
A Framework for Parallel Processing of Image Dataflow in
Industrial Applications

Aleksej Otwagin, Alexander Doudkin

United Institute of Informatics Problems, National Academy of Sciences of Belarus,
6 Surganov str., Minsk, 220012, Belarus.

Emails: forlelik@yahoo.com, doudkin@newman.bas-net.by
Abstract: Basic algorithms and processing technologies of
integrated circuit layout images are considered. The
images represented as a set of frames can regard as a
dataflow and the processing are perfectly suited for
parallel implementation. Framework architecture for
designing parallel systems of image dataflow processing is
proposed. The framework uses the algorithm of a virtual
associative network for increasing processing speed and
system throughput during runtime.

Keywords: parallel processing, image dataflow, parallel
application design, optimization framework, multi-agent
architecture.

I. INTRODUCTION

The modern semiconductor manufacturing needs to
control all of the critical process modules that drive IC
manufacturing success. An optical inspection is the
important part of such control solutions. It implies the
presence of some operative analysis system [1] providing
image registration, visual information processing and
analysis.

The video map of an integrated circuit (IC) layout
(metallization, diffusion or polysilicon layers) is obtained
with the help of special or standard input devices
(scanners). Layout image is represented as a set of raster
frames and consists from areas, the boundaries of which
are rectangle, polygon, circle or ellipse. They are contact
windows, pads, diffusion or metal wires and other items
of the IC layout. The areas differ from each other by color
and its intensity. The difference degree of areas is pointed
by initial set-up of the system and can be improved during
analyses.

The set of frames can be considered as a dataflow. The
type of IC layer defines a type of the frame. The frames
can be repeated in dataflow in arbitrary order. The frames
can enter on the system in parallel, or in some time order.
The analyzing system must process this dataflow in
minimal time.

An image dataflow can be deterministic, which means,
that the amount of frames and their types are known
before processing. Another case of processing observes a
stochastic dataflow. This dataflow occurs, when the types
of arrived frames and their overall count are not known in
advance. The task of processing this dataflow is more
difficult then it is in case of deterministic dataflow. The
solution of this task consists of runtime adaptation of
processing system to dataflow characteristics. The
adaptation can be realized as reconfiguration of either
processing software or hardware architecture.

The effective dataflow processing can be achieved
only with use of modern software design technologies. In
modern computing the most powerful and popular

processing technique is parallel processing. However the
problem of design of effective parallel architectures and
applications is the fundamental obstacle to its wide use in
many areas of computing.

There are three levels of parallel processing depending
on level of detail of processing operations and data.

High - each frame is considered as entire one that is
processed on one processor in a time.

Medium – a frame can be processed in parallel, i.e.
there exist a possibility to separate the frame to some
local sub frames, that are processed on different
processors in a time, or / and algorithm is iterative.

Low – parallel implementation of core operations like
discrete two-dimensional orthogonal transformations or
calculation of moment functions that are based on
recursive algorithms.

A problem of design of parallel processing systems
can be solved by use of design automation tools at various
development stages. These tools allow the developer to
concentrate on an algorithm, and not to pay an attention to
mechanisms of implementation of parallelism. This
approach is good applicable to deterministic dataflow
processing task, because of its comprehensive definition.

For automation of processing of stochastic image
flows the developer can use the technique of load
balancing. This technique is based on decomposition of
algorithm on separate modules, them solves the part of the
problem. The modules are implemented in some common
programming languages and realized as separate
processes, which integrate and work inside a framework
for collective interaction support. The interactions
between the modules are fully transparent from the point
of view of the developer. This approach is more powerful
and provides great performance. The separate image
processing operations are defined as agents, which try to
find the joint solution, satisfying some criteria. The agents
plan and perform their interaction in such a way to
achieve the minimal processing time. When high
efficiency of functioning is achieved for all agents, then
the entire system will also find optimal problem solution.

As the planning itself is a very complicated problem,
there is a necessity to create the planning methods and
tools, which allow obtaining high efficiency of the
problem solution with low expenses. There are some
systems of computer vision and data processing, and most
of these systems use parallel and distributed processing
[2, 3, 4, 5]. These systems use different techniques and
architectures, for example CORBA [5] or agent-based
architecture [2].

