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Abstract

Fuzzy ARTMAP is one of the families of the neural network architectures based on ART(Adaptive
Resonance Theory) in which supervised learning can be carried out. However, it usually tends to create
more categories than are actually needed. This often causes the so called overfitting problem, namely the
performance of the networks in test set is not monotonically increasing with the additional training epochs
and category creation, for fuzzy ARTMAP. In order to avoid the overfitting problem, Carpenter and Tan
[Carpenter and Tan, 1993] proposed a confidence-based pruning method by eliminating those categories
thar were either less useful or less accurate. This paper proposes yet another alternative pruning method
that is based on the Minimal Description Length (MDL) principle. The MDL principle can be viewed as a
tradeoff between theory complexity and data prediction accuracy given the theory. We adopted Cameron-
Jones’ error -encoding scheme and Quinlan’s modifier for theory encoding to estimate the fuzzy
ARTMAP theory description length. A greedy search algorithm of the minimum description length to
prune the fuzzy ARTMAP categories one by one is proposed. The experiments showed that fuzzy ARTMAP
pruned with the MDL principle gave better performance with far fewer categories created than the
original fuzzy ARTMAP and other machine learning systems on a number of benchmark clinical databases
such as heart disease, breath cancer and diabetes databases. ‘

(Subject Area: Neural Networks; Knowledge Acquisition and Machine Learning)

1. Introduction unit) when an “unfamiliar” input instance is
encountered while updating the connection
Learning and discovery from databases, or data  weights of an old category when a “familiar” input
mining, has recently raised much attention in both instance  with  respect to the category is
Al and database community [Frawley et al., 1991] encountered. The level of familarity is
[Agrawal and Psaila, 1995]. The main focus of the determined by thresholds of so called vigilance
research is to induce regularities or rules using the ~ value and choice parameters in fuzzy ARTMAP.
databases as sources of training instances. The  This learning mechanism makes fuzzy ARTMAP
task is difficult in that the size of the databases can superior to other learning methods in that it can
be potentially very huge and noise and missing deal with both generalities and exceptions
data cannot be neglected. This is especially true simultaneously.
for many clinical databases where patient records However, fuzzy ARTMAP tended to create more
tended to be idiosyncrasy (exception) and categories than were actually needed. In many
imperfect (noisy or missing values). application domains, thousands of categories
Fuzzy ARTMAP [Carpenter et al, 1992] is a created in account for the input instances are not
family of self-organized neural network uncommon. This is an undesirable feature.
architectures based on adaptive resonance theory ~ Because it is difficult to interpret the learning
(ART) [Carpenter and Grossberg, 1987] in which results of fuzzy ARTMAP in terms of thousands
supervised leamning can be carried out. Roughly of categories, not 1o mention that many categories
speaking, the basic learning mechanism of fuzzy created actually contribute- nothing to the
ARTMARP is that creating a new category (neuron prediction accuracy. This belongs to the well
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known class of overfitting problems that more
training efforts paid will not gain performance in
testing. To avoid the overfitting problem,
Carpenter and Tan [1993] introduced a pruning
algorithm based on a so called confidence factor.
The confidence factor of a category is a score in
terms of a combination of its usage and
performance accuracy. Their method not only
reduced the network size to one third but also
slightly improved the prediction accuracy in a
diabetes database. However, the confidence-based
pruning algorithm requires a separate training set
(known as prediction set) to help learning, and
although intuitively acceptable is basically a rule-
of-thumb heuristic.

We consider creating a fuzzy ARTMAP category
a tradeoff between theory complexity and
performance accuracy, namely, creating a
category can hopefully increase the performance
accuracy but will also increase the complexity of
the theory. The Minimum Description Length
(MDL) principle [Rissanen, 1983] basically is a
Occam’s razor that can help to select among
competing theories a balance between theory
complexity and data prediction accuracy given the
theory. The balance selected by the MDL
principle is a bias toward a parsimony theory.
Besides, the MDL principle has a profound root in
information theory [Rissanen, 1983].

Hence we developed a pruning algorithm based on
the MDL principle for fuzzy ARTMAP. To
evaluate and compare the performance of the new
learning scheme, we have done two experiments:
1) using a breast cancer database to compare the
performance of the original fuzzy ARTMAP

against that of fuzzy ARTMAP with MDL pruning.

