
Proceedings of IEEE Congress on Evolutionary Computation (CEC'02), vol. 1, pp. 699-674, 2002, May, Hawaii.
– DRAFT –

An Artificial Immune Network for
Multimodal Function Optimization

Leandro N. de Castro & Jon Timmis

L.N.deCastro@ukc.ac.uk, J.Timmis@ukc.ac.uk
Computing Laboratory, University of Kent at Canterbury (UKC),

Kent, Canterbury, UK, CT2 7NF, Phone: +44 (0) 1227 823636

Abstract - This paper presents the adaptation of an immune
network model, originally proposed to perform information
compression and data clustering, to solve multimodal function
optimization problems. The algorithm is described, theoretically
and empirically compared with similar approaches from the
literature. The main features of the algorithm are automatic
determination of the population size, combination of local with
global search (exploitation plus exploration of the fitness
landscape), defined convergence criterion, and capability of
locating and maintaining stable local optima solutions.

I. INTRODUCTION

In spite of the broad applicability of artificial immune
systems (AIS) to innumerable domains, the field is only now,
around 15 years after its “birth date”, receiving a more
careful attention from a theoretical and formal perspective. Y.
Ishida and collaborators edited the first book in the year 1998
[1] on immune-based systems. This text was written in
Japanese, what considerably restricted its diffusion. In early
1999, another volume [2] with a collection of papers on
theoretical immunology and artificial immune systems was
edited.
 Although there are several authors publishing works in the
field and defining novel algorithms as artificial immune
systems, there is no consensus about what is an AIS, when it
emerged, and most importantly, what characterizes an AIS
and how to engineer one. A first textbook is now being
proposed [3] as an attempt to answer to these questions and
to aid novice and mature researchers in the field on the
development and formalization of AIS. Basically, the authors
argue that the shape-space approach [4] can be extended as a
general framework to create abstract models of immune cells
and molecules. In addition, several works from the literature,
taken from various schools, were brought together in order to
provide a set of general-purpose AIS algorithms. These
include (but are not restricted to) a negative selection
algorithm [5], a positive selection algorithm [6], a clonal
selection algorithm [7], continuous immune network models
[8], [9], and discrete immune network models [10], [11].
 The model presented in this paper is based upon previous
works from the literature and the formalism proposed in [3].
It is an adaptation of a discrete immune network algorithm
originally developed to perform data analysis. The new
version of the algorithm is evolutionary-like and has several
interesting features: 1) population size dynamically
adjustable, 2) exploitation and exploration of the search-
space, 3) location of multiple optima, 4) capability of
maintaining local optima solutions, and 5) defined stopping
criterion.

II. THE ORIGINS

The clonal selection and affinity maturation principles are
used to explain how the immune system reacts to pathogens
and how it improves its capability of recognizing and
eliminating pathogens [12]. In a simple form, clonal selection
states that when a pathogen invades the organism, a number
of immune cells that recognize these pathogens will
proliferate; some of them will become effector cells, while
others will be maintained as memory cells. The effector cells
secrete antibodies in large numbers, and the memory cells
have long life spans so as to act faster and more effectively in
future exposures to the same or a similar pathogen. During
the cellular reproduction, the cells suffer somatic mutations
with high rates and, together with a selective force, the higher
affinity cells in relation to the invading pathogen differentiate
into memory cells. This whole process of somatic mutation
plus selection is known as affinity maturation.
 To a reader familiar with evolutionary biology, these two
processes of clonal selection and affinity maturation are
much akin to the (macro-)evolution of species. There are a
few basic differences however, between these immune
processes and the evolution of species. Within the immune
system, somatic cells reproduce in an asexual form (there is
no crossover of genetic material during cell mitosis), the
mutation suffered by an immune cell is proportional to its
affinity with the selective pathogen (the higher the affinity,
the smaller the mutation rate), and the number of progenies
of each cell is also proportional to its affinity with the
selective pathogen (the higher the affinity, the higher the
number of progenies). Evolution in the immune system
occurs within the organism and, thus it can be viewed as a
micro-evolutionary process.
 An immune algorithm, named CLONALG, was developed
[7] to perform pattern recognition and optimization. The
authors demonstrated empirically that this algorithm is
capable of learning a set of input patterns by selecting,
reproducing and mutating a set of “artificial immune cells”.
In [7] the authors showed the suitability of the algorithm for
multimodal search and presented empirical results where it
could outperform a fitness sharing strategy. All the steps
involved in CLONALG are also seen in an evolutionary
algorithm, allowing it to be characterized as an evolutionary
algorithm inspired in the immune system. Note that there is
an important conceptual difference between the clonal
selection algorithm and an evolutionary algorithm. In the
former, the theory of evolution is used to explain the
behavior of the system, while in the latter it inspired its
development.

