80	0.71	
							0.71	
						0.853	0.741	0.629
						0.0599	0.0244	0.0422

In this way we get:

x1	$0.97 \cdots 0.800 .78 \cdots 0.710 .68 \cdots 0.64$			
	avg std	0.853	0.741	0.629
		0.0599	0.0244	0.0422
x2	$1.00 \cdots 0.750 .73 \cdots 0.660 .64 \cdots 0.45$			
	avg	0.821	0.683	0.578
	std	0.0690	0.0271	0.0584
X3	$1.00 \cdots 0.710 .70 \cdots 0.510 .28 \cdots 0.14$			
	avg	0.806	0.613	0.213
	std	0.0949	0.0571	0.0355
x4	$1.00 \cdots 0.720 .60 \cdots 0.400 .20 \cdots 0.04$			
	avg	0.831	0.520	0.101
	std	0.0900	0.0700	0.0472

Membership function of Small, Medium and Large for $\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3$, and x 4

Now let's translate numerical values into human language

Setosa				Versicolor			
x1	x2	x3	x4	x1	x2	x3	x 4
small	medium	small	small	large	medium	um	,
small	medium	small	small	small	medium	medium	
small	large	small	small	small	large	medium	edium
small	large	small	small	medium	large	medium	ium
small	medium	small	small	medium	medium	medium	medium
small	medium	small	small	medium	medium	m	m
medium	large	small	small	large	large	medium	edium
medium	large	small	small	medium	large	edium	medium
small	large	small	small	small	large	medium	medium
small	large	small	small	small	large	medium	medium
medium	large	small	small	medium	large	medium	medium
small	large	small	small	medium	large	medium	medium
small	large	small	small	medium	large	medium	medium
small	large	small	small	medium	large	medium	large
small	large	small	small	medium	large	medium	medium
small	large	small	small	large	large	arge	medium
small	large	small	small	medium	large	medium	medium
small	large	small	small	large	large	medium	medium

Virginica			
$\times 1$	$\times 2$	$\times 3$	$\times 4$
large	small	large	large
large	large	large	large
large	medium	large	large
large	small	large	large
large	medium	large	large
large	small	large	large
medium	small	large	large
medium	medium	large	large
large	medium	large	large
large	large	large	large
large	small	large	large
large	medium	large	large
medium	medium	large medium	
large	medium	large	large
medium	small	large	large
large	small	large	large
large	small	large	large
large	large	large	large

Rules to classify iris flowers

E.g.

$$
\begin{aligned}
& \mathrm{R}_{1}: \text { IF } \mathrm{x} 1=\square \text { small } \text { AND } \mathrm{x} 2=\square \text { large } \text { AND } \mathrm{x} 3=\square \text { small } \text { AND } \mathrm{x} 4=\text { small } \text { THEN } \mathrm{y}=1 \\
& \text { OR } \\
& \mathrm{R}_{2}: \text { IF } \mathrm{x} 1=\text { medium AND } \mathrm{x} 2=\square \text { large } \text { AND } \mathrm{x} 3=\text { medium AND } \mathrm{x} 4=\text { medium THEN } \mathrm{y}=2 \\
& \text { OR } \\
& \mathrm{R}_{3}: \text { IF } \mathrm{x} 1=\square \text { large } \text { AND } \mathrm{x} 2=\square \text { small } \text { AND } \mathrm{x} 3=\square \text { large AND } \mathrm{x} 4=\square \text { large THEN } \mathrm{y}=3 \\
& \text { OR } \\
& \mathrm{R}_{4}: \text { IF } \mathrm{x} 1=\text { large AND } \mathrm{x} 2=\text { medium AND } \mathrm{x} 3=\text { large AND } \mathrm{x} 4=\square \text { large THEN } \mathrm{y}=3
\end{aligned}
$$

which family the next irises belongs to?

