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Abstract 
Fuzzy ARTMAP is one of the families of the neural network architectures bused on ART(Adaptive 
Resonance Theory) in which supervised learning can be curried out. However, it usually tends to create 
more categories than are actually needed. This often causes the so culled overfitting problem, namely the 
performunce of the networks in test set is not monotonically increasing with the additional training epochs 
and cutegory creation, j&-fuzzy ARTMAP. In order to avoid the overfitting problem, Carpenter und Tun 
[Carpenter and Tan, 19931 proposed a confidence-based pruning method by eliminating those categories 
that were either less useful or less accurate. This puper proposes yet another alternative pruning method 
thut is bused on the Minimal Description Length (MDL) principle. The MDL principle can be viewed as a 
tradeoflbetween theory complexity and data prediction accurucy given the theory. We adopted Cumeron- 
Jones’ error encoding scheme and Quinlan’s mod@er for theory encoding to estimate the fuzzy 
ARTMAP theory description length. A greedy search algorithm of the minimum description length to 
prune the fiizzy ARTMAP categories one by one is proposed. The experiments sh.owed that fuzzy ARTMAY 
pruned with the MDL principle gave better performance with .fur fewer categories created than the 
original fuzzy ARTMAP and other machine learning systems on a number of benchmark clinical dutabases 
such as heart disease, breath cancer and diabetes databases. 
(Subject Area: Neural Networks; Knowledge Acquisition and Machine Learning) 

1. Introduction 

Learning and discovery from databases, or data 
mining, has recently raised much attention in both 
AI and database community [Frawley et al., 19911 
[Agrawal and Psaila, 19951. The main focus of the 
research is to induce regularities or rules using the 
databases as sources of training instances. The 
task is difficult in that the size of the databases can 
be potentially very huge and noise and missing 
data camiot be neglected. This is especially true 
for many clinical databases where patient records 
tended to be idiosyncrasy (exception) and 
imperfect (noisy or missing values). 
Fuzzy ARTMAP [Carpenter et al., 19921 is a 
family of self-organized neural network 
architectures based on adaptive resonance theory 
(ART) [Carpenter and Grossberg, 19871 in which 
supervised learning can be carried out. Roughly 
speaking, the basic learning mechanism of fuzzy 
ARTMAP is that creating a new category (neuron 

unit) when an “unfamiliar” input instance is 
encountered while updating the comlection 
weights of an old category when a “familiar” input 
instance with respect to the category is 
encountered. The level of familiarity is 
determined by thresholds of so called vigilance 
value and choice parameters in fuzzy ARTMAP. 
This learning mechanism makes fuzzy ARTMAP 
superior to other learning methods in that it can 
deal with both generalities and exceptions 
simultaneously. 
However, fuzzy AKTMAP tended to create more 
categories than were actually needed. In many 
application domains, thousands of categories 
created in account for the input instances are not 
uncommon. This is an undesirable feature. 
Because it is difficult to interpret the learning 
results of fuzzy ARTMAP in terms of thousands 
of categories, not to mention that many categories 
created actually contribute- nothing to the 
prediction accuracy. This belongs to the well 
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known class of overfitting problems that more 
training efforts paid will not gain performance in 
testing. To avoid the overfitting problem, 
Carpenter and Tan [I9931 introduced a pruning 
algorithm based on a so called confidence factor. 
The confidence factor of a category is a score in 
terms of a combination of its usage and 
performmice accuracy. Their method not only 
reduced the network size to one third but also 
slightly improved the prediction accuracy in a 
diabetes database. However, the confidence-based 
pruning algorithm requires a separate training set 
(known as prediction set) to help learning, and 
although intuitively acceptable is basically a rule- 
of-thmnb heuristic. 
We consider creating a fuzzy ARTMAP category 
a tradeoff between theory complexity and 
performance accuracy, namely, creating a 
category call hopefully increase the performance 
accuracy but will also increase the complexity of 
the theory. The Minimum Description Length 
(MDL) principle [Rissanen, 19831 basically is a 
Occam’s razor that can help to select among 
competing theories a balance between theory 
cotnplexity and data prediction accuracy given the 
theory. The balance selected by the MDL 
principle is a bias toward a parsimony Illeory. 
Besides, the MDL principle has a profound root in 
information theory [Rissanen, 19831. 
Hence we developed a pruning algorithm based on 
the MDL principle for fuzzy ARTMAP. To 
evaluate and cotnpare the performance of the new 
learning scheme, we have done two experiments: 
1) using a breast calicer database to compare the 
performance of the original fuzzy ARTMAP 
against that of fuzzy ARTMAP with MDL pruning. 
2) using a Pima Indian diabetes database to 
cotnpare the fuzzy ARTMAP performance of the 
confidence-based pruuing against MDL pruning. 
In the section 2, we will briefly describe the fuzzy 
ARTMAP architecture and its learning 
mechanism. In section 3, we discuss the minimutn 
description length principle and how the it is 
applied to estimate the theory and data encoding 
in the fuzzy ARTMAP. In section 4, we describe 
the MDL-based pruning search algorithm for 
fuzzy ARTMAP. In section 5, we showed two 
experiments on different benchmark databases and 
compared their results. In section 6, we make 
discussiotj and conclusion. 

Fuzzy ARTMAP is a neural network architecture 
that perfonns incretnental supervised learning of 
recognition categories and tnultidimensional tnaps 
of both analog and binary patterns [Carpenter et 
al., 19921. It consists of two fuzzy ART 
[Carpenter, Grossberg, and Rosen, 19911 modules, 
namely ARTa and ART,, linked via an inter-ART 
module, called a rnuy field l?” as in Fig. 1. Each 
field in fuzzy ART, represented as a square in Fig. 
1, consists of a set of neurons. The tnap field Fb 
links each category to its prediction. In 
classification tasks, ART, does nothing more than 
the identical mapping which directly maps the 
target vector b into the vector field FSb and can be 
ignored. Each FZa node corresponds to a category. 
The input vectors are preprocessed by a 
mechanism called cortz,vlernent coding where 
every input vectors is represented by a pair of (a, 
l-a), namely, the input pattern a, and its 
completnent l-a. With Ihe cotnpletnent coding 
option, the weight vector w,~ of a category j can be 
viewed as a hyperrectangle over the input space 
under a geometric interpretation. Each category 
corresponds to a fuzzy inference rule, which tells 
a prediction is more possible when a input vector 
falls nearer (or within) the hyperrectangle. 
The learning mechanism in fuzzy ARTMAP are 
conducted at ART, and map field F”. It first 
carries out a vigilance test as following: The 
category j with the highest value of choice 
fmiction T, = I I A w, I / (a + Iwjl) is chosen, where I 
is the input vector, A is the fuzzy AND operation, 
w, is the weight vector of category j and a is the 
choice parameter. The chosen category is then 
tested by the vigilance test I 1 A w, I / I I I > p, 
where p is the vigilance parameter. If it fails the 
test, the category with the second high choice 
function is chosen and repeat the procedure above. 
If the chosen category which passes the vigilance 
test but predictes a wrong target class, the 
vigilance parameter is temporary increased and 
repeat the category choosing and vigilance test 
process. If the chosen category passes the 
vigilance test and predicts correctly, it will llearn 
the input vector by upd&ng the weight according 
to the following formula: 

w, (‘Jew) =p(ir\w:“/““)+(]-p)w~““’ (1) 

where p is the learning rate. Finally, if no 
category passes all the tests above, a new category 
will be created to accotmt. for this particular input. 

2. The fuzzy ARTMAP architecture 
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ART, ART, 

Figure 1: Fuzzy ARTMAP architecture [Carpenter et al., 19921 

3. The MDL principle and fuzzy 
ARTMAP pruning algorithm 

When the learning is done for fuzzy ARTMAP, it 
enters the pruning phase where we need to decide 
which unnecessary category to prune away. We 
will discuss how minimutn description length 
principle is used to guide pruning. 

3.1. The Minimum Description Length 

Let L(T) denote the number of bits needed to 
encode the theory T, and L(DIT) denote the 
number of bits needed to encode the data D with 
respect to T. L(T) measures the complexity of the 
theory, and L(DIT) measures how well the theory 
match the data (fewer bits indicate better tit). The 
Minitnum Description Length principle stales dtat 
the best theory is the one with the least number of 
bits required to encode the theory and the data 
given the theory. In other words, the best theory T 
is the one that minimizes 

L(T) + L(D I T). (2) 
The encoding length of a theory, L(T), for fuzzy 
ARTMAP is to be discussed in section 3.2 and 3.3. 
The encoding length of L(DIT) will be discussed 
in section 3.4. 

3.2. Quantization levels of connection 
weights 

To estimate the encoding complexity of theory, 

L(T), for fuzzy ARTMAP, one needs to know how 
a quantity of a weight is represented. Carpenter 
and Tan [ 19931 suggested the category weights be 
quantized in terms of nominal rather than 
mmierical values. Quantization level Q is defined 
as the number of possible values for each category 
weight. For ex~liple, when Q=3, the possible 
weight values can be expressed as “low”, 
“medium”, or “high”. There are two quantization 
methods: quantization by trmication and 
quantization by round-off. They were found to 
give similar performance. Quantization by rotmd- 
off was used in this paper, which is described 
below: 
If all possible values are V, = j / (Q-l), j=O, 1, ., 
Q-l, reduce the weight w to the nearest V,. 
Express it mathematically, 

W (+afi”til= l(Q-l)w+O.S] /(Q-l) (3) 

3.3. The description length of Fuzzy 
ARTMAP 

We restrict our research on classification 
problems, in which the binary target vectors 
consists of all O’s but only one 1. Hence the ART, 
module performs nothing but identical mapping 
and can be ignored. All we need to estimate is the 
description length of encoding the ART, module 
only. Since ARTa consists of a collection of 
categories and each category is a vector of 
comiection weight, the problem reduces to how to 
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encode a conttection weight. Assume the weights 
are quantized into Q values. With complement 
coding and the hyperrectangle interpretation, 
weights can be expressed in terms of a pair of the 
lower and upper vectors for categories. For a 
lower vector not equal to an upper vector, there 

<arue Q 
0 

possible combinations. For a lower vector 
2 

equal to an upper vector, there are Q possible 
values. So, the description length of a weight is 

Q 
0 
+Q= Q(Q+l). A category consists of M 

2 2 
pairs of weights, where M is the number of 
attributes. 

+ Q) bits. (4) 

Assume a fuzzy ARTMAP with N categories 
which is pruned from the original fuzzy ARTMAP 
with N,, categories. First the ntmlber N should be 
encoded. Because N can be 1,2,. .,N-, it takes 
log N,, bits to encode the number N. Second, to 

encode N categories, N x n/, x iog( Q 
0 2 

t-Q> 
bits are needed. Finally, since the ordering of 
categories is unimportant, log N! is subtracted 
from pie description length. Therefore, the overall 
theory coding length L(T) of a fuzzy ARTMAP 
network is 

log N,+N x A4 xlog( Q 
0 2 

+Q)-logN! 

(the length of encoding N,,, possible categories 
plus the total length of N categories subtract the 
information of encoding the ordering of N 
categories.) 
Now we consider the unquantized weights which 
are difficult to encode because they are arbitrary 
real mmibers between 0 and 1. However, we could 
assutne they are quantized into W values, called 
weightprecisiorz which is a threshold parameter. If 
W is large, it is assutned that tnore informaGon is 
on one weight so more categories should be 
pruned; if W is small, it is assumed that less 
infonnation is on one weight so fewer categories 
will be pruned. 

3.4. Quinlan’s modifier 

It was pointed out that traditional tnethods of 
applying MDL could lead to poor accuracy in 

categorical domain [Quinlan, 19941. Quinlan 
proposed a modifier to remedy the problem. 
Quinlan’s modifier is a mechanism that improve 
the MDL selection by restricting candidate 
theories that tends to perform poorly. Let the 
probability, or proportion of positives be P(D+), 
the probability (proportion) of data instances 
predicted as positives be P(D+IT). The idea is that 
P(D+IT) should. fall between P(D+) + s.d.(P(D+)), 
where s.d.(P(D+)) is the standard deviation of 
P(D+). Assutne data instances are independent, 
and the probability of each data instance being 
positive is identical. Then the number of positives 
conforms to the binomial model, so 

JP(D+)(l-P(B)) 
s.d.(P(D+)) =--- 

ID1 
(5) 

The restricting scheme is as follow: let 

V = IP(D+lT) - P(D+)I / s.d.(P(D+)). (6) 

If V>l, P(D+iT) is not between P(D+) rt 
s.d.(P(D+)) and the theory is not likely to match 

the data, the theory is modified by 47 as a 
penalty. The expression for L(T) above is 
multiplied by Quinlan’s modifier. In one equation, 
the theory description length of a fuzzy ARTMAP 
is 

x t logt Iv,, )+ NM log( 

(7) 

3.4. The description kngth of data given a 
theory 

In two-class classification problems, encoding 
data given a theory, namely L(DIT), is equivalent 
to encoding the errors of the theory [Quinlan, 
19941. We could, therefore, encode the L(DIT) in 
terms of a function of prediction errors of a theory. 
However, as pointed out by Quinlan [1994] tnost 
description length functions are not monotonically 
increasing with respect to number of errors. This 
is because if more than half of data was falsely 
predicted in two class problems, predictions can 
be made on the wrong side of the learning system. 
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This is an undesirable property because it may 
prefer a less accurate theory to a more accurate 
theory when their complexities are the same. 
Cameron-Jones [1992] has proposed an error 
encoding schetne that increases monotonically 
with e, the nutnber of errors. It first defines a code 
for e=O, then for e= 1, 2, etc. Each of these codes is 
defined by an integer starting with 1 but, since we 
want no differentiation between theories with the 
same number e of errors, the encoding length for 
each theory in the group of the same tnmtber of 
errors is taken to be that of the integer associated 
with the last theory in the group. 

(7) 

where IDI is the total number of data instances. 
To encode this integer, an encoding scheme for 
arbitrary integer is needed. Rissanen [1983] has 
claimed that it need 

log*(n) + C bits 
to encode an arbitrary integer 11, where C is a 
constant (and does not tnatter what nutnber we use 
in pruning) and 

log*(n) = log(t~)+log(log(n))+log(log(log(t~)))+. 

The recursive logarithm function for log*(n) is 
repeated until the term becomes negative. 
Hence the Cameron-Jones’ error encoding cost for 
e errors is 

)+ C bits. (8) 

4. Searching for the theory with the 
minimum description length 

The number of possible pruned networks frotn a 
fuzzy ARTMAP with N categories is equal to the 
number of nonempty subsets of N categories, 2N - 
1. This makes exhaustive search of the network 
with minimuttt description length almost 
impossible (there may be thousands of categories 
in a cotnplex fuzzy ARTMAP, for example, letter 
recognition benchmark problem in [Carpenter et 

al., 19921). We used a greedy algorithm, or a 
best-first search to search the theory with 
minimum length. Although this search strategy 
may found local minimum instead of global 
minimum, it is a feasible choice due to the titne 
constraint. The search algorithm is described 
below: 
l.Find the description length of the fuzzy 

ARTMAP L,. 
2.For each category j, assume it is pruned, and 

find the description length L’(j) according to 
expression (7) and (9). 

3.Find J such that L’(J) = tnin(L’(j)), i.e. find the 
category J that decreases the description length 
most by its pruning. 

4If L’(j) 2 L,, i.e. pruning can no longer decrease 
description length, or the number of categories 
are 2, algorithm ends. 

5.If L’(j) < L,, prune category J, i.e. prune the 
corresponding F,* node J. 

6.Repeat 1 until algorithm ends in step 4. 

5. Experimental results 

5.1. Wisconsin breast cancer database 

The Wisconsin breast cancer database, available 
via UC1 machine learning repository [Murphy and 
Aha, 19921, was obtained from the IJniversity of 
Wisconsin Hospitals, Madison from Dr. William 
H. Wolberg. The task is to classify between 
benign and malignant cases. This database 
contains 699 instances, of which 458 (66.5%) are 
benign and 241 (34.5%) are malignant, and 16 
missing values. We chose 9 out of 10 attributes 
(ID number removed) for learning. A fuzzy 
ARTMAP with missing value treatment using the 
complement coding strategy can be found in the 
source program for [Carpenter, 19931: An input 
vector a = (a ,,.. .,a,,) is turned to I = (a, a’) = 
(al,. .,;~~,,a~‘,. .,a,‘) and sent to fuzzy ARTMAP. 
For known value aI, a,” = l-a,. For missing value, 
let a, = a,’ = 1. This is equivalent to assuming the 
unknown value fit in the range of every category 
in that attribute. 
Quinlan [1995] used C4.5 with (biased) MDL 
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Table 2: PID database experiments results (Note that a is the choice parameter; p is the vigilance 
threshold; Q is the quantization level; the question mark ? denotes data are not available; - 
denotes the parameter is irrelevant or note used; and W is the weight precision. The ##(*20) 

# of rules or nodes 
iG~00 
13.3 
63.5; (*20) 
19.6 (*20) 
19.6 (“20) 
75.2:9 (*20) 
18.86 (*20) 

MDL pruning 0.2 0.0 6 74.79 8.27 (*20) 
Fuzzy ARTMAP 0.05 0.6 - 73.0 53.91 (*20) 
confidence pruning 0.05 0.6 - 72.0 14.56 (*20) 
MDL pruning, W=5 0.05 0.6 - 74.74 9.68 (*20) 
confidence pruning 0.05 0.6 5 71.5 14.91 (*20) 
MDL pruning 0.05 0.6 5 70.16 7.33 (*20) 
confidence pruning 0.05 0.6 6 72.5 14.65 (*20) 
MDL pruning 0.05 0.6 6 71.36 7.74 (*20) 

pruning and achieved 95.5% accuracy by 8.5 rules 
with 629 training data and 70 testing data. Quinlan 
used the updated version of dam that we used. 
Another fuzzy ARTMAP simulation with a=O.Ol, 
p=l, p=O, with the same number of training and 
test data, was run for 10 trials. It gave 91.86%~ 
accuracy by 13.0 rules on average, which is worse 
than C4.S + MDL in both performance and 
number of rules. After MDI., pruning with weight 
precision 5, the accuracy increased to 95.57% by 
4.2 rules, which is similar to C4.5 + MDL pruning 
in accuracy but used about half as many rules. The 
experimental results are summarized in Table 1. 

5.2. Pima Indian Diabetes database 

The Pima Indian Diabetes (PID) database, also 
obtained from UC1 machine leanmlg repository is 
originally owned by National Institute of Diabetes 
and Digestive and Kidney Diseases. It contains 
768 instances, 8 input attributes and 1 target, 
which represents whether the data shows signs of 
diabetes according to World Health Organization 
criteria (i.e., if the 2 hour post-load plasma 
glucose was at least 200 mg/dl found at any 
survey examination or during routine medical 
care). 268 instances of the data are positive, which 

is 34.9% of the database. There is no missing 
value instance. 
ADAP, a feedforward neural network model, has 
been applied to PID datalbase using 576 training 
data and 192 testing dam and achieved 76% 
accuracy by 100000 association units [Smith et al., 
19881. All the following tests used the same 
training size. The prediction based on 20 voting 
fuzzy ARTMAP’s achieved 75.9% accuracy with 
average 63.5 (*20) rule:s, which is very low 
comparing to 100000 association units of ADAP. 
With confidence-based Ipruning, the accuracy 
could be improved to 78.5% using even fewer 
rules, 19.6 (*20) [Carpenter, 19931. Unfortunately, 
the exact parameters were not listed in the paper, 
arid we couldn’t repeated the above results. 
In order to compare MDL-based pruning with 
confidence-based pruning, both techniques were 
tested under two sets of parameters, a=0.2, p=l, 
p=O and a=0.05, p=l, p=O.6, and different 
quantization levels. The two sets of parameters 
have different vigilance values and different 
number of categories. All simulations are repeated 
10 times, with 20 voters. 1Jnder these parameters 
and quantization levels, MDL-based pruning gave 
slightly better accuracy in about half as many 
rules. Quantization level 6 gave better accuracy 
and fewer rules than quantization level 5 in both 
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pruning methods. The results can be found in 
Table 2. 

6. Conclusion 

6.1. Summary and discussion 

Fuzzy ARTMAP is a powerful neural network 
model with many useful characteristics, including 
stability, guaranteed convergence, and online 
learning. Overfitting avoidance techniques in 
fuzzy ARTMAP are very important but were 
seldom addressed. 
Fuzzy ARTMAP gave better performance and 
fewer rules over other machine learning 
algorithms and neural network models in different 
benchmark databases learning problems. We 
found that Fuzzy ARTMAP with MDL-based 
pruning used fewer categories and often even 
better performance than fuzzy ARTMAP without 
MDL pruning. We also found that MDL-based 
pruning extracted fewer rules and often better 
accuracy than confidence-based pruning, and need 
not a separate predicting set. 
However, our current greedy search strategy in 
search of shortest description length theory seems 
to be problematic in that it may trap in a local 
optimal. This is due to the execution time of 
MDL-based pruning. Because computing 
description length needs to go through all training 
instances, it takes about the time of a whole 
training epoch to pruning a single category. In PID 
database, the original fuzzy ARTMAP has more 
than 60 categories and the pruned network has less 
than 10 categories, which means more than 50 
categories are pruned, and about the time of 50 
epochs is required. It takes a large amount of time 
in comparison to 10 to 20 epochs that fuzzy 
ARTMAP usually takes for training. The 
confidence-based pruning only needs to go 
through the training data once. This is the reason it 
didn’t look over more thorough search space of all 
possible networks. However, since fuzzy 
ARTMAP pruning requires off-line learning, the 
execution time is not so critical. 

6.2. Future work 

l.The MDL encoding schemes and Quinlan’s 
modifier are developed based on two-classes 
(positive and negative) classification. We wish 
to generalize them to more-than-two classes in 
the future. 

2.The nominal and missing value treatments in 
fuzzy ARTMAP also need further study. 

3.0ne imporlant and useful property of fuzzy 
ARTMAP is online learning. Both fuzzy 
ARTMAP pruning techniques conflict with the 
concept of online learning, because pruning 
must be applied after the network is trained. Is it 
possible for a MDL-based online checking 
criteria to guide the online learning system in 
category creation and overfitting avoidance? 
This is definitely an interesting open problem. 
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