 In a subsequent work [10], it was proposed an AIS
combining CLONALG with the immune network theory
introduced in [13]. This model named aiNet has been
successfully applied to several data compression and
clustering applications [10], [14], including non-linear
separable and high-dimensional problems. It also
demonstrated to be a powerful strategy to be hybridized with
neural networks in order to alleviate some neural network
limitations such as model selection.
 The same rationales that led to the development of
CLONALG are motivations for the implementation of an
optimization version of aiNet. First, it is possible to view
clustering as an optimization problem where each cluster
corresponds to a fitness peak of a subgroup of individuals
within the whole population. In addition, aiNet is an
extension of CLONALG with steps involving the interaction
of the network cells with each other. The advantage of having
steps in the algorithm that evaluate the degree of similarity
among cells is that it is possible to maintain a dynamic
control of the number of network cells, allowing the
determination of more parsimonious solutions.

III. AN OPTIMIZATION VERSION OF aiNet

In order to present an optimization version of aiNet (opt-
aiNet) assume the following terminology:
• Network cell: individual of the population. In this case no

encoding is performed, each cell is a real-valued vector in
an Euclidean shape-space;

• Fitness: fitness of a cell in relation to an objective function
to be optimized (either minimized or maximized). The
value of the function when evaluated for the given cell;

• Affinity: Euclidean distance between two cells;
• Clone: offspring cells that are identical copies of their

parent cell. The offspring will further suffer a somatic
mutation so that they become variations of their parent.
The optimization version of aiNet (opt-aiNet) can be
summarized as follows:

1. Randomly initialize a population of cells (the initial number of
cells is not relevant)

2. While stopping criterion is not met do
2.1 Determine the fitness of each network cell and normalize the

vector of fitnesses.
2.2 Generate a number Nc of clones for each network cell.
2.3 Mutate each clone proportionally to the fitness of its parent

cell, but keep the parent cell. The mutation follows Eq. (1).
2.4 Determine the fitness of all individuals of the population.
2.5 For each clone, select the cell with highest fitness and

calculate the average fitness of the selected population.
2.6 If the average error of the population is not significantly

different from the previous iteration, then continue. Else,
return to step 2.1

2.7 Determine the affinity of all cells in the network. Suppress all
but the highest fitness of those cells whose affinities are less
than the suppression threshold σs and determine the number of
network cells, named memory cells, after suppression.

2.8 Introduce a percentage d% of randomly generated cells and
return to step 2.

3. EndWhile

 The behavior of the new algorithm can be explained in a
simple form. Steps 2.1 to 2.5: at each iteration, a population
of cells is optimized locally through affinity proportional
mutation (exploitation of the fitness landscape). The fact that
no parent cell has a selective advantage over the others
contributes to the multimodal search of the algorithm. Steps
2.6 to 2.8: when this population reaches a stable state
(measured via the stabilization of its average fitness), the
cells interact with each other in a network form, and some of
the similar cells are eliminated to avoid redundancy. Also, a
number of randomly generated cells is added to the current
population (exploration of the fitness landscape) and the
process of local optimization re-starts.
 A number of interesting features of opt-aiNet can be
outlined. 1) It presents a deterministic and elitist selection
mechanism for each clone. 2) The cardinality of the
population is automatically determined by the suppression
and diversity introduction mechanisms. 3) The number of
newcomers increases as the population increases in size. This
is because if the population is continuously increasing in size,
it is an indication that the problem has many local optima and
the more optima it locates, the more it is capable of locating.
4) No encoding of the individuals of the population is
required. 5) The associated computational cost of each
iteration is O(NL) or O(N2), where N is the current population
size and L is the length of each vector. While performing
only local search, Steps 2.1 to 2.5, the cost is O(NL), and
when interacting the network, Step 2.7, the cost is O(N2).
 The affinity proportional mutation of Step 2.3 is performed
according to the following expression:

 c' = c + α N(0,1), (1)
 α = (1/β) exp(− f*),

where c' is a mutated cell c, N(0,1) is a Gaussian random
variable of zero mean and standard deviation σ = 1, β is a
parameter that controls the decay of the inverse exponential
function, and f* is the fitness of an individual normalized in
the interval [0,1]. A mutation is only accepted if the mutated
cell c' is within its range of domain.
 Fig. 1 depicts the affinity proportional function α for the
default value β = 100 used in the experiments reported here.
Note that the mutation ratio from the best individual of the
population to the worst one is approximately ½. Empirical
results demonstrated that for large differences in the mutation
rate (increase in the function decay) the worst individuals
suffered a mutation much bigger than the best ones, resulting
in the loss of the lower local optima solutions. In practical
applications, some low local optima solutions might be the
result of noise or imprecision on the modeling process. Thus,
the possibility of adjusting the decay of the exponential
function becomes an interesting approach to controlling the
sensitivity of the search for global/local optima.
 The stopping criterion adopted for the algorithm is based
upon the size of the memory population. After network
suppression, a fixed number of cells remains. If this number
does not vary from one suppression to another, then the
network is said to have stabilized and the remaining cells are
memory cells corresponding to the solutions of the problem.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

f*

α

Figure 1: Function that performs the affinity proportionate mutation.

Although this strategy seems rather empirical, simulation
results demonstrated its effectiveness for the problems tested.
In any case, a pre-defined number of iteration steps can be
adopted as an alternative.

IV. RELATED STRATEGIES: SOME
THEORETICAL ASPECTS

There is a number of differences between opt-aiNet and
CLONALG. While CLONALG encodes the individuals of
the population using binary strings similarly to a genetic
algorithm, opt-aiNet is based upon real-valued vectors. The
opt-aiNet includes the interaction of the network cells with
the environment (fitness) and with each other (affinity),
allowing the dynamic control of the population size. In the
opt-aiNet case, newcomers are only allowed to enter the
population after the current cells cannot significantly improve
their average fitness. In CLONALG, the affinity
proportionate mutation is based upon a control strategy
suggested in [15] where short bursts of high mutation rates
are followed by some breathing periods. In contrast, opt-
aiNet follows a Gaussian mutation that is inversely
proportional to the normalized fitness of each parent cell.
 Opt-aiNet also presents a number of similarities with the
evolution strategies (ES) introduced in [16]. Both use real-
valued vectors to represent the individuals of the population.
The selection mechanism of opt-aiNet can be equated to the
(µ + λ)-ES, where µ parents generate λ offspring which are
reduced again to µ parents. The selection operates on the
joined set of parents and offspring, and parents can survive
until they are superseded by one of their offspring. In opt-
aiNet, µ = N (the whole population) and λ = Nc. Both
strategies employ Gaussian mutation, with the difference that
opt-aiNet has an affinity proportional Gaussian mutation with
fixed standard deviation, while ES might use a fixed or time
variant standard deviation and is not proportional to fitness.
Another major difference between the two strategies is that
opt-aiNet has a dynamic adjustment of the population size
through metadynamics (diversity introduction) and network
suppression, while ESs have a static number of individuals in
the population.