2) using a Pima Indian diabetes database to
compare the fuzzy ARTMAP performance of the
confidence-based pruning against MDL pruning.
In the section 2, we will briefly describe the fuzzy
ARTMAP  architecture - and its  learning
mechanism. In section 3, we discuss the minimum
description length principle and how the it is
applied to estimate the theory and data encoding
in the tuzzy ARTMAP. In section 4, we describe
the MDL-based pruning search algorithm for
fuzzy ARTMAP. In section 5, we showed two
experiments on different benchmark databases and
compared their results. In section 6, we make
discussion and conclusion.

2. The fuzzy ARTMAP architecture
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Fuzzy ARTMAP is a neural network architecture
that performs incremental supervised learning of
recognition categories and multidimensional maps
of both analog and binary patterns [Carpenter et
al.,, 1992]. It consists of two fuzzy ART
[Carpenter, Grossberg, and Rosen, 1991] modules,
namely ART, and ART,, linked via an inter-ART
module, called a map field F*as in Fig. 1. Each
field in fuzzy ART, represented as a square in Fig.
1, consists of a set of neurons. The map field | 2
links each category to its prediction. In
classification tasks, ART, does nothing more than
the identical mapping which directly maps the
target vector b into the vector field F,” and can be
ignored. Each F, node corresponds to a category.
The input vectors are preprocessed by a
mechanism  called complement coding where
every input vectors is represented by a pair of (a,
I-a), namely, the input pattern a, and its
complement I-a. With the complement coding
option, the weight vector w' of a category j can be
viewed as a hyperrectangle over the input space
under a geometric interpretation. Each category
corresponds (o a fuzzy inference rule, which tells
a prediction is more possible when a input vector
falls nearer (or within) the hyperrectangle.

The learning mechanism in fuzzy ARTMAP are
conducted at ART, and map field F*. It first
carries out a vigilance test as following: The
category j with the highest value of choice
function T, = 11 A W, I/ (o + Iw]) is chosen, where 1
is the input vector, A is the fuzzy AND operation,
w, is the weight vector of category j and o is the
choice parameter. The chosen category is then
tested by the vigilance test [T A w, [/ 111> p,
where p i8 the vigilance parameter. If it fails the
test, the category with the second high choice
function is chosen and repeat the procedure above.
If the chosen category which passes the vigilance
test but predictes a wrong target class, the
vigilance parameler is temporary increased and
repeat the category choosing and vigilance test
process. If the chosen category passes the
vigilance test and predicts correctly, it will learn
the input vector by updating the weight according
to the following formula:

Wi = B AW )+ (1= B)wi™ ()
where [3 is the learning rate. Finally, if no

category passes all the tests above, a new category
will be created o account for this particular input.
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Figure 1: Fuzzy ARTMAP architecture [Carpenter et al., 1992]

3. The MDL principle and fuzzy
ARTMAP pruning algorithm

When the learning is done for fuzzy ARTMAP, it
enters the pruning phase where we need to decide
which unnecessary category to prune away. We
will discuss how minimum description length
principle is used to guide pruning.

3.1. The Minimum Description Length

Let L(T) denote the number of bits needed to
encode the theory T, and L(DIT) denote the
number of bits needed to encode the data D with
respect to T. L(T) measures the complexity of the
theory, and L(DIT) measures how well the theory
match the data (fewer bits indicate better fit). The
Minimum Description Length principle states that
the best theory is the one with the least number of
bits required to encode the theory and the data
given the theory. In other words, the best theory T
is the one that minimizes

LD+ LMDIT). )

The encoding length of a theory, L(T), for fuzzy
ARTMAP is to be discussed in section 3.2 and 3.3.
The encoding length of L(DIT) will be discussed
in section 3.4.

