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to the same class, resulting in one cluster per expected class, and we arrive at the
desired representation (Figure 4(d)).

3.3.2 Local Distribution of Dissimilarity Values

While the spatial entropy measure reflects an organisation of the vertices into clus-
ters, 1t does not indicate whether vertices are placed into the correct classes or not.
Using the class of random class described above, we know a priori the class size
and to which class each vertex is expected to belong. The errors of allocation due
to the probability pint are small enough as shown by Garbers and al. (1990) to
be ignored here. To verify the good repartition of vertices into classes we study
the evolution of the sum for each vertex vi of the dissimilarities between v; and its
nearest neighbours -for the /;-distance- on the grid

% Z Z d(vi,vj)

uer v €Ny (vy)

with N¢(v;) the set of the (ne — 1) nearest neighbours of v; minus the number
of vertices of its class which are being displaced by automata at ¢. The sum is
normalised by dividing by the total number K; of dissimilarity calculations. The
minimum value is reached when the nec closest cousins to every vertex all belong
to the same class. Hence this measure reflects not only that vertices are placed
in the”correct” cluster, but also whether cluster separation is good. Figure 3(b)
illustrates its variation with time for the graph described above : the rapid initial
clustering corresponds to the curve’s large initial gradient, the subsequent agglomer-
ation of the numerous small clusters then corresponding to a slower rate of decrease.

Figure 5 and 6 give both the variation of the spatial entropy and the local dis-
tribution of dissimilarity values for several graphs Gear(k, ne, pint, pest) described
in 4.2. ; the curves confirm the good visual results noticed previously. In order to
compare with a family of graph well-known in VLSI literature we only presented
here experiments with classes of equal sizes. Nevertheless the algorithm was also
applied to graphs containing a priori various vertex classes and the results were as
good as for equivalent cardinalities (Layzell 1995). The only problem appears for
graphs containing one or more big subgraphs with a lot of links ; instead of group-
ing all the vertices of such a set in a same class it tends to create different smallest
classes.

4 Discussion
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3.3.1 Spatial entropy

Let T'y, ..., Ty be a partition of the grid T' in » sub-grids of same size (usually called
grain from physics). The spatial entropy associated with this partition is defined
by

- ZPt(Fi)ZOg(pt(Fi))

with p(G;) the proportion of vertices on G; at time ¢t. This measure reaches its
minimum value 0 when their exists a sub-grid I'; which contains all the vertices and
its maximum value 1 in case of uniform distribution pt(T'y) = ... = pt(T,) = 1/r.
It is used to reveal the existence of a structuration of the vertices on the space :
the evolution from the initial random distribution of vertices, to their placement in
compact clusters translates into a reduction in overall spatial entropy.

Figure 3(a) depicts the variation of the spatial entropy for different grain sizes
(3x 3 and 6 x 6) for a graph Ggar(8,25,0.25,0.0032). The large rapid decrease
corresponds to a rapid initial clustering. Isolated vertices are quickly moved to
locations of high local density (i.e. close to the positions of other vertices with
which they are highly linked) and a number of clusters are quickly established, each
containing vertices of the same expected class (Figure 4(b)). However the quantity
of clusters at this stage greatly exceeds k. Small clusters are unstable, since the
surrounding empty grid locations lead to relatively small values of f. Hence vertices
within these clusters are moved to join other clusters, resulting in fewer, larger
clusters, as shown in Figure 4(c). The entropy measurement shows this phase
quite clearly - while spatial entropy with grain size 3x 3 stabilises, the entropy
measurement for 6 x 6 grains continues to fall. Finally, stochastic fluctuations at the
borders of clusters lead to the domination of one cluster over others corresponding



this area ”attracts” more and more dissimilar vertices, resulting eventually in
all the clusters lying in the same part of the grid, with little or no separation
between them. If « is small then the algorithm tends to produce many, small
classes. The most appropriate values for a were found by experimentation to
lie in the range [0.8, 1].

e Number of automatons : it should be fairly small with respect to the number of
vertices n. A large number results in the displacement of too many vertices at
any one time which disturb local optimisations : n should exceed the number
of automatons by approximately an order of magnitude.

e Grid size : the quantity of grid positions should exceed the quantity of graph
vertices, n, by roughly an order of magnitude . Smaller grids inhibit class
separation, since they do not have sufficient unoccupied positions, whereas
larger grids, due to the increased search space involved, require more time
steps to achieve classification.

