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1 Motivation.Genetic Algorithms are �nding increasing application in a variety of search, optimi-sation, machine learning and other problems across a wide spectrum of disciplines(Davidor, 1991; Davis, 1991). Despite their empirical success, as their usage hasgrown, they have been criticised for poor performance in many problem domains.The main underlying reason for this unsatisfactory performance is the simplisticchromosomal representation of canonical GAs. It is widely realised that the repre-sentation is the key issue which needs attention if GAs are to succeed in complexproblems. Though the idea of a genetic algorithm is borrowed from biology, theimplicit genetic variability of biological systems, which makes them robust, hasbeen mostly ignored in the literature of traditional GAs.In traditional GAs, after initial generations, improvement become slow as thegenetic diversity of the initial population is diminished through the process ofnatural selection. In order to perform robust search, genetic diversity must bemaintained. When diversity is lost, the genetic process may become trapped at alocal optimum. Thus there is a signi�cant probability of premature convergence(Goldberg, 1989; Mauldin, 1984) in many situations (such as high-dimensionalspaces, deceptive attractors etc.) causing the search process to come to a haltbefore a true optimum is found.Once the population converges at a local optimum, simultaneous modi�cationsof multiple parameters i.e. a multi-bit change is required to e�ect an improvementin the performance measure. However, when there is lack of genetic diversity,genetic operations, such as crossover - may not be e�ective due to homogeneityin the population. Also the e�ect of simple bit mutation is too small to overcomethe local basin of attraction and increase of the mutation rate may degenerate toa random search. Thus in simple GA, the probability of obtaining simultaneousbene�cial mutation is very small to produce �tter or viable individuals.Many modi�cations have been suggested over the years to avoid prematureconvergence (Eshelman and Scha�er, 1991) and to improve the performance ofGAs. Two main sources of modi�cations are very prominent - one is the transfor-mation of �tness function, such as scaling, sharing etc. (Goldberg, 1989) and theother is the e�ective selection mechanism, for example, generation gap (DeJong,1975), ranking (Baker, 1985) etc. though in principle both concern the selectionscheme. The main purpose of these techniques is to maintain diversity (Mauldin,1984) in the population in order to reduce the danger of premature convergence.In many real-world problem domains, time-varying situations often exist. Typ-ically, the �tness criterion changes in some way over time (with change in theexternal environment), and the population must rapidly adapt to the change in�tness landscape to track the moving optima. As long as su�cient diversity re-mains in the population, the genetic algorithm can respond to a changing �tnessscenario by reallocating the sampling in future trails. However, a natural tendency2



of simple GA is to allocate exponentially increasing number of trails to highly �tindividuals resulting in rapid convergence to a homogeneous population. It is nec-essary to introduce diversity by multiple changes in genetic material in order tosearch rapidly for new optima.One way for a multiple change to have a high probability of success is if themultiple bits in question form a set of genes which already exist in an e�ectiveform somewhere in the chromosome and these become expressed during adap-tation. This approximates to an intra-chromosome dominance analogue to theinter-chromosome crossover operation and as such it can make use of redundancyin the chromosome. Such redundant (but potentially valuable) genes or buildingblocks may have developed under high selective pressure in a previous epoch. Re-maining 'switched o�' in the gene pool as an apparently redundant part of thecomplete chromosome when the environment became unfavourable.2 The new genetic modelThe central feature of the Structured Genetic Algorithm (Dasgupta and McGre-gor, 1992f) is its use of redundancy and hierarchy in its genotype. The primarymechanism for eliminating the conict of redundancy is through regulatory geneswhich act as switch to turn genes on (active) and o� (passive) respectively. Theterms 'active' and 'passive' are used for dominant and recessive structural genes.In the Structured Genetic model, the genomes are embodied in the chromosomeand are represented as sets of (binary) substrings. The model also uses conven-tional genetic operators and the survival of the �ttest criteria to evolve increasingly�t o�spring. However, it di�ers considerably from the Simple Genetic Algorithmsin encoding informations in the chromosome, and in the phenotypic interpretation.The fundamental di�erences from simple GAs are:� The Structured Genetic Algorithm interprets the chromosome as hierarchi-cal genomic structures. An example, showing a two-level tree structuredgenomes are in �gure 1(a), and a attened linear representation of thesestructures is shown in �gure 1(b).� Genes at any level can be either active or passive.� 'High level' genes activate or deactivate sets of lower level genes. Thus thedynamic behavior of genes at any given level, whether they will be expressedphenotypically or not (in genotype-to-phenotype mapping), are governed bythe high level genes.� The functional space of genome are those that play a role in the contributionto de�ne the species or systems. This space may shift and undergo constantchanges while adapting to the environment during evolution.3



   (a)    A   2-level  structure  of  sGA.

  (b)    An  encoding   process  of   sGA.
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andFigure 1: A representation of Structured Genetic Algorithm.A change in a gene value at a high level has higher leverage and representsmultiple changes at a lower levels in terms of genes which are active. Genes whichare not active (passive genes) do not disappear, but remain in the chromosomestructure and are carried invisibly in a neutral and apparently redundant formto subsequent generations with the individual's genome. As the information inchromosome is interpreted in a highly structured manner, a single change at ahigher level of the structures produces an e�ect on the phenotype that could only beachieved in simple GA by a sequence of many random changes. The probability ofsuch a sequence in the simple GAmodel is very small unless, as Dawkins (Dawkins.,1986) has pointed out, every single step results in improved viability (an intuitionis that this, too, has a much too low probability to be regarded as an e�ectivemechanism for a large change).Since this genetic model interprets each chromosome as multi-level genomestructures. It allows multiple bit changes to occur simultaneously resulting in thealteration of active parts of the genome. This leads to a large variation in thephenotype with a greater probability of maintaining high viability. It is thereforeable to function well in many complex real world environments.2.1 Di�erences from other recent approaches2.1.1 mGA versus sGAThe Structured Genetic Model also di�ers from the recent Messy Genetic Model(mGA) (Goldberg et al., 1990b; Deb, 1991) in following main aspects:� mGAs have variable length chromosomes and the operational algorithm hasconsiderable complexity, and on the other hand sGA coding is of �xed-length4



and work as a simple uni�ed process similar to formal GAs.� In mGA, each locus on the genotype carries its identi�cation tag with it,making position-independent representation of gene, this is not the case withsGA.� mGAs use cut and splice operators in place of the crossover operator. ThusmGAs allow genotypes of any length to develop over time, but on the con-trary sGA uses standard genetic operators along with a gene activation mech-anism.� mGAs apply a two-phase evolutionary process, (refered to as a primordialand a juxtapositional phase), whereas sGA has a single phase evolutionaryprocess.� mGAs deal with variable size populations, whereas sGAs normally work withpopulations of constant sizes.� mGAs sometimes use competitive templates to accentuate salient buildingblocks, but such explicit mechanism does not exists in sGA.� mGA's selection scheme uses genic thresholding and shu�ing parameters andthe assumption of these values play an important role in its implementation.2.1.2 GP versus sGAThe similarities and di�erences of the Structured Genetic Model from GeneticProgramming (GP) (Koza, 1992) as follows:� Both models use hierarchical structure - sGA's representation is linear list(binary), but GP uses a symbolic list (S-expression).� GP encoding is a meta-level description of the problem using predi�nedfunctions and terminals. Each chromosome consists of one tree-structurerepresenting the complete problem, whereas sGA (like formal GA) representsinstances of the problem. sGA's may have multiple tree structures dependingon number of parameters etc. as required.� In Genetic Programming, the physical length of a chromosome (i.e. tree)grows (upto some prede�ned depth) or shrinks during evolution. In sGA,active genomic structures also grow or shrink, within the physical boundaryof the representation.� In GP, the entire chromosome (tree) is expressed as the phenotype, in sGAonly the active genomes are expressed.5



� Genetic Programming uses special genetic operators, but on the contrarysGA uses standard genetic operators along with a gene activation mechanism(switching operator) which is self implemented by the standard crossover ormutation operations.In the next section, a mathematical framework of the structured genetic modelis outlined.3 A mathematical outline of the model.In a two-level Structured Genetic Algorithm, a genotype may be of the formA =< S1; S2 > , where A represents an ordered set which consists of twostrings S1 and S2, the length of S2 is an integer multiple of the length of S1 (i.ejS1j = s and jS2j = sq); there is a genetic mapping S1 7! S2 de�ned below.In other words,A = ( [ai]; [aij] ); (ai 2 f0; 1g; i = 1 : : : s);(aij 2 f0; 1g; i = 1 : : : s; j = 1 : : : q),and the order of the symbols in the string S2 is obtained by arranging subscriptsin row major fashion.The mapping S1 7! S2 implies that each element ai 2 S1 is mapped onto theunique substring [aij] � S2; (j = 1 : : : q).Now let Bi = ai 
 [ai1 ai2 : : : aiq]; i = 1 : : : s;where 
 is called a genetic switch or activator and de�ned asBi = ai 
 S2 = [aij]; if ai = 1= �; if ai = 0;where � is the empty substring:The Bi constitute the parameter spaces of the individual whose phenotypic inter-pretation is as follows.The appearance (phenotype) of each individual A is expressed by concatena-tion of all its activated substrings Bi. This means that the length of an expressedchromosome is less than the physical length of the chromosome. Hence, the ob-servable characteristics of an individual do not always indicate the particular genesthat are present in the genetic composition or genotype.The total population of individuals,
 = fAp j 1 � p � Popsizegand each individual consisting of a binary string Ap =< S1p; S2p > 2 (0; 1)l, wherethe physical length of the chromosome with notation above is s+ qs = l.6
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! R+; where R+ is the set of positive real numbers:In general, a multi-level structured string may be represented asAp = ([ai]; [aij]; [aijk]; : : :);where the genetic mappings [ai] 7! [aij] 7! [aijk] and so on, are generalised in theobvious way.Figure 2. illustrates a simple data structure for the implementation of sGA.Each gene in higher levels acts as a switchable pointer which has two possible tar-gets, when the gene is active (on) it points to its lower level target(gene) and whenpassive (o�) it points to the same level target. At the evaluation stage only theexpressed genes of an individual are translated into the phenotypic functionality.4 An analysis of sGA searchAs an initial simple explanation, let n be the number of dimensions of a binary-valued vector encoding a parameter (or solution) space, i.e in f0; 1gn; so the num-ber of points available for search is 2n and can be assumed as space N (Kanerva,1988). Each point in the search space N can be considered as a vertex of then-dimensional unit hypercube in Euclidean space. It can also be assumed (Kan-erva, 1988) that the vertices of the n-dimensional hypercube lie on the surface of an-dimensional sphere with (Euclidean metric) radius pn=2 and circumference 2n.However, this circumference is an approximation, since N has a �nite number ofpoints and the sphere is continuous. Figure 3. shows an example of 4-dimensionalhyperspace where the nodes or vertices correspond to points in the search space;in the case of higher dimensions there will be more points on the surface. As N isconsidered spherical, all points of N are equally quali�ed as search points in theparameter space. Each point in the space and its complement are the two polesof the sphere at a Hamming distance n from each other, with the entire space inbetween.Now, let us consider a problem which has one level of search space and consid-ering a two-level sGA to search the space, where the high-level genes can activate7
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Figure 3: Vertices of a 4-dimensional hypercube on the spherical surface.one or the other solution spaces. If there are two alternative spaces encodingthe same parameter and at one time only one space is allowed to be active ordominant for decoding (within a de�ned real-valued problem domain which isindependent of the dimension n); a change cause by genetic operations on thehigher level results in switching to the alternate space. This may contain a pointin between the previously expressed space and its complement inclusive. More-over, changes on low-level can search the spaces in its neighborhood (in terms ofhamming space). For a parameter, every additional optional space increases theprobability of searching the di�erent areas of space, resulting in the quick discov-ery of relatively unexplored areas of search space. There is, however, a trade o�between the number of optional spaces and the dimension of each space encodinga parameter. If there are more optional spaces then there is a higher probabilityof continuous exploration of di�erent areas of space, but less chance of exploitinga particular subspace (or region of interest) having a potential solution.With proper selection of the number of optional spaces (high-level bits) andencoding of each space i.e low-level substrings, it is possible to maintain a balancebetween exploration and exploitation (with selection pressure etc.) of search space,using suitable GA parameters.In someways the selection of the number of alternate parameter space is analo-gous to the selection of the size of the population needed for a particular problem.In both cases, selection of too large a number leads to redundant searching; toosmall a number has a signi�cant probability that search converges to a local op-tima.However, there may be other possible ways of explaining and implementing themulti-level representation of the Structured Genetic Model, which are yet to beexplored. 8



5 Possible biological evidenceIn biological systems, there appear to be many possible strands of evidence sup-porting this model.It is widely recognised that the genetic material (DNA) in the chromosomecontains much more enough information to create an organism; a large percentageof the chromosome of higher organisms is junk i.e has no apparent function (Brady,1985). Mechanisms also exist for switching on and o� the gene activity of structuralgenes (Brown, 1989).Biologists realised (Beardsley, 1991) almost 50 years ago that as cells di�er-entiate they switch some genes on and others o�, making it possible for a singlefertilized egg to unfold into a ower, or a fruit y or a human being. Yet all cellshave exactly the same genes encoded in their DNA.Embryologists observed (Ptashne., 1989) that signals from both outside andinside the cell can inuence the switching on or o� of genes. Studies show that(Ptashne et al., 1982) inert bacterial viruses may switch their genes on and o�rapidly in response to changing environments. Cell types di�er (phenotypically)because they have dissimilar patterns of genetic activity, not because they have dif-ferent genome. A genome acts like a complex network (Kau�man., 1991), in whichgenes regulate one another's activity either directly or through their products.Recent biological studies (Stolzenburg, 1990) show that when cells are stressedby environmental conditions, some cells tend to enter a hypermutable state. Onlythose mutated cells which survive in the new environment pass on their traits. Alsoit was noted that many mutations are silent (Hawkins, 1991) - that is, they have noobservable e�ect, either because they have occured in parts of DNA that are notcurrently expressed, or because they have no e�ect on the encoded information.The mystery of higher organisms' choreograph of the activity of their genes isthe result of gene regulation, due to which cells to form and function correctly atright place and at the right time. Gene expression is usually controlled (Brown,1989; Hawkins, 1991) by some regulatory genes (which produce protein) that bindto speci�c sites on DNA. These genes are called promotors or repressors depend-ing on whether they increase or decrease transcription process (some regulatorscan perform both functions). During the transcription process, parts of geneticinformation are selectively read from DNA into tRNA, (in turn, tRNA is copiedto mRNA and is sent to the outer region of the cell) which is translated into themyriad proteins that make one cell very di�erent from another. In other words,using the regulatory genes (Jacob and Monod, 1961), the cell can dynamicallyselect the proteins it needs, including enzymes for maintaining cell integrity dur-ing metabolism. The developments of the past few years suggest that (Ptashne.,1989) a few simple principles may be common to gene regulation in these evidentlydisparate situations, whether in bacteria, yeast, plants, fruit ies or humans. It9



was noted that genetic variation may occur by the switching on of the quiescentDNA to replace existing material phenotypically. Such changes could make largemorphological changes in a species while requiring very few changes in the DNA,only the 'switch settings' being di�erent. Such mechanisms have already been pos-tulated by biologists (Lowenstein and Zihlman, 1988) seeking to explain the largemorphological distance between hominids and chimpanzees.In the Structured Genetic model, the above mechanisms are combined to forma highly e�cient technique for searching the viable parameter (or solution) space.It may be viewed as inducing an intra-chromosomal dominance to the gene poolof the species. Thus not only do genes representing simple low-level structurescompete, but high-level genes also compete and a successful team will tend toproliferate in the population. As the variations are tested by natural selection,and this will tend to give the e�ect of multiple scales. We believe that a multi-level structure of the chromosome is plausible, and put forward the hypothesisthat many apparently non-functioning segments of DNA may have a similar rolein the biological evolutionary process.6 Summary.To summarise, in the Structured Genetic Algorithm :� A chromosome is represented by a set of substrings, which during reproduc-tion, are modi�ed by the genetic operators - crossover and mutation etc.exactly as in the simple GAs.� In decoding to the phenotype, a chromosome is interpreted as hierarchical ge-nomic structures of the genetic material. Only those genes currently 'active'in the chromosome contribute to the �tness of the phenotype. The 'pas-sive' genes are apparently neutral and carried along as a redundant geneticmaterial during the evolutionary process.� Mutation, crossover or other local operators altering high-level genes resultin changes to the active elements of the genomic structures and hence causemultiple changes in the gene expression, controlling the �tness of the pheno-type.� When a population converges to its phenotypic space, genotypic diversity stillexists which is a unique characteristic of the model. In most other formalgenetic models phenotypic convergence implies genotypic convergence withconsequent impoverishment of the individual of the population.� E�cient searching of potential areas of phenotypic space is possible. Trap-ping at local optima which causes premature convergence can be avoided.10



� sGA provides a long-term mechanism for preserving and retrieving alternatesolutions or previously expressed building blocks within the chromosomalstructures. In the non-stationary optimisation, sGA provides a means ofrapid (long jump) adaptation (Dasgupta and McGregor, 1992d). Simple GAwith dominance and diploidy used so far (Goldberg and Smith., 1987) canonly store or retrieve one allele independently (Deb, 1991), and thus mayprovide shorter term preservation.� Co-evolution can also occur easily among species by simultaneously sam-pling and preserving di�erent areas of search space in a multi-global �tnesslandscape.� It can achieve optimisation of multi-stage problems by de�ning search spacesin its di�erent layers and can explore and exploit them in a single evolution-ary process.One school of thought (Darwinian) believes that evolutionary changes are grad-ual; another (Punctuated Equilibria) postulates that evolutionary changes go insudden bursts, punctuating long periods of stasis when very small evolutionarychanges took place in a given lineage. The new model provides a good frameworkfor carrying out studies that could bridge these two theories.However, the primary goal of this work is not attempting to mimic nature, butto borrow some complex mechanism of nature's biological system for developing amore e�cient genetic search technique.7 Implementation of sGA.There are many possible ways of implementing the structured genetic model. Itis noted that the number of levels of sGA and their interpretation are related tothe complexity of the problem space. For an example, if the problem has one levelof search space then a two-level sGA works well where de�ned high-level bits canactivate one of the optional spaces. In encoding a chromosome, each parameter orsolution space may be represented by a binary substring having multiple variantsonly one of which will be dominant. In each chromosome, high-level bits (whichallow redundancy, a deciding factor like other GA parameters) act as switchesto indicate the active parameter space at low-level. It may be also possible touse more than two levels of sGA with partial encoding of the parameter spaceat di�erent levels. The evolutionary process is generally initialised with a ran-domly generated population and uses di�erent selection scheme for reproduction,multi-point crossover and di�erent mutation frequencies in di�erent levels, for a�xed number of trials or until the search converges (phenotypically) to the globaloptimum. The changes in the high-level genes activate or deactivate di�erent setsof genes in the alternate parameter (solution) spaces at the lower levels.11



In optimisation problems over some �xed number of parameters, all decisionvariables must be supplied to the objective function to obtain a function value.It may be necessary that a speci�ed number of high-level genes to be active in achromosome according to the number of parameters in the problem under consid-eration. This can not be assumed to hold where the high-level genes are subjectto random mutations. The result may tend to a situation of overspeci�cation inwhich more than the required number of high-level bits will be active. This willexpress a bit string that may be too long for the problem solution (phenotype).In order to overcome this problem of overspeci�cation, one approach may be togenerate an initial population in such a way that high level sections have requiredactive bits set and the low level randomly generated. Then one could use restrictedmutations on the high level bits to the closure of shift to the left or right (or usinglocal mutation (Brady, 1985) which swaps the position of two high level genes).Though this approach is ad-hoc, but it can avoid both under and overspeci�cationproblem in encoding (Smith and Goldberg, 1992). An alternative and more generalapproach may be to use randomly generated population and scan each individualfrom left-to-right to take information su�cient for decoding in order to resolve theconict of overspeci�cation, as used in messy GAs (Goldberg et al., 1990a). Theunderspeci�cation can be handled in a natural way by making the individual less�t to breed.However, a biologically realistic mechanismwould allow genetic operations thatactivate multiple high level bits, and would use a �tness function to exclude the`chimerical' phenotypes that result from breeding. But the above mentioned mech-anisms appear to be computationally e�cient.8 DiscussionsThe new model called the Structured Genetic Algorithm, described in this paperis regarded as an enhancement of Holland's formal genetic model. It introducesmulti-level genomic structures and a gene regulatory mechanism to accommodateredundancy into the coding scheme. These features allow multiple bit changes tooccur simultaneously, in addition to the mixing e�ect of standard genetic opera-tions.The model has aspect of polyploidy inheritance, and may be an extensionof the diploidy model suggested by Goldberg and Smith (Goldberg and Smith.,1987), except for the exclusion of dominance and abeyance operators to generatephenotypes from homologous genes.The paper explained the salient features of the model and presented the intialsteps toward the implemention of the model.The Structured Genetic approach o�ers the following improvements:� It is able to achieve optimisation in multi-stage problems which are di�cultfor existing genetic algorithms. 12



� It is not easily trapped at local optima, since a single high-level bit changecan bring the phenotype into an area which would otherwise have requiredmultiple changes.� Unlike multiple random low-level changes, the high-level change result inhigher viability (or at least increase the probability), as the search is directedtowards the potential areas of the solution space.� sGA works as a long term distributed memory that stores information, par-ticularly genes once highly selected as �ttest. So it is able to adapt rapidlyto the selective pressure of its changing environment.Though much work remains to be done, preliminary empirical studies showthat it is computationally e�cient in optimising non-stationary (Dasgupta andMcGregor, 1992d; Dasgupta and McGregor, 1992e) and multi-solution (Dasguptaand McGregor, 1992c) functions. Experiments also show that the model can evolveapplication-speci�c neural networks i.e. it can determine both network architec-tures and its weights by a single evolutionary process (Dasgupta and McGregor,1992b; Dasgupta and McGregor, 1992a; Dasgupta and McGregor, 1993). We arguethat this genetic model (sGA) is more biologically motivated and have signi�cantpractical advantages in problem domains where the simple GAs may have di�cul-ties.9 Future Research.The two major directions are planned for future research. First, further theoret-ical study is necessary to understand the behaviour of the model. Second, moreexperimental work in complex domains is needed to examine its performance.The empirical experiments performed so far are only the �rst step toward thebroader goal in developing this more e�cient genetic algorithm and further possiblesteps include:� Implementation of n-level sGA where n > 2.� Veri�cation of the schema theorem for sGA.� Application sGA to so called GA-deceptive problems.� Comparison of sGA with other recent genetic models (e.g. mGA) as bench-mark study.� Parallel implementation of this new model, since sGA is formally a highlyparallel technique.� Investigation of the e�ectiveness of the genetic operators that have been usedfor the simple GA and development of new or modi�ed operators.13
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