3.2. Quantization levels of connection
weights

To estimate the encoding complexity of theory,
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L(T), for fuzzy ARTMAP, one needs to know how
a quantity of a weight is represented. Carpenter
and Tan [1993] suggested the category weights be
quantized in terms of nominal rather than
numerical values. Quantization level Q is defined
as the number of possible values for each category
weight. For example, when Q=3, the possible
weight values can be expressed as “low”,
“medium”, or “high”. There are two quantization
methods: quantization by truncation and
quantization by round-off. They were tound to
give similar performance. Quantization by round-
off was used in this paper, which is described
below:

If all possible values are V, =j / (Q-1), j=0, 1, ..,
Q-1, reduce the weight w to the nearest V.
Express it mathematically,

W= (O =Dw+0.5]/Q1D @)

3.3. The description
ARTMAP

length of Fuzzy

We resurict our research on  classification
problems, in which the binary target vectors
consists of all 0’s but only one 1. Hence the ART,
module performs nothing but identical mapping
and can be ignored. All we need to estimate is the
description length of encoding the ART, module
only. Since ART, consists of a collection of
categories and each category is a vector of
connection weight, the problem reduces to how to



encode a connection weight. Assume the weights
are quantized into Q values. With complement
coding and the hyperrectangle interpretation,
weights can be expressed in terms of a pair of the
lower and upper vectors for categories. For a
lower vector not equal to an upper vector, there

2
equal to an upper vector, there are Q possible
values. So, the description length of a weight is
¢ +Q=_Q(_Q_+_ll. A category consists of M
2 2
pairs of weights, where M is the number of
attributes.

are (Q) possible combinations. For a lower vector

Q

bits. @)
2J +0Q)

M log([

Assume a fuzzy ARTMAP with N categories
which is pruned from the original fuzzy ARTMAP
with N, categories. First the number N should be
encoded. Because N can be 1,2,...,N_, it takes
log N, bits to encode the number N. Second, to

encode N categories, N x M x Iog((gj +Q)

bits are needed. Finally, since the ordering of
categories is unimportant, log N! is subtracted
from the description length. Therefore, the overall
theory coding length L(T) of a fuzzy ARTMAP
network is

log N+ /N x M x log((g) +(0)-log N!

(the length of encoding N __ possible categories
plus the total length of N categories subtract the
information of encoding the ordering of N
categories.)

Now we consider the unquantized weights which
are difficult to encode because they are arbitrary
real numbers between 0 and 1. However, we could
assume they are quantized into W values, called
weight precision which is a threshold parameter. If
W is large, it is assumed that more information is
on one weight so more categories should be
pruned; if W is small, it is assumed that less
information is on one weight so fewer categories
will be pruned.

3.4. Quinlan’s modifier

It was pointed out that traditional methods of
applying MDL could lead to poor accuracy in
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categorical domain [Quinlan, 1994]. Quinlan
proposed a modifier to remedy the problem.
Quinlan’s modifier is a mechanism that improve
the MDL selection by restricting candidate
theories that tends to perform poorly. Let the
probability, or proportion of positives be P(D+),
the probability (proportion) of data instances
predicted as positives be P(D+/T). The idea is that
P(D+IT) should. fall between P(D+) £ s.d.(P(D+)),
where s.d.(P(D+)) is the standard deviation of
P(D+). Assume data instances are independent,
and the probability of each data instance being
positive is identical. Then the number of positives
conforms to the binomial model, so

JP(D+(1-PD+))

s.d(P(D+))=

0]
5
The restricting scheme is as follow: let
V = [P(D+IT) - P(D+)l / 5.d.(P(D+)). 6
It v>1, P(D+IT) is not between P(D+) =

$.d.(P(D+)) and the theory is not likely to match

the data, the theory is modified by \/V as a
penalty. The expression for L(T) above is
muitiplied by Quinlan’s modifier. In one equation,
the theory description length of a fuzzy ARTMAP
is

|P(D+I1T)-P(D+)|
s.d(P(D+))

L(T)=max(‘/

X (log( N, )+ NM 102,([2) +Q)-log V)
N

3.4, The description length of data given a
theory

In two-class classification problems, encoding
data given a theory, namely L(DIT), is equivalent
to encoding the errors of the theory [Quinlan,
1994]. We could, therefore, encode the L(DIT) in
terms of a function of prediction errors of a theory.
However, as pointed out by Quinlan [1994] most
description iength functions are not monotonically
increasing with respect to number of errors. This
is because if more than half of data was falsely
predicted in two class problems, predictions can
be made on the wrong side of the learning system.