V. SIMULATION RESULTS

The opt-aiNet algorithm was applied to several uni- and bi-
dimensional functions in order to assess its performance. The
results reported in this paper illustrate its behavior for some
of the problems tested and compare it with those results
obtained by CLONALG. Three functions were tested:
1) Multi: function with several local optima solutions and a
single global optimum all distributed non-uniformly.
2) Roots: function with six global optima and a large plateau.
3) Schaffer’s: function with an infinite number of local
optima and a single global optimum. The training parameters
chosen for the opt-aiNet were the same in all cases:
• Suppression threshold: σs = 0.2;
• Initial number of network cells: N = 20;
• Number of clones generated for each cell: Nc = 10;
• Percentage of newcomers: d = 40%;
• Scale of the affinity proportional selection: β = 100;
• Maximum number of iterations allowed: Ngen = 500.
 For the CLONALG, the following parameters were
chosen: Ngen = 200, n = N = 100, d = 10, β = 0.1 (see [7] for
a description of the parameters).

A. Multi Function

This function was used in [7] to evaluate the performance of
CLONALG when applied to multimodal optimization and the
results compared to that of a GA with fitness sharing. The
authors claimed that CLONALG demonstrated to be capable
of locating and maintaining a larger number of optima
solutions than a GA with sharing. Fig. 2 illustrates the
performance of CLONALG and opt-aiNet when applied to
the Multi function (Eq. (2)). The opt-aiNet located 61 peaks,
while CLONALG located only 18 peaks. Most importantly,
the opt-aiNet positioned a single individual in each peak,
avoiding the “waste of resources” presented by CLONALG.
 g(x,y) = x.sin(4πx) − y.sin(4πy+π) + 1, x,y ∈ [−2,2] (2)
 Fig. 3 presents the average and the best fitness of the
population for both algorithms. In this case the average
fitness of CLONALG was larger than the average of opt-
aiNet, indicating that it privileged the highest peaks of the
function, in contrast to the opt-aiNet that tried to locate all the
optima solutions. The opt-aiNet converged at iteration 451
according to the proposed stopping criterion.

(a)

(b)

Figure 2: The Multi function. (a) opt-aiNet. (b) CLONALG.

0 50 100 150 200 250 300 350 400 450
0.5

1

1.5

2

2.5

3

3.5

4

4.5
Fitness

(a)

0 20 40 60 80 100 120 140 160 180 200
0.5

1

1.5

2

2.5

3

3.5

4

4.5
Fitness

(b)

Figure 3: Fitness of the population. Best (solid line) and average (dashed
line). (a) opt-aiNet. (b) CLONALG.

B. Roots Function

The Roots function is defined by Eq. (3). It takes its maxima
at the six roots of units in the complex plane [17]. It presents
a large plateau at the height 0.5, centered at coordinates (0,0)
and surrounded by six thin peaks at height 1.0.

|1|1
1)(6 −+

=
z

zg , (3)

where z ∈ C, z = x + iy, x,y ∈ [−2,2].

(a)

(b)

Figure 4: The Roots function. (a) opt-aiNet. (b) CLONALG.

0 50 100 150 200 250
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
Fitness

(a)

0 20 40 60 80 100 120 140 160 180 200
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
Fitness

(b)

Figure 5: Fitness of the population. Best (solid line) and average (dashed
line). (a) opt-aiNet. (b) CLONALG.

Fig. 4 presents the results of opt-aiNet and CLONALG when
applied to the Roots function. In this case, the opt-aiNet
converged after 246 iterations and was capable of locating all
the peaks of the function with a final population of only six
cells. The CLONALG also succeeded in locating all the
optima of the Roots function, but it lacks a mechanism to
define a more adequate number of individuals in the
population. Fig. 5 presents the best and average error of the
population for both algorithms. Note that the opt-aiNet
optimizes locally the current population before inserting
diversity, when the average fitness suffers a reduction, and
starts the local optimization process again. After the second
network suppression, the opt-aiNet maintained only six
individuals as memory cells and converged.