Our contribution consists in development of a
framework, which is initially based on the MPI (Message
Passing Interface standard) [6] for parallel computations.
The framework also uses a multi-agent application

mailto:forlelik@yahoo.com
mailto:doudkin@newman.bas-net.by

architecture. Another significant attribute of the
framework consists in application of new hybrid
algorithms with the purpose of computational
optimization. The realized framework is suitable as a
parallel skeleton for graph-based data processing
applications. The approach of parallel skeletons for
programming is one of perspective techniques of
automation [7]. The ability of online optimization allows
applications to achieve high speed and multicomputer
utilization.

The rest of the paper is organized as follows. Section
II presents basic algorithms realized in integrated circuit
and photomask images processing systems [8, 9] and
main technologies and processing scenarios for parallel
implementation. Further we consider a possibility of
parallel image processing on the high level, i.e. on the
level of description of the processing scenarios that are
connected with certain types of images. Section III
presents the workload model for developing parallel
applications on distributed PC or supercomputer clusters.
Section IV describes the architecture of design system and
runtime parallel framework for dataflow processing.
Section V presents the performance evaluation of
proposed framework.

II. BASIC OPERATIONS

The technology of integrated circuit layout images
processing includes the following image processing and
image analysis algorithmic stages:

- Image registration
- Preprocessing and binarization
- Segmentation and vectorization
- Object analysis
Consider each stage in more detail.
Image registration
Two schemes of algorithms are used for quasi-optimal

solution of the frames merging problem with the
following restrictions: the frames are rectangular and have
an identical scale. Three or four fragments matching are
used instead of known algorithms to obtain good merging.
In the first scheme local criterion is used to estimate a
quads of frames located as a square matrix. In the second
scheme the common criterion is used together with
relative error of an outcome.

Preprocessing and binarization include the
following operations:

1) The conversion of the entry color map in a gray
scale image with 256 intensity levels.

2) The median filtering with the purpose of anti-
aliasing the map. The median filtration is fulfilled with a
cross-window that accepts values 3,5,7,9.... "Diffusion" is
regulated by an amount of iterations. These parameters
are accessible to the operator, however in most cases it is
possible to use parameters set by default. Probably, the
correction of these parameters will be indispensable at a
rescaling of filming.

3) Correction of histogram to remove shadows along
object boundaries.

4) Image smoothing with Gauss filter for image
jitter – parameters are operator size and number of
iteration

5) Filtration taking into account layer type and object
size.

The stage of Segmentation and vectorization
includes the following operations:

6) The threshold sharing and contour detection based
on orthogonal transformation. The value of a threshold is
selected automatically according to the histogram of
allocation of intensities of the initial map, and the user
can also adjust it.

7) The threshold sharing and contour detection based
on cluster approach.

8) Morphological filtration for quality improving of
segmented image by an elimination of blobs and an
alignment of contour lines. This stage includes the
following set of operations: extension, anabrosis and
elimination noise that has not been deleted by two
operations mentioned above. The first operation intends
for the elimination of blobs on the detected objects. A
collateral effect of this operation is the extension of
objects; therefore it runs with the anabrosis operation
function that is inverse function for the extension one.
The erosion operation is intended for thinning of the
objects after the extension operation. The third operation
fulfils a rectification of boundaries of the objects. It
realizes a search of beforehand detected objects by
scanning all area of the map with the operator window, in
which one the percentage of color, inhering to the object
is determined.

9) Finding segments semantic descriptors and
semantic filtration.

10) Construction of inner vector description and
straight lines which approximation of contours with given
accuracy.

11) Transformation of inner vector description
into Source or GDSII formats.

Object analysis
12) Creation of the library of layout items.
13) Object identification
14) Design and training of classifiers/
15) Object recognition
All operations run in of a particular sequence

(scenario), but the interaction with the operator is
stipulated. The operator can choose the executable
operation and adjust its parameter, execute sequence of
operations and evaluate the quality of the results, change
the initial sequence (add operations or change the order),
i.e. to produce so-called hand-held tuning of the scenario.

Based on experimental researches two basic
techniques were proposed as the most useful for IC
images processing:

- the processing technique [8] for images with
bimodal histograms of intensity based on operations 1
and 6.

- the processing technique [9] for images with
multimodal histograms of intensity based on operation 7.

Within these two techniques there exist some
scenarios that differ both operations and parameters
according to layout type and image features.

All scenarios, produced by the operator on the sample
image from one IC layer, must be repeatedly applied to
full set of images of this IC layer. These images are
entered into automated processing system, which is
capable to process many images of different types
simultaneously. The task of design automation consists in
development of methods and tools for creation,

simulation, analysis and synthesis of parallel processing
systems.

