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Figure 6. Graph  GGAR(8, 25, 0.25, 0.0032) representation
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to the same class� resulting in one cluster per expected class� and we arrive at the
desired representation 	Figure �	d

�

����� Local Distribution of Dissimilarity Values

While the spatial entropy measure re�ects an organisation of the vertices into clus�
ters� it does not indicate whether vertices are placed into the correct classes or not�
Using the class of random class described above� we know a priori the class size
and to which class each vertex is expected to belong� The errors of allocation due
to the probability pint are small enough as shown by Garbers and al� 	����
 to
be ignored here� To verify the good repartition of vertices into classes we study
the evolution of the sum for each vertex vi of the dissimilarities between vi and its
nearest neighbours �for the l��distance� on the grid

�

Kt

X
vi��

X
vi�Nt�vi�

d 	vi�vj


with Nt	vi
 the set of the 	nc � �
 nearest neighbours of vi minus the number
of vertices of its class which are being displaced by automata at t� The sum is
normalised by dividing by the total number Kt of dissimilarity calculations� The
minimum value is reached when the nc closest cousins to every vertex all belong
to the same class� Hence this measure re�ects not only that vertices are placed
in the�correct� cluster� but also whether cluster separation is good� Figure �	b

illustrates its variation with time for the graph described above � the rapid initial
clustering corresponds to the curve�s large initial gradient� the subsequent agglomer�
ation of the numerous small clusters then corresponding to a slower rate of decrease�

Figure � and � give both the variation of the spatial entropy and the local dis�
tribution of dissimilarity values for several graphs GGAR	k� nc� pint� pext
 described
in ���� � the curves con�rm the good visual results noticed previously� In order to
compare with a family of graph well�known in VLSI literature we only presented
here experiments with classes of equal sizes� Nevertheless the algorithm was also
applied to graphs containing a priori various vertex classes and the results were as
good as for equivalent cardinalities 	Layzell ����
� The only problem appears for
graphs containing one or more big subgraphs with a lot of links � instead of group�
ing all the vertices of such a set in a same class it tends to create di�erent smallest
classes�

� Discussion
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Figure �� Graph GGAR	�� ��� ������ ������
 representation

����� Spatial entropy

Let ��� �����r be a partition of the grid � in r sub�grids of same size 	usually called
grain from physics
� The spatial entropy associated with this partition is de�ned
by

�
rX

i��

pt	�i
log	pt	�i



with pt	Gi
 the proportion of vertices on Gi at time t� This measure reaches its
minimum value � when their exists a sub�grid �i which contains all the vertices and
its maximum value � in case of uniform distribution pt	��
 � ��� � pt	�r
 � ��r�
It is used to reveal the existence of a structuration of the vertices on the space �
the evolution from the initial random distribution of vertices� to their placement in
compact clusters translates into a reduction in overall spatial entropy�

Figure �	a
 depicts the variation of the spatial entropy for di�erent grain sizes
	�� � and � � �
 for a graph GGAR	
� ��� ����� ������
� The large rapid decrease
corresponds to a rapid initial clustering� Isolated vertices are quickly moved to
locations of high local density 	i�e� close to the positions of other vertices with
which they are highly linked
 and a number of clusters are quickly established� each
containing vertices of the same expected class 	Figure �	b

� However the quantity
of clusters at this stage greatly exceeds k� Small clusters are unstable� since the
surrounding empty grid locations lead to relatively small values of f� Hence vertices
within these clusters are moved to join other clusters� resulting in fewer� larger
clusters� as shown in Figure �	c
� The entropy measurement shows this phase
quite clearly � while spatial entropy with grain size �� � stabilises� the entropy
measurement for ��� grains continues to fall� Finally� stochastic �uctuations at the
borders of clusters lead to the domination of one cluster over others corresponding

�



this area �attracts� more and more dissimilar vertices� resulting eventually in
all the clusters lying in the same part of the grid� with little or no separation
between them� If � is small then the algorithm tends to produce many� small
classes� The most appropriate values for a were found by experimentation to
lie in the range ���
� ���

� Number of automatons � it should be fairly small with respect to the number of
vertices n� A large number results in the displacement of too many vertices at
any one time which disturb local optimisations � n should exceed the number
of automatons by approximately an order of magnitude�

� Grid size � the quantity of grid positions should exceed the quantity of graph
vertices� n� by roughly an order of magnitude � Smaller grids inhibit class
separation� since they do not have su�cient unoccupied positions� whereas
larger grids� due to the increased search space involved� require more time
steps to achieve classi�cation�

In order to speed up the algorithm two slight modi�cations have been add to the
basis version� Automaton ah such that st	ah
 � 	�t	ah
� �
 is directly displaced
onto a vertex position chosen randomly� If st	ah
 � 	�t	ah
� vi
 and the position
chosen to place vi is already occupied� an unoccupied position on a connected cell
of �t	ah
 is chosen� Let us just notice that although the computational time was
not here our main interest� due to the relatively simple calculations employed by
the algorithm� it is low at � or � minutes on a �
� Personal Computer for a graph
containing ��� vertices�

��� Results on Random Graphs

To evaluate the performances of the algorithm we consider a well�known class in
VLSI layout of random graphs with an �expected structure� 	Garbers and al� ����
�
Let us denote by GGAR	k� nc� pint� pext
 a graph containing k clusters of nc vertices
each� where the probability of an edge vi� vj is pSint if vi and vj belong to the same
cluster 	i�e� if i � j 	modulo nc
 
� and pext otherwise� all edges being chosen in�
dependently� Figure � shows the representation of GGAR	�� ��� ������������
 after
������ iterations of the algorithm � four compact and well separated clusters con�
taining vertices ����� ������ ������ and �� ���� are easily distinguishable� re�ecting
the expected underlying structure of the graph�

The algorithm has been successively applied to graphs GGAR	k� nc� pint� pext

containing up to ��� vertices� with a variety of class sizes from nc � �� to ���
with pint � O	nc � ���
� In all cases� the expected classes are re�ected on the
grid by easily identi�able clusters� An application of factor analysis to the same
graphs with the same dissimilarity on vertices shows that� for graphs with large k�
a representation on the plane R� does not allow all clusters to be distinguished �
as already shown by Fraysseix and al� 	����
 additional dimensions are needed�
A comparison on a graph of GGAR	��� ��� ���������
 is presented Figure �� For
the algorithm presented here� di�erent experiments show that for large graphs it
is su�cient� for the algorithm presented here� to increase the grid size to obtain a
legible representation�

��� Quantitative evaluation

Clustering is achieved by interactions on a local scale� hence no global criterion
is required� In order to evaluate the global success of the algorithm quantitively�
and to aid in explaining its operation� we introduce two measures which re�ect the
visual state of the grid representation as the algorithm proceeds�

�



adjacent to the vertex vi � and includes vi �

�	vi
 � fvj � V � fvi�vjg � Eg � fvig

We propose the use of a dissimilarity which has been applied to problems of
pagination 	Fraysseix and Kuntz ����
 � it re�ects properties of local density and
is aimed at regrouping in the same class those vertices having a number of common
neighbours and few distinct neighbours �

d 	vi�vj
 �
j�	vi
�� 	vj
j

j�	vi
j� j� 	vj
j

where � designates the symmetric di�erence� In describing the graph by its
adjacency matrix� d can be recognised as the Czekanowski � Dice coe�cient which
was originally de�ned to evaluate di�erences between binary data in ecology 	Dice
����
� Its geometric properties have been studied by several authors 	e�g� Gower
and Legendre ��
� � Joly and Le Calv�Y ����
 � d is a l��distance� Some heuristics
for isometric representations or approximations according to classical global criteria
in multidimensional scaling have been recently proposed 	Hubert and Arabie ����

but their complexities are too high for applications on large data sets� Here we
relax such requirements for the representation on 	�� d
� The dissimilarity d carries
only local information � it takes the same value� �� for all pairs of vertices which are
non�adjacent and without common neighbours� Consequently the representation is
geared to preserving on the one hand the isometry for the small values of d� and
on the other just the order between the small and the large values � the relative
positioning of clusters here is arbitrary�

� Computational Experiments

��� Choice of Parameters

The performances of the algorithmdepend on a set of independant parameters which
concern the probabilities of placement displacement� the local density function� its
distributed character with the number of automatons and the size of the grid for
graph representation� Nevertheless this latter is robust in the sense here that the
simulations show the stability of its results for a wide range of parameters settings�
Their respective e�cient values are given below�

� Probabilities of placement displacement � The constants kp and kd determine
the extent to which the probabilities pp	vi
 and pd	vi
 depend on the local
density function f � Numerical experimentation has revealed that they a�ect
rather the speed with which clustering is achieved rather than the quality of
clustering� with the exception that large values lead to unstable clusters if
class cardinalities are small 	� ��
� For the runs described below they were
set within the range ���� to ����

� Local density function � since algorithm relies on interactions on a local scale�
the local area size S should be small� i�e� ��� or ���� The constant � � ��� �!
has� as described in section���� the dual role of scaling dissimilarities so that
close vertices end up in the same cluster� and ensuring a good separation
between clusters� If � � Maxd	vi� vj
� vj � S then f	vi
 yields relatively high
values even for areas containing a mixture of vertices with both low and high
dissimilarity to vi� This leads to poor separation of the classi�ed clusters � such
areas would form in practice around a vertex with intermediate values of d�
usually around the cluster boundaries� The high value of f	vi
 associated with

�



�� Select ah at random from A�

�� Vertex displacement �

If st	ah
 � 	�t	ah
� vi
 then
� place vi in �t	ah
 	i�e� �t��	vi
 � �t	ah



with probability pp	vi
�
� increment list	ah
 by 	vi� �t��	vi



If st	ah
 � 	�t	ah
� �
 and �vi � V s�t� �t	vi
 � �t	ah
 then
� displace vi 	i�e� st���ah� � 	�t��	ah
� vi

 with
probability pd	vi


� choose v�i � list	ah
 s�t d	�t	ah
� P 	v�

 �
Minfd	�t	ah
� P 	vi

� vi � list	ah
g

� set �h � � and ��h � ��h� � ��h� 	i�e
��h � ��	�t	ah
� P 	v�

 � ��	�t	ah
� P 	v�




�� Automaton displacement �

If st	ah
 � 	�t	ah
� �
 then
� displace ah by r grid elements in a random
direction�

If st	ah
 � 	�t	ah
� vi
 then
if �h � ��h then

� displace ah by r grid elements in a
random direction with probability pr

otherwise
� displace ah by r grid elements in the
direction of the x�axis 	resp� y�axis

towards v� with probability
�h � �h � �	�t	ah
��t��	ah



otherwise

� displace ah by r grid elements in a random
direction

The probability pr just introduces a small noise to cope with certain con�gu�
rations which would otherwise engender blockages� i�e� where automata prevent
eachother from moving� An simple example is two automata lying on the same
grid row� separated by r elements� Each is being displaced towards vertices in their
respective tabu lists which also lie on the same row� but beyond the position of the
other automaton� The probability pr was set to ���� for all runs�

��� Dissimilarity on the Vertex Set

In embedding the abstract graph in a metric space E the aim is to convey explicitly
through the subsequent geometric representation� the relationships of interdepen�
dence between the graph�s vertices upon which an e�cient partition is based� Here�
these relationships are transferred into the new representation by means of a dis�
similarity d� the representation in E having to preserve a certain isometry with
respect to d� Generally speaking� the choice of the dissimilarity is a function of
both the information available on the graph� and any constraints imposed by the
desired application� The information may be of various natures � it may concern� in
the case of electronic circuits� e�g� the physical properties of the circuit components
or electrical network on which the graph is modelled 	e�g� Lagognotte ����
� or
it may concern the topological characteristics of the abstract graph 	Buckley and
Harary ����
� We deal with the latter case � here� the dissimilarity between any
two vertices of G is calculated from the simple description of relationships of adja�
cence between the vertices of V � Let r	vi
 denote the set of vertices of V which are