In order to speed up the algorithm two slight modifications have been add to the
basis version. Automaton ah such that s:(ap) = (Il;(ap), 0) is directly displaced
onto a vertex position chosen randomly. If s;(ap) = (IT;(an), v;) and the position
chosen to place v; is already occupied, an unoccupied position on a connected cell
of TI;(ay) is chosen. Let us just notice that although the computational time was
not here our main interest, due to the relatively simple calculations employed by
the algorithm, it is low at 3 or 4 minutes on a 486 Personal Computer for a graph
containing 500 vertices.

3.2 Results on Random Graphs

To evaluate the performances of the algorithm we consider a well-known class in
VLSI layout of random graphs with an ”expected structure” (Garbers and al. 1990).
Let us denote by Ggar(k, nc, pint, Pest) a graph containing k clusters of ne vertices
each, where the probability of an edge vi, vj is pssns if v; and v; belong to the same
cluster (i.e. if i = j (modulo ne) ), and pey+ otherwise, all edges being chosen in-
dependently. Figure 1 shows the representation of Ggar(4,25,0.167,0.0032) after
200000 iterations of the algorithm ; four compact and well separated clusters con-
taining vertices 1-25, 26-50, 51-75, and 76 -100 are easily distinguishable, reflecting
the expected underlying structure of the graph.

The algorithm has been successively applied to graphs Gganr(k, nc, pint, Dest)
containing up to 500 vertices, with a variety of class sizes from ne = 10 to 50,
with pine = O(ne — 1/2). In all cases, the expected classes are reflected on the
grid by easily identifiable clusters. An application of factor analysis to the same
graphs with the same dissimilarity on vertices shows that, for graphs with large &,
a representation on the plane R? does not allow all clusters to be distinguished ;
as already shown by Fraysseix and al. (1993) additional dimensions are needed.
A comparison on a graph of Ggar(10,10,0.4,0.004) is presented Figure 2. TFor
the algorithm presented here; different experiments show that for large graphs it
is sufficient, for the algorithm presented here, to increase the grid size to obtain a
legible representation.

3.3 Quantitative evaluation

Clustering is achieved by interactions on a local scale, hence no global criterion
is required. In order to evaluate the global success of the algorithm quantitively,
and to aid in explaining its operation, we introduce two measures which reflect the
visual state of the grid representation as the algorithm proceeds.



adjacent to the vertex v; , and includes v; :
plvi) = {v; € Vi {vi,v;} € B} U {v}

We propose the use of a dissimilarity which has been applied to problems of
pagination (Fraysseix and Kuntz 1992) ; it reflects properties of local density and
is aimed at regrouping in the same class those vertices having a number of common
neighbours and few distinct neighbours :

d (vi,vj) lp(vi)| + |p (vj)]

where A designates the symmetric difference. In describing the graph by its
adjacency matrix, d can be recognised as the Czekanowski - Dice coefficient which
was originally defined to evaluate differences between binary data in ecology (Dice
1945). Tts geometric properties have been studied by several authors (e.g. Gower
and Legendre 1984 ; Joly and Le CalvY 1994) ; d is a [;-distance. Some heuristics
for isometric representations or approximations according to classical global criteria
in multidimensional scaling have been recently proposed (Hubert and Arabie 1992)
but their complexities are too high for applications on large data sets. Here we
relax such requirements for the representation on (T, d). The dissimilarity d carries
only local information : it takes the same value, 1, for all pairs of vertices which are
non-adjacent and without common neighbours. Consequently the representation is
geared to preserving on the one hand the isometry for the small values of d, and
on the other just the order between the small and the large values ; the relative
positioning of clusters here is arbitrary.