III. A WORKLOAD MODEL

The dataflow processing task assumes using of cluster of
computers [10]. While most clusters are homogeneous in
real world, we consider a case of a heterogeneous cluster
that is more general. The heterogeneous cluster of
computers is modeled as P={p1, p2,..., pm}, where pi is an
autonomous computer (also called node). Each computer
pi is weighted by wi, which represents the time it takes to
perform one unit of computation. The nodes in the
heterogeneous cluster are connected by a high
performance communication subsystem. Each
communication link between computers pi and pj, denoted
by lij, is weighted by sij, which models the time it takes to
transfer one unit of message data between pi and pj.

The image dataflow is represented as a set of frames
. Each frame must be processed by

separate scenario based on a type of this frame. A
processing system performs a set of image processing
operations

{ njjJ ,,1 K= }

{ } mkooO k >= ,,,
1
K . The scenario for processing

separate frame performs a subset of operations
. The operations in each

scenario have a precedence relation , that means,

that in the scenario for frame type j operation a performs
before operation b. Each operation is executed on

a dedicated node of cluster . Each data processing

operation is characterized by execution cost ,

which represents the amount of computation units in
operation for specified frame type j. Two operations for
different frames, which are performed on some processor,
cannot be executed in the same time, and two instances of
one operation for different frames also must be executed
in different times.

{ } OOooO n

j jjjj k
==

=UK
1

,,,
1

jbja oo f

Ook ∈
k

iP

io j
o i

w

We represent all scenarios for data processing in the
form of Directed Acyclic Graph (DAG). Each scenario in
this graph is represented as a path. DAG is represented as
a tuple , where:),,,(CWEVG =

V is a set of graph vertices . Each

vertex is associated with data processing operation from
an operation set . A set of graph vertices

represents decomposition of parallel dataflow processing
program on the separated operations;

NiVvi ≤≤∈ 1,

U jOO =

E is a set of graph edges

jiNjNiEvve jiji ≠==∈= ,,1,,1,)},({ , . An edge

represents a precedence relation between operations in
scenario. Some edges are included in multiple scenarios;

W is an operation cost matrix ; U j
oi

WW =

С is an edge cost set, where determines the

communication volume between two data processing

operations, which is transferred by edge

Cc ji ∈,

Ee ji ∈, . We

consider those operations, which are related and
connected by the edge, use an identical data format for a
predecessor output and a successor input. For all
scenarios, particular edge has an equal cost.

A design of parallel processing system for image
dataflow processing consists of mapping of the scenario
graph onto cluster topology. A parallel program is
represented as a decomposition ,

where . Each
operation subset O

U
Pp

pOPO
∈

⎯→⎯)())(),((

∅=⊃≠∀ I pkpkpk OOOOOO :,
p is placed on selected processor node.

For effective data processing, this decomposition must
be made in such a way, that the high processing speed and
system throughput are achieved. Thus, a design
automation system must create a schedule for processing
of presented image dataflow, that ensures the goal of
minimization of processing time

 }min{max iFF = , (1)

where Fi is a completion time of processing for frame

i. For evaluation of the schedule the simulation model is
used, which is equal to real world parallel computation
process.

An example of scenarios and graph denotation for
three types of data frames is presented in Fig.1, where
each operation is denoted as Oi with some cost (on the
top), each operation process data frames with types
T1, T2, …, Tn and performs processing with cost
C1, C2, …, Cn. The edges transfer frames of types
T1, T2, …, Tn with cost C. We assume that each pair of
operations for all scenarios exchanges the same amount of
data.

Fig. 1 - An example of scenarios and a graph denotation
semantic.

The example of scenario graph for the data scenarios
from Fig. 1 is presented in Fig. 2.

There exist many algorithms of DAG scheduling that
use various optimization techniques and heuristics. The
techniques include priority based list scheduling, for
example, algorithms HLF (Highest Level First), LP
(Longest Path), CP (Critical Path) [11-13]. Another
technique is clusterization, and such algorithms, as DSC
(Dominating Sequence Clustering) [14], and Sarkar

algorithm [15], belong to this technique. However all
static scheduling algorithms are constructed for special
graph topologies, or use special constraints, such as a zero
communication time between nodes or an unbounded
number of processors.

Fig. 2 - The annotated scenario graph.