Table 1: The experimental results on Wisconsin breast cancer database

Learning systems Train/Test size Accuracy Rules or Instances
C4.5 + MDL 629/70 95.5% 8.5

Fuzzy ARTMAP 629/70 91.86% 13.0

Fuzzy ARTMAP + MDL 629/70 95.57% 42

This is an undesirable property because it may
prefer a less accurate theory to a more accurate
theory when their complexities are the same.
Cameron-Jones [1992] has proposed an error
encoding scheme that increases monotonically
with e, the number of errors. It first defines a code
for e=0, then for e=1, 2, etc. Each of these codes is
defined by an integer starting with 1 but, since we
want no differentiation between theories with the
same number ¢ of errors, the encoding length for
each theory in the group of the same number of
errors 18 taken to be that of the integer associated
with the last theory in the group.

(1
=0\ 1
where IDI is the total number of data instances.
To encode this integer, an encoding scheme for
arbitrary integer is needed. Rissanen [1983] has
claimed that it need
log*(n) + C bits
to encode an arbitrary integer n, where C is a
constant (and does not matter what number we use
in pruning) and

N

log*(n) = log{n)+log(log(n)+log(log(log(n)))+. ..

The recursive logarithm function for log*(n) is
repeated until the term becomes negative.
Hence the Cameron-Jones’ error encoding cost for
€ €rrors is
2

1og*(i(| J)+C bits.
1=0

1

(8)

4. Searching for the theory with the
minimum description length

The number of possible pruned networks from a
fuzzy ARTMAP with N categories is equal to the
number of nonempty subsets of N categories, 2" -
1. This makes exhaustive search of the network
with  minimum description length  almost
impossible (there may be thousands of categories
in a complex fuzzy ARTMAP, for example, letter
recognition beachmark problem in [Carpenter et
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al,, 1992]). We used a greedy algorithm, or a

best-first search to search the theory with

minimum length. Although this search strategy

may found local minimum instead of global

minimum, it is a feasible choice due to the time

constraint. The search algorithm is described

below:

1.Find the description
ARTMAP L.

2.For each category j, assume it is pruned, and
find the description length 1.°(j) according to
expression (7) and (9).

3.Find J such that L’(J) = min(L’(j)), i.e. find the
category J that decreases the description length
most by its pruning.

41fL°() = L, 1.e. pruning can no longer decrease
description length, or the number of categories
are 2, algorithm ends.

5.1t L°(j) < L,, prune category I, i.e. prune the
corresponding F." node J.

6.Repeat 1 until algorithm ends in step 4.

length of the fuzzy

5. Experimental results

5.1. Wisconsin breast cancer database

The Wisconsin breast cancer database, available
via UCI machine learning repository [Murphy and
Aha, 1992}, was obtained from the University of
Wisconsin Hospitals, Madison from Dr. William
H. Wolberg. The task is to classify between
benign and malignant cases. This database
contains 699 instances, of which 458 (66.5%) are
benign and 241 (34.5%) are malignant, and 16
missing values. We chose 9 out of 10 attributes
(ID number removed) for learning. A fuzzy
ARTMAP with missing value treatment using the
complement coding strategy can be found in the
source program for [Carpenter, 1993]: An input
vector a = (a,,...,a,) is turned to I = (a, a’) =
(al,...,a,a’,...,a,) and sent to fuzzy ARTMAP.
For known value a, a” = 1-a,. For missing value,
let a, = a’ = 1. This is equivalent to assuming the
unknown value fit in the range of every category
in that attribute.

Quinlan [1995] used C4.5 with (biased) MDL



Table 2: PID database experiments results (Note that o is the choice parameter; p is the vigilance
threshold; Q is the quantization level; the question mark ? denotes data are not available; —
denotes the parameter is irrelevant or note used; and W is the weight precision. The ##(*20)
denotes that the data ## is averaged over 20 voters)

Learning system o p () |Accuracy # of rules or nodes
ADAP — — — |76.0 100000
C4.5 + MDL — — — 1724 13.3

Fuzzy ARTMAP ? ? — [759 63.5 (*20)
confidence pruning 7 7 — |78.5 19.6 (*20)
confidence pruning ? ? S |77.5 19.6 (*20)
Fuzzy ARTMAP 0.2 0.0 — [73.6 75.29 (*20)
confidence pruning 0.2 0.0 — 754 18.86 (*20)
MDL pruning, W=5 0.2 0.0 —  |75.11 9.90 (*20)
confidence pruning 0.2 0.0 5 |72.1 19.90 (*20)
MDL. pruning 0.2 0.0 5 17270 8.20 (*20)
confidence pruning 0.2 0.0 6 1722 19.08 (*20)
MDL pruning 0.2 0.0 6 7479 8.27 (*20)
Fuzzy ARTMAP 005 |06 — 173.0 53.91 (*20)
confidence pruning 0.05 0.6 — 72,0 14.56 (*20)
MDL pruning, W=>5 005 [0.6 — |74.74 9.68 (*20)
confidence pruning 0.05 0.6 5 71.5 14.91 (*20)
MDL pruning 0.05 0.6 5 70.16 7.33 (*20)
confidence pruning 0.05 0.6 6 {725 14.65 (*20)
MDL pruning 0.05 (0.6 6 [71.36 7.74 (*20)

pruning and achieved 95.5% accuracy by &.5 rules
with 629 training data and 70 testing data. Quinlan
used the updated version of data that we used.
Another fuzzy ARTMAP simulation with a=().01,
B=1, p=0, with the same number of training and
test data, was run for 10 trials. It gave 91.86%
accuracy by 13.0 rules on average, which is worse
than C4.5 + MDL in both performance and
number of rules. After MDL. pruning with weight
precision 5, the accuracy increased to 95.57% by
4.2 rules, which is similar to C4.5 + MDL pruning
in accuracy but used about half as many rules. The
experimental results are summarized in Table 1.

5.2. Pima Indian Diabetes database

The Pima Indian Diabetes (PID) database, also
obtained from UCI machine learning repository is
originally owned by National Institute of Diabetes
and Digestive and Kidney Diseases. It contains
768 instances, 8 input attributes and 1 target,
which represents whether the data shows signs of
diabetes according to World Health Organization
criteria (i.e., if the 2 hour post-load plasma
glucose was at least 200 mg/dl found at any
survey examination or during routine medical
care). 268 instances of the data are positive, which
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is 349% of the database. There is no missing
value instance.

ADAP, a feedforward neural network model, has
been applied to PID database using 576 training
data and 192 testing data and achieved 76%
accuracy by 100000 association units [Smith et al.,
1988]. All the following tests used the same
training size. The prediction based on 20 voting
fuzzy ARTMAP’s achieved 75.9% accuracy with
average 63.5 (*20) rules, which is very low
comparing to 100000 assoctation units of ADAP.
With confidence-based pruning, the accuracy
could be mmproved to 78.5% using even fewer
rules, 19.6 (*20) [Carpenter, 1993]. Unfortunately,
the exact parameters were not listed in the paper,
and we couldn’t repeated the above results.

In order to compare MDI.-based pruning with
confidence-based pruning, both techniques were
tested under two sets of parameters, o=0.2, p=1,
p=0 and «=0.05, B=1, p=0.6, and different
quantization leveis. The two sets of parameters
have different vigilance values and different
number of categories. All simulations are repeated
10 times, with 20 voters. Under these parameters
and quantization levels, MDL-based pruning gave
slightly better accuracy in about half as many
rules. Quantization level 6 gave better accuracy
and fewer rules than quantization level S in both
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pruning methods. The results can be found in
Table 2.

6. Conclusion
6.1. Summary and discussion

Fuzzy ARTMAP is a powerful neural network
model with many useful characteristics, including
stability, guaranteed convergence, and online
learning. Overfitting avoidance techniques in
fuzzy ARTMAP are very important but were
seldom addressed.

Fuzzy ARTMAP gave better performance and
fewer rules over other machine learning
algorithms and neural network models in different
benchmark databases learning problems. We
found that Fuzzy ARTMAP with MDL-based
pruning used fewer categories and often even
better performance than fuzzy ARTMAP without
MDL pruning. We also found that MDL-based
pruning extracted fewer rules and often better
accuracy than confidence-based pruning, and need
not a separate predicting set.

However, our current greedy search strategy in
search of shortest description length theory seems
to be problematic in that it may trap in a local
optimal. This is due to the execution time of
MDL-based  pruning. Because  computing
description length needs to go through all training
instances, it takes about the time of a whole
training epoch to pruning a single category. In PID
database, the original fuzzy ARTMAP has more
than 60 categories and the pruned network has less
than 10 categories, which means more than 50
categories are pruned, and about the time of 50
epochs is required. It takes a large amount of time
in comparison to 10 to 20 epochs that fuzzy
ARTMAP usually takes for training. The
confidence-based pruning only needs 0 go
through the training data once. This is the reason it
didn’t look over more thorough search space of all
possible networks. However, since fuzzy
ARTMAP pruning requires off-line learning, the
execution time is not so critical.

6.2. Future work

1.The MDL encoding schemes and Quinlan’s
modifier are developed based on two-classes
(positive and negative) classification. We wish
to generalize them to more-than-two classes in
the future.
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2. The nominal and missing value treatments in
fuzzy ARTMAP also need further study.

3.0ne important and uvseful property of fuzzy
ARTMAP is online learning. Both fuzzy
ARTMARP pruning techniques conflict with the
concept of online learning, because pruning
must be applied after the network is trained. Is it
possible for a MDL-based online checking
criteria to guide the online learning system in
category creation and overfitting avoidance?
This is definitely an interesting open problem.

Acknowledgment

This research is supported by the collaboration
research project of National Tsing Hua University
and Veteran General Hospital under the Grant No.
VGHTH &5-008-2.

Reference

Agrawal, R. and Psaila, G. (1995). Active data mining.
Proceedings, First International Conference on
Knowledge Discovery and Data Mining, 216-221.
AAAI Press.

Cameron-Jones, R. M. (1992). Minimum description
length instance-based learning. Proceedings 5"
Australian  Joint  Conference on  Artificial
Intelligence, (A. Adams and L. Sterling, Eds),
Singapore: World Scientific, 368-373.

Carpenter, G. A., and Grossberg, S. (1987). A
massively parallel architecture for a self-
organizing neural pattern recognition machine.
Computer Vision, Graphics, and [mage Processing,
37, 54-155.

Carpenter, G. A., Grossberg. S., Markuzon, N,
Reynolds, J. H., and Rosen, D. B.(1992). Fuzzy
ARTMAP: A neural network architecture tfor

supervised of analog
multidimensional maps. [EEE Transactions in
Neural Networks, 3, 698-713.

Carpenter, G. A., Grossberg, S., and Rosen, D. B.
(1991). Fuzzy ART: Fast stable learning and
categorization of analog patterns by an adaptive
resonance system. Neural Networks, 4, 759-771.

Carpenter, G. A. and Tan, A. H. (1993). Rule extraction,
Fuzzy ARTMAP, and medical databases.
Proceedings, World Congress on Neural Networks,
Poritland, OR (Vol. 1, pp.501-506). Hillsdale, NJ:
Lawrence Erlbaum Associates.

Frawley, W. J., Piatetsky-Shapiro, G., and Matheus, C.
1. (1991). Knowledge discovery in databases: an

incremental learning

overview. Knowledge Discovery in Databases, 71-
92. AAAI Press / The MIT Press

Gallager, R. G. (1968). Information Theory and
Reliable Comununication. New York: Wiley.



Gennari, J. H., Langley. P., and Fisher, D. (1989).
Models  of incremental concept  formation.
Artificial Intelligence, 40, 11-61.

Murphy, P. M. and Aha, D. W. (1992) UCI Repository
of machine learning databases |Machine readable
data repository]. Irvine, CA: University of
California, Department of Information and
Computer Science.

Quinlan, 1. R. ¢1994). The Minimum Description
Length principle and categorical theories.
Proceedings 11" International Conference on
Muachine Learning, New Brunswick, 233-241. San
Francisco: Morgan Kaufmann.

Quinlan, I. R. (1995). MDL and categorical theories
(continued).  Praceedings 12" International

Conference on Machine, 464-469. San Francisco:
Morgan Kaufmann.

Rissanen, J. (1983). A universal prior for integers and
estimation by minimum description length. Annals
of Statistics, 11, 416-431.

Smith, J. W., Everhart, J. E., Dickson, W. C., Knowler,
W. C.. and Johannes, R. S. (1988). Using the
ADAP learning algorithm to forecast the onset of
diabetes mellitus. Proceedings of the Symposium
on Computer Applications and Medical Care,
261-265. IEEE Computer Society Press.

Zhang, J. (1992). Selecting typical instances in
instance-based learning. Proceedings of the Ninth
International Machine Learning Conference, 470-
479. Aberdeen, Scotland: Morgan Kaufmann.

403

Proceedings of the 9th International Conference on Toolswith Artificial Intelligence (ICTAI '97)
1082-3409/97 $10.00 © 1997 IEEE