C. Schaffer’s Function

The function used in [18] to study global optimization is
described by Eq. (4). This function has a single global
optimum at (0,0), f(x,y) = 1, and a large number of local
optima. The global optimum is difficult to find because the
value at the best local optimum differs from only about 10−3.
As the local optima are not punctual, they form crowns
around the global optimum, there are in fact an infinite
number of local optima that form a sort of a trap around the
global optimum. Fig. 6 illustrates the Schaffer’s function in
bi- and uni-dimensional plots. Note the subtle difference
between the global optimum and the local optima.

 ()
())(001.01

5.0sin
5.0)(

22

222

yx

yx
zg

++

−+
+= , x,y ∈ [−10,10] (4)

 Fig. 7 presents the simulation results for opt-aiNet and
CLONALG. Both algorithms were capable of locating the
global maximum of the function. One difference is that the
opt-aiNet performs a better exploration of the search space.
The individuals of the population are more uniformly spread
over the surface. In Fig. 8 it can be observed that CLONALG
determined the global optimum faster than opt-aiNet and
also, that the opt-aiNet did not converge for the 500
iterations. This means its population was still increasing in
size and trying to locate a very large (infinite) number of
local optima solutions.

Global optimum

(a)

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

Figure 6: The Schaffer’s function. (a) Bi-dimensional plot. (b) Uni-
dimensional plot.

(a)

(b)

Figure 7: Simulation results for the Schaffer’s function. (a) opt-aiNet.
(b) CLONALG.

0 50 100 150 200 250 300 350 400 450 500
0.5

0.6

0.7

0.8

0.9

1

Fitness

(a)

0 20 40 60 80 100 120 140 160 180 200
0.5

0.6

0.7

0.8

0.9

1

Fitness

(b)

Figure 8: Fitness and final number of individuals in the population. Best
(solid line) and average (dashed line) fitness. (a) opt-aiNet. (b) CLONALG.

VI. DISCUSSION

Both algorithms are stochastic in nature. Each time they are
run a different result is obtained. The performances
illustrated in Figs. 2 to 8 can be said to be typical for the
problems evaluated. However, it is important to evaluate the
average performance of each algorithm. Table 1 summarizes
the behavior of the algorithms when applied to the Multi and
Roots functions. The values presented are the average and
standard deviation taken over 10 runs of the algorithms. The
number of peaks located by each algorithm is presented. In
the opt-aiNet case, the number of iterations for convergence
is also depicted. ItG corresponds to the number of iterations
performed until the algorithms were capable of locating at
least one global optimum of the function. Note that the opt-
aiNet, on average, requires a higher number of iterations to
locate the global optimum. This result is expected mainly
because as the population grows dynamically in opt-aiNet,
the algorithm started with a small initial population of size
20, five times smaller than the CLONALG population with
100 individuals. Nevertheless, the opt-aiNet is still capable of
locating a larger number of optima solutions, automatically
defining a stopping iteration and population size. No results
are presented for the Schaffer’s function because it has an
infinite number of local optima.
 As future trends for the optimization version of aiNet,
several aspects still have to be accounted for. First, the
algorithm sensitivity to its tuning parameters must be
assessed. It has to be applied to real world and deceptive
problems. It would also be interesting to compare the
performance of both algorithms to any niching or crowding
technique for a GA.

Table 1: Average performances for CLONALG and opt-aiNet when applied
to the problems Multi and Roots. Peaks: number of peaks determined; ItG:
number of iterations to locate the global optimum; ItC: number of iterations
for convergence.

 CLONALG opt-aiNet
 Peaks ItG Peaks ItG ItC

Multi 31.6±3.53 43.1±19.84 56.10±4.36 53.50±57.19 278.50±70.09
Roots 6±0 23.30±5.50 6±0 86.89±34.31 295.00±129.74

VII. CONCLUDING REMARKS

This paper presented a modified version of an artificial
immune network model specially designed to solve
multimodal optimization problems. It was theoretically
compared with a clonal selection algorithm also applied to
perform multimodal optimization, and evolution strategies.
 The modified algorithm was presented and its performance
illustrated for three bi-dimensional functions. The algorithm
demonstrated to be capable of combining exploitation with
exploration of the fitness landscape and showed a good
stabilization of the population. Its search method is based on
local search intertwined with global search. Other important
features of the algorithm are dynamic search for an optimum
population size based upon the network suppression
threshold and a well-defined stopping criterion.