�



��� The Ant Clustering Algorithm

We present an adaptation of the principles of Lumer and Faieta�s algorithm based
on the behavioural model of the ant colony proposed by Deneubourg and al� A set
A of �nite�state automata ah is initially layed out at random positions on �� as are
the vertices of V 	as here no ambiguity is possible we will continue to denote the
embedded vertex on the grid by vi 
� Let �t	ah
 and �t	vi
 denote respectively the
positions of ah and vi on � at each descrete time step t� At each t� an automaton
of A is selected at random� If a vertex lies on its position� the automaton can
displace the vertex onto another position� Otherwise the automaton changes its
own position in a random direction� The act of displacing the vertex onto its new
position is carried out in a probabilistic manner and may take several time steps�
Since a di�erent automaton is selected at t� a number of automata and vertices may
be in the process of displacement at any one time� resulting in an e�ective parallel
operation�

The probability pd	vi
 that an automaton will displace a vertex vi increases
the more vi is isolated� i�e� where the number of similar vertices in the immediate
neighbourhood is small� By the same token the probability pp	vi
 that an automaton
will place a vertex vi onto a new position increases with the number of similar
vertices in the immediate neighbourhood� These probabilities are de�ned by

pd	vi
 �

�
kd

kd � f	vi


��

and

pp	vi
 �

�
f	vi


kp � f	vi


��
with kd and kp constants
The local density function f represents an estimation of the density of similar

vertices to vi in its neighbourhood� de�ned here by an area S of � � � elements of
� in which vi lies at the centre

f	vi
 �

�
�
��

P
vi�	t�vi��


�
�� d�vi�vj�

�

�
iff	vi
 	 ��

� otherwise

Note that while f can never be negative� the same is not true for the expression
within the sum� A highly dissimilar vertex to vi is less desirable in " than an
unoccupied position� hence the constant a scales the dissimilarities so that dissimilar
vertices will lead to a reduction in the overall value of f � This aspect leads ultimately
to visible separation of classi�ed vertex clusters on � since any area containing
both similar and dissimilar vertices will yield a low value of f � resulting in the
displacement of any vertex within� The maximum value of f is reached if and only
if all the elements of " are occupied with vertices vj such that d	vi� vj
 � �� in which
case f	vi
 � �� The search for a new position for a displaced vertex progresses by
local optimisations� Each automata ah is assigned a tabu list list	ah
 containing
the m pairs 	vi� P 	vi

� corresponding to the m last vertices vi displaced by ah and
their new positions P 	vi
 at the instant of placement� The displacement of a new
vertex vj is carried out by a random walk 	described below
 with a heavy bias in
the direction of the closest vertex in list	ah
� in terms of dissimilarity d� to vj �

In the following� � � �� � �� denotes the l��distance on the grid �� and ��
	resp� ��
 its projection on the x�axis 	resp� the y�axis
� At each t� the state
st	ah
 of the automaton ah is de�ned by its position and either the vertex it is
currently displacing� or � if it is not displacing a vertex � st	ah
 � 	�t	ah
� vi

or st	ah
 � 	�t	ah
� �
� The algorithm proceeds in discrete time steps tS� each
comprised of the following � phases �

�



When solving problems of partitioning� it is usual to assign to the circuit in
question a graph G � 	V�E
 where V is the set of vertices and E the set of edges�
such that each edge connects two vertices� The vertices of V symbolise the dif�
ferent elements 	transistors� gates or more complicated subcircuits called blocks�
for VLSI circuits
 and the edges of E symbolise the physical connections between
these elements� Both vertices and edges can be weighted � such weights re�ecting
respectively for example the area taken up by a component and the multiplicity
or importance of a wiring connection� Recent years have seen the appearance of
circuits described by hypergraphs� Certain publications propose partitioning al�
gorithms which are directly applicable to hypergraphs� whilst others suggest prior
transformation of hypergraphs into graphs 	Lengauer ����
� We restrain ourselves
here to the case of graphs G for which the edges can be given positive weights�
and are concerned with partitions of the set V of the graph�s vertices� i�e� of the
elements obtained by removal of the edges�

��� Graph Partitionning

��� Graph Clustering

��� Clustering in Ant Societies

The algorithm originates from the �ndings of entomologists who� on observing soci�
eties of ants� have remarked that larvae and food are not scattered randomly about
the nest� but in fact are sorted into homogenous piles� Deneubourg and al� 	����

proposed a behavioral model where the spatial structure of the nest emerges as
a result of simple� local interactions without the need for any centralised control
or global representation of the environment� In this model� the environment is a
two dimensional grid upon which is scattered a set of objects� each having random
initial positions� and comparable with eachother by an equivalence relationship�
Each ant is modelled by an automaton which is able to to move on the grid� and
displace the objects according to probabilistic rules necessitating only local envi�
ronmental information� The combined actions of a set of these automata lead to
the grouping in the same spatial region of objects belonging to the same class of
equivalence� This model has been applied with success in robotics to demonstrate
the possibility of accomplishing complex tasks quickly� using several simple robots
instead of a single complex one 	Beckers and al� ����
� Lumer and Faieta 	����

have recently extended the model to work with objects which are comparable ac�
cording to a measure of dissimilarity� their algorithm forms one or more spatial
groups such that similar objects belong to the same group� and dissimilar ones be�
long to di�erent groups� each group being spatially distant from one another� In
contrast to multidimensional scaling methods� this is a distributed algorithm� in the
sense that no global optimisation criterion is calculated � only local optimisations
	by the automata
 are carried out� Analysis of computer simulations shows that
the representation achieved preserves the order between small and large values of
dissimilarity� This approach was originally tested using Euclidean distances� We
extend it here to the representation of a graph with a view to its partitioning� by
de�ning a dissimilarity on a set of the graph�s vertices�

� A New Graph Clustering Algorithm

We take a dissimilarity d as being de�ned on the set V of graph vertices� The grid
on which the graph is represented is denoted by ��

�
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� Introduction

The size of networks of various relationships met in a wide variety of domains from
e�g� neuroscience to telecommunications is continually growing and� in order to
combat frequently inextricable calculations necessary for their analysis� di�erent
techniques increasingly require a preliminary stage of segmentation� The domain
which has most probably produced the largest number of publications on this prob�
lem is that of Computer Aided Design 	CAD
� VLSI 	Very Large Scale Integration

circuits� who have known a developmental explosion during the ��
�s� are very of�
ten too complex to be designed or analysed on a global basis� Hence partitioning
lies at the root of numerous CAD problems� notably 	e�g� Davis�Moradkan ���� �
Lengaueur ���� � Sait and Youssef ����
 �

� pagination� in which networks are divided up so that they can be represented
legibly using automatic line�tracing software over several standard sized pages
�

� logical tests carried out during the manufacture of integrated circuits to en�
sure reliability� The classical method of testing a small circuit composed of
logic gates is to apply successively each binary con�guration possible at its
inputs� The subsequent output states then permit veri�cation that the gates
are functioning correctly� For large circuits� such an exhaustive approach is
impractical� and an alternative method is to decompose them into testable
subcircuits of smaller size �

� automatic circuit placement and routing� which consists of arranging the cir�
cuit components on a surface� and linking them using conductive strips� or
routes� This fundamental phase in circuit design is a complex process which
must cope with di�erent objective functions 	minimizing area taken by com�
ponents� minimizing total route lenght� ���
 and numerous various constraints
	avoiding overlap of layout cells and route congestion� satisfying topological
requirements imposed by the technology� ����
� Due to this complexity it is gen�
erally carried out using �top�down� hierarchical approaches and� in practice�
the most current algorithms proceed with successive divisions of the circuit�


