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Abstract

For more than two decades, genetic algorithms (GAs) have been studied by re-
searchers from different fields and brought to their present form. Qver the years,
many modifications have been suggested to alleviate difficulties encountered by GAs
in solving different problems. Despite these modifications, with the increase in ap-
plications, traditional GAs remain inadequate for many practical purposes. This
paper introduces a new genetic model called the Structured Genetic Algorithm
(sGA) to address some of the difficulties encountered by the simple genetic ap-
proaches in solving various types of problems. The novelty of this genetic model
lies primarily in its redundant genetic material and a gene activation mechanism
which utilises a multi-layered structure for the chromosome. This representation
provides many advantages in search and optimisation. For erxample, it can re-
tain multiple (alternative) solutions or parameter spaces in its representation. In
effect, it also works as a long-term distributed memory within the population, en-
abling rapid adaptation in nonstationary environments. Theoretical arquments and
empirical studies exhibit that sGA can solve more complex problems efficiently than
has been possible with simple GAs. It is also noted that sGA exhibits greater im-
plicit non-disruptive diversity than other existing genetic models, while its posses-
ston of neutral (apparently redundant) genetic material is consistent with biological
systems.

*This report is the updated version of our previous technical report (No. TKBS-2-91) entitled
A Structured Genetic Algorithm: The model and the First Results.



1 Motivation.

Genetic Algorithms are finding increasing application in a variety of search, optimi-
sation, machine learning and other problems across a wide spectrum of disciplines
(Davidor, 1991; Davis, 1991). Despite their empirical success, as their usage has
grown, they have been criticised for poor performance in many problem domains.
The main underlying reason for this unsatistactory performance is the simplistic
chromosomal representation of canonical GAs. It is widely realised that the repre-
sentation is the key issue which needs attention if GAs are to succeed in complex
problems. Though the idea of a genetic algorithm is borrowed from biology, the
implicit genetic variability of biological systems, which makes them robust, has
been mostly ignored in the literature of traditional GAs.

In traditional GAs, after initial generations, improvement become slow as the
genetic diversity of the initial population is diminished through the process of
natural selection. In order to perform robust search, genetic diversity must be
maintained. When diversity is lost, the genetic process may become trapped at a
local optimum. Thus there is a significant probability of premature convergence
(Goldberg, 1989; Mauldin, 1984) in many situations (such as high-dimensional
spaces, deceptive attractors etc.) causing the search process to come to a halt
before a true optimum is found.

Once the population converges at a local optimum, simultaneous modifications
of multiple parameters i.e. a multi-bit change is required to effect an improvement
in the performance measure. However, when there is lack of genetic diversity,
genetic operations, such as crossover - may not be effective due to homogeneity
in the population. Also the effect of simple bit mutation is too small to overcome
the local basin of attraction and increase of the mutation rate may degenerate to
a random search. Thus in simple GA, the probability of obtaining simultaneous
beneficial mutation is very small to produce fitter or viable individuals.

Many modifications have been suggested over the years to avoid premature
convergence (Eshelman and Schaffer, 1991) and to improve the performance of
GAs. Two main sources of modifications are very prominent - one is the transfor-
mation of fitness function, such as scaling, sharing etc. (Goldberg, 1989) and the
other is the effective selection mechanism, for example, generation gap (DeJong,
1975), ranking (Baker, 1985) etc. though in principle both concern the selection
scheme. The main purpose of these techniques is to maintain diversity (Mauldin,
1984) in the population in order to reduce the danger of premature convergence.

In many real-world problem domains, time-varying situations often exist. Typ-
ically, the fitness criterion changes in some way over time (with change in the
external environment), and the population must rapidly adapt to the change in
fitness landscape to track the moving optima. As long as sufficient diversity re-
mains in the population, the genetic algorithm can respond to a changing fitness
scenario by reallocating the sampling in future trails. However, a natural tendency



of simple GA is to allocate exponentially increasing number of trails to highly fit
individuals resulting in rapid convergence to a homogeneous population. It is nec-
essary to introduce diversity by multiple changes in genetic material in order to
search rapidly for new optima.

One way for a multiple change to have a high probability of success is if the
multiple bits in question form a set of genes which already exist in an effective
form somewhere in the chromosome and these become expressed during adap-
tation. This approximates to an intra-chromosome dominance analogue to the
inter-chromosome crossover operation and as such it can make use of redundancy
in the chromosome. Such redundant (but potentially valuable) genes or building
blocks may have developed under high selective pressure in a previous epoch. Re-
maining 'switched off” in the gene pool as an apparently redundant part of the
complete chromosome when the environment became unfavourable.

2 The new genetic model

The central feature of the Structured Genetic Algorithm (Dasgupta and McGre-
gor, 1992f) is its use of redundancy and hierarchy in its genotype. The primary
mechanism for eliminating the conflict of redundancy is through regulatory genes
which act as switch to turn genes on (active) and off (passive) respectively. The
terms ’active’ and "passive’ are used for dominant and recessive structural genes.

In the Structured Genetic model, the genomes are embodied in the chromosome
and are represented as sets of (binary) substrings. The model also uses conven-
tional genetic operators and the survival of the fittest criteria to evolve increasingly
fit offspring. However, it differs considerably from the Simple Genetic Algorithms
in encoding informations in the chromosome, and in the phenotypic interpretation.

The fundamental differences from simple GAs are:

o The Structured Genetic Algorithm interprets the chromosome as hierarchi-
cal genomic structures. An example, showing a two-level tree structured
genomes are in figure 1(a), and a flattened linear representation of these
structures is shown in figure 1(b).

e Genes at any level can be either active or passive.

e 'High level’ genes activate or deactivate sets of lower level genes. Thus the
dynamic behavior of genes at any given level, whether they will be expressed
phenotypically or not (in genotype-to-phenotype mapping), are governed by
the high level genes.

e The functional space of genome are those that play a role in the contribution
to define the species or systems. This space may shift and undergo constant
changes while adapting to the environment during evolution.
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Figure 1: A representation of Structured Genetic Algorithm.

A change in a gene value at a high level has higher leverage and represents
multiple changes at a lower levels in terms of genes which are active. Genes which
are not active (passive genes) do not disappear, but remain in the chromosome
structure and are carried invisibly in a neutral and apparently redundant form
to subsequent generations with the individual’s genome. As the information in
chromosome is interpreted in a highly structured manner, a single change at a
higher level of the structures produces an effect on the phenotype that could only be
achieved in simple GA by a sequence of many random changes. The probability of
such a sequence in the simple GA model is very small unless, as Dawkins (Dawkins.,
1986) has pointed out, every single step results in improved viability (an intuition
is that this, too, has a much too low probability to be regarded as an effective
mechanism for a large change).

Since this genetic model interprets each chromosome as multi-level genome
structures. It allows multiple bit changes to occur simultaneously resulting in the
alteration of active parts of the genome. This leads to a large variation in the
phenotype with a greater probability of maintaining high viability. It is therefore
able to function well in many complex real world environments.

2.1 Differences from other recent approaches
2.1.1 mGA versus sGA

The Structured Genetic Model also differs from the recent Messy Genetic Model
(mGA) (Goldberg et al., 1990b; Deb, 1991) in following main aspects:

e mGAs have variable length chromosomes and the operational algorithm has
considerable complexity, and on the other hand sGA coding is of fixed-length
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and work as a simple unified process similar to formal GAs.

o In mGA, each locus on the genotype carries its identification tag with it,
making position-independent representation of gene, this is not the case with

sGA.

e mGAs use cut and splice operators in place of the crossover operator. Thus
mGAs allow genotypes of any length to develop over time, but on the con-
trary sGA uses standard genetic operators along with a gene activation mech-
anism.

e mGAs apply a two-phase evolutionary process, (refered to as a primordial
and a juxtapositional phase), whereas sGA has a single phase evolutionary
process.

e mGAs deal with variable size populations, whereas sGAs normally work with
populations of constant sizes.

e mGAs sometimes use competitive templates to accentuate salient building
blocks, but such explicit mechanism does not exists in sGA.

e mGA’s selection scheme uses genic thresholding and shuffling parameters and
the assumption of these values play an important role in its implementation.