Another perspective search techniques use
evolutionary optimization. These techniques are based on
such algorithms, as a tabu search [16], simulated
annealing, and genetic algorithms [17]. The most
powerful is a genetic algorithm (GA) technique, and
many of algorithms are proposed in this field. However,
the classical genetic algorithm is a blind search technique.
To speedup genetic algorithms we proposed an algorithm
of virtual associative network [18-20], which belongs to a
class of hybrid algorithms.

The algorithm of a virtual network is based on a
concept of associations between the particular operations
and dedicated processors. Each operation O and a
processor P have associated with a virtual link with force

. The algorithm uses some kind of an associative
memory for optimization, which consists of an association
forces. This memory is learned by the experience,
accumulated in a solution search process. The algorithm
is based on a GA representation of solutions in a form of
population of chromosomes. Each chromosome represents
a variant of scenario graph decomposition.

PO ,ω

Each chromosome is evaluated by fitness function,
which is based on a simulation model and satisfies the
criterion (1). After the stage of evaluation and selection of
a best solution candidate, the virtual network is learned by
the positive experience. When the selected solution for
some stage doesn’t outperform previous best model, the
virtual network is learned by previous experience. The
learning procedure increases the association forces, which
belongs to the best model.

The accumulation of experience allows the realization
of a guided search in the solution space. This search is
faster and gives better solutions at earliest stages of
search. The size of population in the algorithm of the
virtual associative network is smaller (5-10
chromosomes), than in classical GA (25-30
chromosomes), and requires less time for evaluation.

The virtual network algorithm introduces a new
genetic operator – clusterization, which is performed with
use of an experience from an associative memory. This
operator allows a faster creation of stable schema in
chromosomes, and thus an implementation of a genetic
local search strategy. The clusterization operator means
grouping of operations on processors with the strongest
associations.

The solutions, created by the virtual network
algorithm, must be realized as a parallel program. The
development of parallel processing system is automated,
and we propose the appropriate application development
framework. Architecture of framework isolates the
behavior logic that is dependent on the data processing
schema, from the basic service code, that is common for
all agents at modeling or application running.

IV. THE FRAMEWORK ARCHITECTURE
The architecture of image dataflow processing framework
is presented in Fig. 3.

Fig. 3 - The architecture of dataflow processing framework.
The framework consists of two subsystems. The first

one is a static optimization subsystem for analysis of
dataflow schedules. The second one is a runtime
subsystem, which is based on MPI.

The subsystem of static optimization of dataflow
processing is used for development and analysis of
parallel programs, which process a deterministic dataflow.
The input for optimization subsystem is a scenario graph
and a dataflow, represented as a vector of object types.
The scenario graph is developed in a visual editor, which
allows specifying all the characteristics of separate
operations for all types of data frames.

After the scenario graph has created, it is optimized
with use of a virtual networks algorithm. The algorithm
performs a scenario graph decomposition, which is
evaluated by simulation tool, to develop a schedule for
processing the deterministic dataflow. The optimization
algorithm and the simulation subsystem works together to
achieve the best possible solution. The decomposition of
the dataflow processing operations defines the schedule,
which can be displayed as a Gantt chart. The developer
can play with various decompositions by manual
specification. The simulation subsystem can also obtain
performance characteristics (processing time, throughput,
mean flow time etc.)

The best decomposition is transformed to a program
code for parallel processing. The code contains a
switching mechanism, realized as a finite state machine,
which determines operation transitions during data
processing. The second mechanism, which is called an
operation call wrapper, determines an operation that must
be called for specified data type. These functions are
generated from an annotated scenario DAG.

The frame of an image flow is represented by a
descriptor. The descriptor contains an identifier, type
attributes and some additional information, for example,
name of image file, which contains frame information.
When operation requires additional data for processing,
this descriptor must be extended for specified application
in appropriate way.

As the descriptors are transferred between processors
of the parallel application, therefore the application code
must contain serialization mechanisms. These
mechanisms are realized with MPI facilities for
registration, packing and unpacking custom data types.
The code is included in header file, which is linked with
the runtime subsystem.

The runtime subsystem for dataflow processing is
designed as distributed multi-agent system [21]. The
system consists of two types of program agents: a
coordinator and a processor. All agents are realized as
MPI processes and use MPI facilities for execution
control and data exchange. The principles of system
functioning allow to use it for processing both
deterministic and stochastic image flows. The architecture
of runtime subsystem is presented in Fig. 4.