$$
x 1=0.80, x 2=0.75, x 3=0.87 \text { and } x 4=1.00
$$

R1:	x1 small	x2 large	$\begin{gathered} \text { x3 } \\ \text { small } \end{gathered}$	$\begin{gathered} \text { x4 } \\ \text { small } \end{gathered}$	$y=\{$	$\left(M_{k}(x) \cdot g_{k}\right\} /\left\{\Sigma_{k=1}^{H}\right.$	$\left(M_{k}(X)\right\}(H=4$ and $j=1,2,3,4)$
R2:	medium	large	medium	medium	2	M	
R3:	large	small	large	large		$M_{k}(x)=\prod_{i=1} \mu_{i k}\left(x_{i}\right)$	($M=4$)
R4:	large	medium	large	large	3	$\mathrm{k}=$ index of rule, $\mathrm{H}=\mathrm{n}$	number of rule, $\mathrm{M}=$ number of attribute
		X1		X2		X3	X5
Large:	$\exp (-0.5($ (x	-0.853)/0.0599	9**2) ex	$\exp (-0.5((x-0.82)$	21)/(0.0690)**2)	$\exp (-0.5((x-0.806) / 0.0949) *$ * 2)	$\exp \left(-0.5((x-0.831) / 0.0900)^{* * 2} 2\right)$
Medium:	exp $(-0.5($ (\times	0.741)/0.024	4)**2) ex	$\exp (-0.5((x-0.6$	83)/(0.0271)**2)	$\exp \left(-0.5((x-0.614) / 0.0571)^{* * 2}\right)$	$\exp \left(-0.5((x-0.520) / 0.0700)^{* * 2} 2\right)$
Small:	$\exp (-0.5($ (\times	-0.629)/0.042	2)*2) ex	$\exp (-0.5($ ($x-0.5$	78)(0.0584)**2)	$\exp (-0.5((x-0.213) / 0.0355) * * 2)$	$\exp \left(-0.5((x-0.101) / 0.0472)^{* *} 2\right)$

$\mu 11=\exp \left(-0.5((0.80-0.629) / 0.0422)^{\wedge} 2\right)=0.000: \mu 12=\exp \left(-0.5((0.75-0.821) / 0.0690)^{\wedge} 2\right)=0.589: \mu 13=\exp \left(-0.5((0.87-0.213) / 0.0355)^{\wedge} 2\right)=0.000: \mu 14=\exp \left(-0.5((1.00-0.101) / 0.0472)^{\wedge} 2\right)=0.000$ $\mu 21=\exp \left(-0.5((0.80-0.741) / 0.0244)^{\wedge} 2\right)=0.054: \mu 22=\exp \left(-0.5((0.75-0.821) / 0.0690)^{\wedge} 2\right)=0.589: \mu 23=\exp \left(-0.5((0.87-0.614) / 0.0571)^{\wedge} 2\right)=0.000: \mu 24=\exp \left(-0.5((1.00-0.520) / 0.0700)^{\wedge} 2\right)=0.000$ $\mu 31=\exp \left(-0.5((0.80-0.853) / 0.0599)^{\wedge} 2\right)=0.068: \mu 32=\exp \left(-0.5((0.75-0.578) / 0.0584)^{\wedge} 2\right)=0.013: \mu 33=\exp \left(-0.5((0.87-0.806) / 0.0949)^{\wedge} 2\right)=0.797: \mu 34=\exp \left(-0.5((1.00-0.831) / 0.0900)^{\wedge} 2\right)=0.172$ $\mu 41=\exp \left(-0.5((0.80-0.853) / 0.0599)^{\wedge} 2\right)=0.068: \mu 42=\exp \left(-0.5((0.75-0.683) / 0.0271)^{\wedge} 2\right)=0.047: \mu 43=\exp \left(-0.5((0.87-0.806) / 0.0949)^{\wedge} 2\right)=0.797: \mu 44=\exp \left(-0.5((1.00-0.831) / 0.0900)^{\wedge} 2\right)=0.172$

M1 $=0.000 \times 0.589 \times 0.000 \times 0.000=0.00000000$
M2 $=0.054 \times 0.589 \times 0.000 \times 0.000=0.00000000$
M3 $=0.068 \times 0.013 \times 0.797 \times 0.172=0.00012118$
$y=(0.0000000 \times 1+0.000000 \times 2+0.00012118 \times 3+0.00043812 \times 3) /(0.0000000+0.00000000+0.00012118+0.00043812$
$=0.00167790 / 0.0005593$
M4 $=0.068 \times 0.047 \times 0.797 \times 0.171=0.00043812$

Banana dataset

A		B	
X_{1}	x_{2}	x_{1}	x_{2}
-1.520	-1.150	1.140	-0.114
-0.916	0.397	-1.050	0.720
-1.090	0.437	1.830	0.452
-0.584	0.094	1.790	-0.459
-1.250	-0.286	-0.122	-0.808
1.700	1.210	-0.768	-1.040
-0.482	-0.485	0.724	0.989
0.081	1.930	0.444	1.990
-0.541	-0.332	-1.010	-1.360
-1.690	-1.150	1.280	0.691
1.260	1.210	0.925	0.895
-0.863	0.496	-0.687	-1.290
1.160	0.458	1.710	-0.044
-0.595	-0.651	1.120	0.626
-0.770	0.364	1.300	0.196
-0.871	-0.825	1.130	1.480
0.996	-1.700	0.763	0.921
1.740	0.964	-1.410	1.110
1.180	-0.335	-0.750	-0.881
2.520	1.430	1.116	0.978
0.271	-0.591	1.130	0.405
-1.590	--0.68	-0.522	-1.340
0.408	0.067	-1.310	1.250
0.009	-0.434	0.041	-1.130
-2.140	-1.430	0.048	0.866
0.007	0.012	-2.110	0.193
-0.352	-0.490	0.522	1.460
1.330	1.510	0.028	1.620
1.090	-1.370	0.536	0.921
-1.670	-1.260	-0.123	-1.070
-0.508	-9.715	0.526	1.480

- Sort values in both of A and B respectively
- Divide these sorted values into 3 groups - large, medium \& small
- Calculate avg \& std of these 6 groups
- Draw Gaussian membership functions for each of these 6 groups
- Translate all numerical values into natural language: large, medium \& small
- Create rules to classify data
- Then guess that the data $[x 1=-1.620 \& x 2=0.468$ is class A or B

Mammo graphic dataset

 (extracted from UCI (University of California, Irvine) Machine Learning Repository)| Normal | | | | |
| :---: | :---: | :---: | :---: | :---: |
| x_{1} | x_{2} | x_{3} | x_{4} | x_{5} |
| 5 | 57 | 3 | 5 | 3 |
| 5 | 58 | 4 | 5 | 3 |
| 5 | 57 | 1 | 5 | 3 |
| 5 | 76 | 1 | 4 | 3 |
| 3 | 42 | 2 | 1 | 3 |
| 4 | 59 | 2 | 1 | 3 |
| 4 | 54 | 1 | 1 | 3 |
| 5 | 56 | 4 | 3 | 1 |
| 5 | 42 | 4 | 4 | 3 |
| 4 | 59 | 2 | 4 | 3 |
| 5 | 75 | 6 | 5 | 3 |
| 6 | 71 | 4 | 4 | 3 |
| 5 | 62 | 3 | 5 | 2 |
| 5 | 80 | 3 | 5 | 3 |
| 5 | 74 | 1 | 1 | 2 |

Not normal
$X_{1} X_{2} X_{3} X_{4} X_{5}$

4	28	1	1	3
4	36	3	1	2
4	60	2	1	2
4	54	1	1	3
3	52	3	4	3
5	86	4	4	3
5	66	4	4	4
5	60	3	1	3
3	45	2	1	3
3	43	2	1	3
2	49	2	1	3
4	47	3	1	3
4	24	2	1	3
6	41	2	1	3
4	19	1	1	3

- Sort values in both Normal and Not normal
- Divide these sorted values into 2 groups - Large \& Small
- Calculate avg \& std of these 10 groups
- Draw Gaussian membership functions of each of these 10 groups
- Translate all numerical values into Large or Small
- Create rules to classify data
- Then guess that data (4, 62, 3, 3, 3) is Normal or Not normal