2.1.2 GP versus sGA

The similarities and differences of the Structured Genetic Model from Genetic

Programming (GP) (Koza, 1992) as follows:

e Both models use hierarchical structure - sGA’s representation is linear list
(binary), but GP uses a symbolic list (S-expression).

o GP encoding is a meta-level description of the problem using predifined
functions and terminals. Each chromosome consists of one tree-structure
representing the complete problem, whereas sGA (like formal GA) represents
instances of the problem. sGA’s may have multiple tree structures depending
on number of parameters etc. as required.

e In Genetic Programming, the physical length of a chromosome (i.e. tree)
grows (upto some predefined depth) or shrinks during evolution. In sGA,
active genomic structures also grow or shrink, within the physical boundary
of the representation.

e In GP, the entire chromosome (tree) is expressed as the phenotype, in sGA
only the active genomes are expressed.



o Genetic Programming uses special genetic operators, but on the contrary
sGA uses standard genetic operators along with a gene activation mechanism
(switching operator) which is self implemented by the standard crossover or
mutation operations.

In the next section, a mathematical framework of the structured genetic model
is outlined.

3 A mathematical outline of the model.

In a two-level Structured Genetic Algorithm, a genotype may be of the form

A=< 51,5 >, where A represents an ordered set which consists of two
strings Sy and Sy, the length of S, is an integer multiple of the length of S; (i.e
|S1| = s and |S3] = sq); there is a genetic mapping 57 +— Sz defined below.

In other words,
A=(lalfag]), (e €{0,1},i=1...5);
(a;; € {0,1}, i=1...5 j=1...q),

and the order of the symbols in the string .53 is obtained by arranging subscripts
in row major fashion.

The mapping S; — S implies that each element a; € S; is mapped onto the
unique substring [a;;] C Sz, (j=1...q).
Now let
BZ' :CLZ'@[CLH aig...aiq], = 1...8,

where ® is called a genetic switch or activator and defined as

BZ' :CLZ'@SQ == [aij], Zf a; =1

where ¢ 18 the empty substring.

The B; constitute the parameter spaces of the individual whose phenotypic inter-
pretation is as follows.

The appearance (phenotype) of each individual A is expressed by concatena-
tion of all its activated substrings B;. This means that the length of an expressed
chromosome is less than the physical length of the chromosome. Hence, the ob-
servable characteristics of an individual do not always indicate the particular genes
that are present in the genetic composition or genotype.

The total population of individuals,
Q={A,]|1<p< Popsize}

and each individual consisting of a binary string A, =< 57,, 52, > € (0, 1)!, where
the physical length of the chromosome with notation above is s + ¢s = [.
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Let f is a real-valued fitness (objective) function
f : Q— RT, where R" isthe set of positive real numbers.

In general, a multi-level structured string may be represented as

Ay = (lad; [aij], [aije], - - ),

where the genetic mappings [a;] — [a;;] > [a;k] and so on, are generalised in the
obvious way.

Figure 2. illustrates a simple data structure for the implementation of sGA.
Each gene in higher levels acts as a switchable pointer which has two possible tar-
gets, when the gene is active (on) it points to its lower level target(gene) and when
passive (off) it points to the same level target. At the evaluation stage only the
expressed genes of an individual are translated into the phenotypic functionality.

4 An analysis of sGA search

As an initial simple explanation, let n be the number of dimensions of a binary-
valued vector encoding a parameter (or solution) space, i.e in {0,1}"; so the num-
ber of points available for search is 2" and can be assumed as space N (Kanerva,
1988). Each point in the search space N can be considered as a vertex of the
n-dimensional unit hypercube in Euclidean space. It can also be assumed (Kan-
erva, 1988) that the vertices of the n-dimensional hypercube lie on the surface of a
n-dimensional sphere with (Euclidean metric) radius y/n/2 and circumference 2n.
However, this circumference is an approximation, since N has a finite number of
points and the sphere is continuous. Figure 3. shows an example of 4-dimensional
hyperspace where the nodes or vertices correspond to points in the search space;
in the case of higher dimensions there will be more points on the surface. As N is
considered spherical, all points of N are equally qualified as search points in the
parameter space. Each point in the space and its complement are the two poles
of the sphere at a Hamming distance n from each other, with the entire space in
between.

Now, let us consider a problem which has one level of search space and consid-
ering a two-level sGA to search the space, where the high-level genes can activate



Figure 3: Vertices of a 4-dimensional hypercube on the spherical surface.

one or the other solution spaces. If there are two alternative spaces encoding
the same parameter and at one time only one space is allowed to be active or
dominant for decoding (within a defined real-valued problem domain which is
independent of the dimension n); a change cause by genetic operations on the
higher level results in switching to the alternate space. This may contain a point
in between the previously expressed space and its complement inclusive. More-
over, changes on low-level can search the spaces in its neighborhood (in terms of
hamming space). For a parameter, every additional optional space increases the
probability of searching the different areas of space, resulting in the quick discov-
ery of relatively unexplored areas of search space. There is, however, a trade off
between the number of optional spaces and the dimension of each space encoding
a parameter. If there are more optional spaces then there is a higher probability
of continuous exploration of different areas of space, but less chance of exploiting
a particular subspace (or region of interest) having a potential solution.

With proper selection of the number of optional spaces (high-level bits) and
encoding of each space i.e low-level substrings, it is possible to maintain a balance
between exploration and exploitation (with selection pressure etc.) of search space,
using suitable GA parameters.

In someways the selection of the number of alternate parameter space is analo-
gous to the selection of the size of the population needed for a particular problem.
In both cases, selection of too large a number leads to redundant searching; too
small a number has a significant probability that search converges to a local op-
tima.

However, there may be other possible ways of explaining and implementing the
multi-level representation of the Structured Genetic Model, which are yet to be
explored.



5 Possible biological evidence

In biological systems, there appear to be many possible strands of evidence sup-
porting this model.

It is widely recognised that the genetic material (DNA) in the chromosome
contains much more enough information to create an organism; a large percentage
of the chromosome of higher organisms is junk i.e has no apparent function (Brady,
1985). Mechanisms also exist for switching on and off the gene activity of structural

genes (Brown, 1989).

Biologists realised (Beardsley, 1991) almost 50 years ago that as cells differ-
entiate they switch some genes on and others off, making it possible for a single
fertilized egg to unfold into a flower, or a fruit fly or a human being. Yet all cells
have exactly the same genes encoded in their DNA.

Embryologists observed (Ptashne., 1989) that signals from both outside and
inside the cell can influence the switching on or off of genes. Studies show that
(Ptashne et al., 1982) inert bacterial viruses may switch their genes on and off
rapidly in response to changing environments. Cell types differ (phenotypically)
because they have dissimilar patterns of genetic activity, not because they have dif-
ferent genome. A genome acts like a complex network (Kauffman., 1991), in which
genes regulate one another’s activity either directly or through their products.

Recent biological studies (Stolzenburg, 1990) show that when cells are stressed
by environmental conditions, some cells tend to enter a hypermutable state. Only
those mutated cells which survive in the new environment pass on their traits. Also
it was noted that many mutations are silent (Hawkins, 1991) - that is, they have no
observable effect, either because they have occured in parts of DNA that are not
currently expressed, or because they have no effect on the encoded information.

The mystery of higher organisms’ choreograph of the activity of their genes is
the result of gene requlation, due to which cells to form and function correctly at
right place and at the right time. Gene expression is usually controlled (Brown,
1989; Hawkins, 1991) by some regulatory genes (which produce protein) that bind
to specific sites on DNA. These genes are called promotors or repressors depend-
ing on whether they increase or decrease transcription process (some regulators
can perform both functions). During the transcription process, parts of genetic
information are selectively read from DNA into tRNA, (in turn, tRNA is copied
to mRNA and is sent to the outer region of the cell) which is translated into the
myriad proteins that make one cell very different from another. In other words,
using the regulatory genes (Jacob and Monod, 1961), the cell can dynamically
select the proteins it needs, including enzymes for maintaining cell integrity dur-
ing metabolism. The developments of the past few years suggest that (Ptashne.,
1989) a few simple principles may be common to gene regulation in these evidently
disparate situations, whether in bacteria, yeast, plants, fruit flies or humans. It



was noted that genetic variation may occur by the switching on of the quiescent
DNA to replace existing material phenotypically. Such changes could make large
morphological changes in a species while requiring very few changes in the DNA,
only the 'switch settings’ being different. Such mechanisms have already been pos-
tulated by biologists (Lowenstein and Zihlman, 1988) seeking to explain the large
morphological distance between hominids and chimpanzees.

In the Structured Genetic model, the above mechanisms are combined to form
a highly efficient technique for searching the viable parameter (or solution) space.
It may be viewed as inducing an intra-chromosomal dominance to the gene pool
of the species. Thus not only do genes representing simple low-level structures
compete, but high-level genes also compete and a successful team will tend to
proliferate in the population. As the variations are tested by natural selection,
and this will tend to give the effect of multiple scales. We believe that a multi-
level structure of the chromosome is plausible, and put forward the hypothesis
that many apparently non-functioning segments of DNA may have a similar role
in the biological evolutionary process.

6 Summary.
To summarise, in the Structured Genetic Algorithm :

o A chromosome is represented by a set of substrings, which during reproduc-
tion, are modified by the genetic operators - crossover and mutation etc.
exactly as in the simple GAs.

o In decoding to the phenotype, a chromosome is interpreted as hierarchical ge-
nomic structures of the genetic material. Only those genes currently ’active’
in the chromosome contribute to the fitness of the phenotype. The "pas-
sive’ genes are apparently neutral and carried along as a redundant genetic
material during the evolutionary process.

e Mutation, crossover or other local operators altering high-level genes result
in changes to the active elements of the genomic structures and hence cause
multiple changes in the gene expression, controlling the fitness of the pheno-

type.

o When a population converges to its phenotypic space, genotypic diversity still
exists which is a unique characteristic of the model. In most other formal
genetic models phenotypic convergence implies genotypic convergence with
consequent impoverishment of the individual of the population.

o Efficient searching of potential areas of phenotypic space is possible. Trap-
ping at local optima which causes premature convergence can be avoided.
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o sGA provides a long-term mechanism for preserving and retrieving alternate
solutions or previously expressed building blocks within the chromosomal
structures. In the non-stationary optimisation, sGA provides a means of
rapid (long jump) adaptation (Dasgupta and McGregor, 1992d). Simple GA
with dominance and diploidy used so far (Goldberg and Smith., 1987) can
only store or retrieve one allele independently (Deb, 1991), and thus may
provide shorter term preservation.

e Co-evolution can also occur easily among species by simultaneously sam-
pling and preserving different areas of search space in a multi-global fitness
landscape.

o [t can achieve optimisation of multi-stage problems by defining search spaces
in its different layers and can explore and exploit them in a single evolution-
ary process.

One school of thought (Darwinian) believes that evolutionary changes are grad-
ual; another (Punctuated Equilibria) postulates that evolutionary changes go in
sudden bursts, punctuating long periods of stasis when very small evolutionary
changes took place in a given lineage. The new model provides a good framework
for carrying out studies that could bridge these two theories.

However, the primary goal of this work is not attempting to mimic nature, but
to borrow some complex mechanism of nature’s biological system for developing a
more efficient genetic search technique.

7 Implementation of sGA.

There are many possible ways of implementing the structured genetic model. It
is noted that the number of levels of sGA and their interpretation are related to
the complexity of the problem space. For an example, if the problem has one level
of search space then a two-level sGA works well where defined high-level bits can
activate one of the optional spaces. In encoding a chromosome, each parameter or
solution space may be represented by a binary substring having multiple variants
only one of which will be dominant. In each chromosome, high-level bits (which
allow redundancy, a deciding factor like other GA parameters) act as switches
to indicate the active parameter space at low-level. It may be also possible to
use more than two levels of sGA with partial encoding of the parameter space
at different levels. The evolutionary process is generally initialised with a ran-
domly generated population and uses different selection scheme for reproduction,
multi-point crossover and different mutation frequencies in different levels, for a
fixed number of trials or until the search converges (phenotypically) to the global
optimum. The changes in the high-level genes activate or deactivate different sets
of genes in the alternate parameter (solution) spaces at the lower levels.
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In optimisation problems over some fixed number of parameters, all decision
variables must be supplied to the objective function to obtain a function value.
It may be necessary that a specified number of high-level genes to be active in a
chromosome according to the number of parameters in the problem under consid-
eration. This can not be assumed to hold where the high-level genes are subject
to random mutations. The result may tend to a situation of overspecification in
which more than the required number of high-level bits will be active. This will
express a bit string that may be too long for the problem solution (phenotype).
In order to overcome this problem of overspecification, one approach may be to
generate an initial population in such a way that high level sections have required
active bits set and the low level randomly generated. Then one could use restricted
mutations on the high level bits to the closure of shift to the left or right (or using
local mutation (Brady, 1985) which swaps the position of two high level genes).
Though this approach is ad-hoc, but it can avoid both under and overspecification
problem in encoding (Smith and Goldberg, 1992). An alternative and more general
approach may be to use randomly generated population and scan each individual
from left-to-right to take information sufficient for decoding in order to resolve the
conflict of overspecification, as used in messy GAs (Goldberg et al., 1990a). The
underspecification can be handled in a natural way by making the individual less

fit to breed.

However, a biologically realistic mechanism would allow genetic operations that
activate multiple high level bits, and would use a fitness function to exclude the
‘chimerical’ phenotypes that result from breeding. But the above mentioned mech-
anisms appear to be computationally efficient.

& Discussions

The new model called the Structured Genetic Algorithm, described in this paper
is regarded as an enhancement of Holland’s formal genetic model. It introduces
multi-level genomic structures and a gene regulatory mechanism to accommodate
redundancy into the coding scheme. These features allow multiple bit changes to
occur simultaneously, in addition to the mixing effect of standard genetic opera-
tions.

The model has aspect of polyploidy inheritance, and may be an extension
of the diploidy model suggested by Goldberg and Smith (Goldberg and Smith.,
1987), except for the exclusion of dominance and abeyance operators to generate
phenotypes from homologous genes.

The paper explained the salient features of the model and presented the intial
steps toward the implemention of the model.

The Structured Genetic approach offers the following improvements:

o [t is able to achieve optimisation in multi-stage problems which are difficult
for existing genetic algorithms.
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o [t is not easily trapped at local optima, since a single high-level bit change
can bring the phenotype into an area which would otherwise have required
multiple changes.

e Unlike multiple random low-level changes, the high-level change result in
higher viability (or at least increase the probability), as the search is directed
towards the potential areas of the solution space.

o sGA works as a long term distributed memory that stores information, par-
ticularly genes once highly selected as fittest. So it is able to adapt rapidly
to the selective pressure of its changing environment.

Though much work remains to be done, preliminary empirical studies show
that it is computationally efficient in optimising non-stationary (Dasgupta and
McGregor, 1992d; Dasgupta and McGregor, 1992¢) and multi-solution (Dasgupta
and McGregor, 1992¢) functions. Experiments also show that the model can evolve
application-specific neural networks i.e. it can determine both network architec-
tures and its weights by a single evolutionary process (Dasgupta and McGregor,
1992b; Dasgupta and McGregor, 1992a; Dasgupta and McGregor, 1993). We argue
that this genetic model (sGA) is more biologically motivated and have significant
practical advantages in problem domains where the simple GAs may have difficul-
ties.

9 Future Research.

The two major directions are planned for future research. First, further theoret-
ical study is necessary to understand the behaviour of the model. Second, more
experimental work in complex domains is needed to examine its performance.

The empirical experiments performed so far are only the first step toward the
broader goal in developing this more efficient genetic algorithm and further possible
steps include:

o Implementation of n-level sGA where n > 2.
o Verification of the schema theorem for sGA.
o Application sGA to so called GA-deceptive problems.

e Comparison of sGA with other recent genetic models (e.g. mGA) as bench-
mark study.

e Parallel implementation of this new model, since sGA is formally a highly
parallel technique.

o Investigation of the effectiveness of the genetic operators that have been used
for the simple GA and development of new or modified operators.
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o Developing statistical measures for predicting the successful performance of
sGA and determining the correlation with fitness landscape.

e The model may be useful in the investigation of adaptive behavior of artificial

life.
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