3 Computational Experiments

3.1 Choice of Parameters

The performances of the algorithm depend on a set of independant parameters which
concern the probabilities of placement/displacement, the local density function, its
distributed character with the number of automatons and the size of the grid for
graph representation. Nevertheless this latter is robust in the sense here that the
simulations show the stability of its results for a wide range of parameters settings.
Their respective efficient values are given below.

e Probabilities of placement/displacement : The constants k, and k4 determine
the extent to which the probabilities p,(v;) and pq(v;) depend on the local
density function f. Numerical experimentation has revealed that they affect
rather the speed with which clustering is achieved rather than the quality of
clustering, with the exception that large values lead to unstable clusters if
class cardinalities are small (< 20). For the runs described below they were
set within the range 0.03 to 0.1.

e Local density function : since algorithm relies on interactions on a local scale,
the local area size S should be small,i.e. 3 x3 or 6 x6. The constant « € [0, 1]
has, as described in section2.1, the dual role of scaling dissimilarities so that
close vertices end up in the same cluster, and ensuring a good separation
between clusters. If « = Maxd(v;,v;);v; € S then f(v;) yields relatively high
values even for areas containing a mixture of vertices with both low and high
dissimilarity to v;. This leads to poor separation of the classified clusters : such
areas would form in practice around a vertex with intermediate values of d,
usually around the cluster boundaries. The high value of f(v;) associated with



1. Select a;, at random from A.

2. Vertex displacement :
If s¢(apn) = (¢ (ap), v;) then
- place v; in T (ap) (i.e. Mepq(v;) = M (ap))
with probability p,(v;).
- increment list(ap) by (vi, Hegp1(vs))

If s¢(an) = (Tly(an),0) and Jv; € V s.t. e(v;) = Hi(ap) then
- displace v; (i.e. sip1(an) = (Heg1(ar), vi)) with
probability pa(v;)
- choose vF € list(ay) s.t d(I1;(ay), P(v*)) =
Min{d(IT,(ap), P(v;));v; € list(ap)
- set §, = 0 and 6% =5, + 07, (e
57 = 61(Telan), P()) + 05y (an), P()))

3. Automaton displacement :
If s¢(an) = (Ty(ap), 0) then
- displace ap by r grid elements in a random
direction.
If s¢(apn) = (¢ (ap), v;) then
if 05 < 47 then otherwise
- displace ay, by r grid elements in a
random direction with probability p,
otherwise
- displace aj, by 7 grid elements in the
direction of the x-axis (resp. y-axis)
towards v* with probability
(Sh = (Sh + (5(Ht(ah), Ht+1(ah))
- displace ap by r grid elements in a random
direction

The probability p, just introduces a small noise to cope with certain configu-
rations which would otherwise engender blockages, i.e. where automata prevent
eachother from moving. An simple example is two automata lying on the same
grid row, separated by r elements. Each is being displaced towards vertices in their
respective tabu lists which also lie on the same row, but beyond the position of the
other automaton. The probability p, was set to 0.05 for all runs.

2.2 Dissimilarity on the Vertex Set

In embedding the abstract graph in a metric space £ the aim is to convey explicitly
through the subsequent geometric representation, the relationships of interdepen-
dence between the graph’s vertices upon which an efficient partition is based. Here,
these relationships are transferred into the new representation by means of a dis-
similarity d, the representation in E having to preserve a certain isometry with
respect to d. Generally speaking, the choice of the dissimilarity is a function of
both the information available on the graph, and any constraints imposed by the
desired application. The information may be of various natures : 1t may concern, in
the case of electronic circuits, e.g. the physical properties of the circuit components
or electrical network on which the graph is modelled (e.g. Lagognotte 1991), or
it may concern the topological characteristics of the abstract graph (Buckley and
Harary 1990). We deal with the latter case : here, the dissimilarity between any
two vertices of (G is calculated from the simple description of relationships of adja-
cence between the vertices of V. Let r(v;) denote the set of vertices of V' which are