Fig. 4 - The architecture of runtime system.
The purpose of the coordinator agent is processing and

scheduling control. It contains a special component,
which is called a scheduler and makes decisions about the
next processing frames for all of the processors. The
scheduler can realize many scheduling strategies, from a
simply FCFS (First Come First Served) to the more
complex Shortest Job First, Longest Job First and so on.

The second main function of the coordinator is a
coordination of parallel dataflow processing. All
descriptors of processed frames are stored in a frame pool.
The scheduler chooses the next processed frame and the
coordinator sends its descriptor to an appropriate
processor agent. After processing, the coordinator
receives descriptor, places it to the frame pool and
changes information about next stage of processing. The
process repeats while the frame pool is not empty.

The processor agent is linked with a library of image
processing operations. Each processor executes a
specified subset (cluster) of operations. Information about
the operation set decomposition is stored by the
coordinator. All processors work according to the same
algorithm. The processor receives the frame descriptor
from the coordinator, determines the next operation and
executes it using the descriptor data. After completion of
data processing, the descriptor is returned to the
coordinator. The processor works while stop instruction is
not received from the coordinator.

Besides the process coordination, the runtime agents
check system state and characteristics. These
characteristics are collected in the coordinator and used
for runtime optimization. The optimization is based on the
measuring of data processing speed. When the dataflow
changes its pattern significantly, the system must adapt to
this situation. The adaptation performs reconfiguration of
the operation subsets for all processors. When this
reconfiguration is done, the coordinator applies any new
scheme to transfer the descriptors. The system tries to
adapt to changed conditions and to achieve a high
processing speed.

V. AN EXPERIMENTAL STUDY

For evaluating of proposed algorithms and a framework
two series of experiments have been made. First, we
studied the deterministic image flows, which had a fixed
number of frames and the types of frames were known
before processing. The second group of experiments was
run with stochastic image flows, where the input data
were generated randomly. All experiments have been
done on the massively multiprocessor system K-500,
developed by United Institute of Informatics Problems.

We used the scenario graph Fig.2. The experimental
data flows were irregular and generated randomly. Table
1 shows the results of static optimization for deterministic
flows and a comparison between classical GA and virtual
network (VN) algorithms. In this table we show the
relative values (in %), that characterize the improvement
of processing time for VN algorithm.

Table 1. The improvement for static VN algorithm

Data frames count Processors
count 20 40 80

2 0.67 2.25 4.17
3 1.14 3.06 4.92
4 2.37 4.41 5.78

The results shows, that the algorithm of virtual
networks finds better solutions and the performance of the
algorithm is increased, when the search space is increased
too. The algorithm based on virtual networks finds
solutions faster, than classical GA and requires fewer
computations.

In the second experiment with stochastic image flows
we used a static schema for operation decomposition.
This schema was compared with dynamic processing
schema, which was controlled by VN algorithm. Table 2
shows the results of processing in relative values (in %) of
improvement of processing time for VN algorithm.

Table 2. The improvement for dynamic VN algorithm

Data frames count Processors
count 50 100 200

2 1.67 3.56 6.19
3 2.34 4.47 7.27
4 4.03 7.34 8.81

The results show that the VN algorithm, which is
embedded in the runtime processing system, can
significantly improve the data processing in case of
stochastic flows.

VI. CONCLUSION

An adaptive optimization improves image dataflow
processing and brings a new level of intellectual behavior
into systems. On the other hand, the modern technologies
of optimization allow the minimization of expenses for
design and evaluation of such systems. The suggested
approach and framework will find their place at creation
of modern dataflow processing systems for industrial
applications.

The architecture of framework, based on an
algorithmic skeleton approach, is suitable for many
applications, which are distributed and use a graph
representation. This framework can be extended by new
operation sets for developing applications for another
distributed processing problem areas.

 REFERENCES
[1]. M. Voganti, F. Ercal, C. Dagli, S. Tsunekawa.
Automatic PCI Inspection Algorithms: A Survey,
Computer Vision and Image Understanding, 63, (1996),
p. 287-313.
[2]. D. Argiro, S. Kubica, M. Young, and S. Jorgensen.
Khoros: An integrated development environment for
scientific computing and visualization. Whitepaper,
Khoral Research, Inc., 1999.
[3]. M. Zikos, E. Kaldoudi, S. Orphanoudakis. DIPE:
A Distributed Environment for Medical Image
Processing. Proceedings of MIE'97, Porto Carras,
Sithonia, Greece, May 25-29, 1997, pp. 465-469.
[4]. M. Guld, B. Wein, D. Keysers, C. Thies, M.
Kohnen, H. Schubert, and T. Lehmann, "A distributed
architecture for content-based image retrieval in medical
applications," in Proceedings of the 2nd International
Workshop on Pattern Recognition in Information Systems,
pp. 299--314, 2002.
[5]. J. Wickel, P. Alvarado, P. Dörfler, T. Krüger, and
K.-F. Kraiss. Axiom — a modular visual object retrieval
system. In M. Jarke, J. Koehler, and G. Lakemeyer,
editors, KI 2002: Advances in Artificial Intelligence,
LNAI 2479. Springer, 2002, p. 253–267.
[6]. W. Gropp, E. Lusk, and A. Skjellum Using MPI:
Portable Parallel Programming with the Message Passing
Interface. MIT Press, 1995.
[7]. J. Darlington, Y.-K. Guo, H. W. To, and J. Yang.
Functional skeletons for parallel coordination. In Proc.
EuroPar '95, LNCS 966, pages 55--66. Springer-Verlag,
1995.
[8]. A. A. Doudkin, A. V. Inyutin, M. E. Vatkin.
Objects identification on the color layout images of the
integrated circuit layers. Proceedings of 3rd IEEE
International Workshop on Intelligent Data Acquisition

and Advanced Computing Systems: Technology and
Applications 5-7 September 2005, Sofia, Bulgaria Sofia :
IEEE, 2005, p. 610-614.
[9]. A. A. Doudkin, D. A. Vershok. Integrated circuit
and photomask images processing technology. J. AMSE,
2005, p. 81-88.
[10]. K. Hwang, Z. Xu. Scalable Parallel Computing –
Technology, Architecture, Programming. McGraw-Hill,
USA, 1998.
[11]. B. S. Macey, A. Y. Zomaya. A performance
evaluation of CP list scheduling heuristics for
communication intensive task graphs. In Proc. of
IPPS/SPDP, 1998, p. 538-541.
[12]. D. A. Menasce, D. Saha et al. Static and
dynamic processor scheduling disciplines in
heterogeneous parallel architecture. Journal of Parallel
and Distributed Computing. Vol. 28, 1995. – pp. 1-18.
[13]. H. Oh, S. Ha. A Static Scheduling Heuristic for
Heterogeneous Processors. Second International EuroPar
Conference Proceedings, Vol II., Lyon, France, 1996, p.
573-577.
[14]. A. Gerasoulis, T. Yang. A comparison of
clustering heuristics for scheduling directed acyclic
graphs onto multiprocessors. Journal of Parallel and
Distributed Computing, 4 (16), 1992, p. 276-291.
[15]. V. Sarkar. Partitioning and Scheduling Parallel
Programs for Execution on Multiprocessors. The MIT
Press. 1989.
[16]. A. S. Porto, A. C. Ribeiro. A Tabu Search
Approach to Task Scheduling on Heterogeneous
Processors under Precedence Constraints. International
Journal of High-Speed Computing, 2 (7), 1995, p. 45-71.
[17]. Z. Michalewicz. Genetic Algorithms + Data
Structures = Evolution Programs. Second, Extended
Edition. Springer-Verlag. 1994.
[18]. Y. M. Yufik, T. B. Sheridan. Virtual Networks:
New framework for operator modeling and interface
optimization in complex supervisory control systems // A
Rev. Control, vol. 20, p. 179-195.
[19]. R. Kh. Sadykhov, A.V. Otwagin. Solution
search algorithm of solution search for systems of parallel
processing based on a virtual neural network model.
Automatic Control and Computer Science, vol. 35 (1),
2001, Allerton Press Inc., New York, p. 25-33.
[20]. R. Kh. Sadykhov, A. V. Otwagin. Algorithm for
optimization of parallel computation on the basis of
genetic algorithms and model of a virtual network. In
Proceedings of the International Workshop on Discrete-
Event System Design DESDes’01, Przytok, Poland, June
27-29, 2001, p.121-126.
[21]. S. Poslad, P. Buckle, R. Hadingham. Open
Source, Standards and Scaleable Agencies. International
Workshop on Infrastructure for Agents, Multi-Agent
Systems, and Scalable Multi-Agent Systems, June 03-07,
2000, Manchester, UK, p.296-303.

The research is partially supported by the Belarusian
Republican Foundation of Fundamental Research, grant
T04-219.