2.1 The Ant Clustering Algorithm

We present an adaptation of the principles of Lumer and Faieta’s algorithm based
on the behavioural model of the ant colony proposed by Deneubourg and al. A set
A of finite-state automata ay is initially layed out at random positions on I', as are
the vertices of V' (as here no ambiguity is possible we will continue to denote the
embedded vertex on the grid by v; ). Let TI;(ap) and I;(v;) denote respectively the
positions of a; and v; on I' at each descrete time step t. At each ¢, an automaton
of A is selected at random. If a vertex lies on its position, the automaton can
displace the vertex onto another position. Otherwise the automaton changes its
own position in a random direction. The act of displacing the vertex onto its new
position is carried out in a probabilistic manner and may take several time steps.
Since a different automaton is selected at ¢, a number of automata and vertices may
be in the process of displacement at any one time, resulting in an effective parallel
operation.

The probability ps(v;) that an automaton will displace a vertex v; increases
the more v; is isolated, 1.e. where the number of similar vertices in the immediate
neighbourhood is small. By the same token the probability p, (v;) that an automaton
will place a vertex v; onto a new position increases with the number of similar
vertices in the immediate neighbourhood. These probabilities are defined by

i = ()

(v )2
Ppl\v;) =
p( ) (kp + f(vz)
with kg4 and &, constants

The local density function f represents an estimation of the density of similar
vertices to v; in its neighbourhood, defined here by an area S of ¢ x ¢ elements of
I' in which v; lies at the centre

Flvi) = { 57 Lt (v)es (1 - %) if f(vi) >0,

0 otherwise

and

Note that while f can never be negative, the same is not true for the expression
within the sum. A highly dissimilar vertex to wv; is less desirable in ¥ than an
unoccupied position, hence the constant a scales the dissimilarities so that dissimilar
vertices will lead to a reduction in the overall value of f. This aspect leads ultimately
to visible separation of classified vertex clusters on I' since any area containing
both similar and dissimilar vertices will yield a low value of f, resulting in the
displacement of any vertex within. The maximum value of f is reached if and only
if all the elements of ¥ are occupied with vertices v; such that d(v;, v;) = 0, in which
case f(v;) = 1. The search for a new position for a displaced vertex progresses by
local optimisations. Each automata ah is assigned a tabu list list(ap) containing
the m pairs (v;, P(v;)), corresponding to the m last vertices v; displaced by aj and
their new positions P(v;) at the instant of placement. The displacement of a new
vertex v; is carried out by a random walk (described below) with a heavy bias in
the direction of the closest vertex in list(ap), in terms of dissimilarity d, to v;.

In the following, & = §; + J5 denotes the [i-distance on the grid I'; and 4,
(resp. d2) its projection on the x-axis (resp. the y-axis). At each ¢, the state
s¢(ap) of the automaton aj is defined by its position and either the vertex it is
currently displacing, or 0 if it is not displacing a vertex : s:(ap) = (I(an), v;)
or s¢(ap) = (Ie(ap), 0). The algorithm proceeds in discrete time steps ¢S, each
comprised of the following 3 phases :



When solving problems of partitioning, it is usual to assign to the circuit in
question a graph G = (V, E) where V is the set of vertices and E the set of edges,
such that each edge connects two vertices. The vertices of V' symbolise the dif-
ferent elements (transistors, gates or more complicated subcircuits called blocks,
for VLSI circuits) and the edges of E symbolise the physical connections between
these elements. Both vertices and edges can be weighted ; such weights reflecting
respectively for example the area taken up by a component and the multiplicity
or importance of a wiring connection. Recent years have seen the appearance of
circuits described by hypergraphs. Certain publications propose partitioning al-
gorithms which are directly applicable to hypergraphs, whilst others suggest prior
transformation of hypergraphs into graphs (Lengauer 1990). We restrain ourselves
here to the case of graphs G for which the edges can be given positive weights,
and are concerned with partitions of the set V of the graph’s vertices, i.e. of the
elements obtained by removal of the edges.

1.1 Graph Partitionning
1.2 Graph Clustering
1.3 Clustering in Ant Societies

The algorithm originates from the findings of entomologists who, on observing soci-
eties of ants, have remarked that larvae and food are not scattered randomly about
the nest, but in fact are sorted into homogenous piles. Deneubourg and al. (1990)
proposed a behavioral model where the spatial structure of the nest emerges as
a result of simple, local interactions without the need for any centralised control
or global representation of the environment. In this model, the environment is a
two dimensional grid upon which is scattered a set of objects, each having random
initial positions, and comparable with eachother by an equivalence relationship.
Each ant is modelled by an automaton which is able to to move on the grid, and
displace the objects according to probabilistic rules necessitating only local envi-
ronmental information. The combined actions of a set of these automata lead to
the grouping in the same spatial region of objects belonging to the same class of
equivalence. This model has been applied with success in robotics to demonstrate
the possibility of accomplishing complex tasks quickly, using several simple robots
instead of a single complex one (Beckers and al. 1994). Lumer and Faieta (1994)
have recently extended the model to work with objects which are comparable ac-
cording to a measure of dissimilarity; their algorithm forms one or more spatial
groups such that similar objects belong to the same group, and dissimilar ones be-
long to different groups, each group being spatially distant from one another. In
contrast to multidimensional scaling methods, this is a distributed algorithm, in the
sense that no global optimisation criterion is calculated ; only local optimisations
(by the automata) are carried out. Analysis of computer simulations shows that
the representation achieved preserves the order between small and large values of
dissimilarity. This approach was originally tested using Euclidean distances. We
extend it here to the representation of a graph with a view to its partitioning, by
defining a dissimilarity on a set of the graph’s vertices.

2 A New Graph Clustering Algorithm

We take a dissimilarity d as being defined on the set V' of graph vertices. The grid
on which the graph is represented is denoted by I'.
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1 Introduction

The size of networks of various relationships met in a wide variety of domains from
e.g. neuroscience to telecommunications is continually growing and, in order to
combat frequently inextricable calculations necessary for their analysis, different
techniques increasingly require a preliminary stage of segmentation. The domain
which has most probably produced the largest number of publications on this prob-
lem is that of Computer Aided Design (CAD). VLSI (Very Large Scale Integration)
circuits, who have known a developmental explosion during the 1980s, are very of-
ten too complex to be designed or analysed on a global basis. Hence partitioning
lies at the root of numerous CAD problems, notably (e.g. Davis-Moradkan 1990 ;
Lengaueur 1990 ; Sait and Youssef 1995) :

e pagination, in which networks are divided up so that they can be represented
legibly using automatic line-tracing software over several standard sized pages

bl

e logical tests carried out during the manufacture of integrated circuits to en-
sure reliability. The classical method of testing a small circuit composed of
logic gates is to apply successively each binary configuration possible at its
inputs. The subsequent output states then permit verification that the gates
are functioning correctly. For large circuits, such an exhaustive approach is
impractical, and an alternative method is to decompose them into testable

subcircuits of smaller size ;

e automatic circuit placement and routing, which consists of arranging the cir-
cuit components on a surface, and linking them using conductive strips, or
routes. This fundamental phase in circuit design is a complex process which
must cope with different objective functions (minimizing area taken by com-
ponents, minimizing total route lenght, ...) and numerous various constraints
(avoiding overlap of layout cells and route congestion, satisfying topological
requirements imposed by the technology, ....). Due to this complexity it is gen-
erally carried out using ”top-down” hierarchical approaches and, in practice,
the most current algorithms proceed with successive divisions of the circuit.