Acknowledgements
Leandro N. de Castro thanks the Computing Laboratory at
UKC for the financial support.

References
[1] Ishida, Y., Hirayama, H., Fujita, H., Ishiguro, A. and Mori, K. (eds.)

(1998), Immunity-Based Systems--Intelligent Systems by Artificial
Immune Systems, Corona Pub. Co. Japan (in Japanese).

[2] Dasgupta, D. (ed.) (1999), Artificial Immune Systems and Their
Applications, Springer-Verlag.

[3] de Castro, L. N. & Timmis, J. (2002), An Introduction to Artificial
Immune Systems: A New Computational Intelligence Paradigm,
Springer-Verlag.

[4] Perelson, A. S. & Oster, G. F. (1979), “Theoretical Studies of Clonal
Selection: Minimal Antibody Repertoire Size and Reliability of Self-
Nonself Discrimination”, J. theor.Biol., 81, pp. 645-670.

[5] Forrest, S., A. Perelson, Allen, L. & Cherukuri, R. (1994), “Self-Nonself
Discrimination in a Computer”, Proc. of the IEEE Symposium on
Research in Security and Privacy, pp. 202-212.

[6] Seiden, P. E. & Celada, F. (1992), “A Model for Simulating Cognate
Recognition and Response in the Immune System”, J. theor. Biol., 158,
pp. 329-357.

[7] de Castro, L. N., & Von Zuben, F. J., (2001), “Learning and
Optimization Using the Clonal Selection Principle”, IEEE Trans. on
Evol. Comp., Special Issue on Artificial Immune Systems (in print).

[8] Farmer, J. D., Packard, N. H. & Perelson, A. S. (1986), “The Immune
System, Adaptation, and Machine Learning”, Physica 22D, 187-204.

[9] Varela, F. J. & Coutinho, A. (1991), “Second Generation Immune
Networks”, Imm. Today, 12(5), pp. 159-166.

[10] de Castro, L. N. & Von Zuben, F. J. (2001), “aiNet: An Artificial
Immune Network for Data Analysis”, in Data Mining: A Heuristic
Approach, H. A. Abbass, R. A. Sarker, and C. S. Newton (eds.), Idea
Group Publishing, USA, Chapter XII, pp. 231-259.

[11] Timmis, J. (2000), Artificial Immune Systems: A Novel Data Analysis
Technique Inspired by the Immune Network Theory, Ph.D. Dissertation,
Department of Computer Science, University of Wales.

[12] Ada, G. L. & Nossal, G. J. V. (1987), “The Clonal Selection Theory”,
Scientific American, 257(2), pp. 50-57.

[13] Jerne, N. K. (1974), “Towards a Network Theory of the Immune
System”, Ann. Immunol. (Inst. Pasteur) 125C, pp. 373-389.

[14] de Castro, L. N. & Von Zuben, F. J., (2001), “Immune and Neural
Network Models: Theoretical and Empirical Comparisons”, Int. Journal
of Comp. Intelligence and Applications, 1(3), pp. 239-257.

[15] Kepler, T. B. & Perelson, A. S. (1993), “Somatic Hypermutation in B
Cells: An Optimal Control Treatment”, J. theor. Biol., 164, pp. 37-64.

[16] Schwefel, H. –P. (1965), Kybernetische Evolutionals Strategie der
Experimentellen Forschung in der Stromungstechnik, Diploma Thesis,
Technical University of Berlin.

[17] Pétrowski, A. & Genet, M. G. (1999), “A Classification Tree for
Speciation”, Proc. of the CEC’99, pp. 204-211.

[18] Schaffer J. D., Caruana, R. A., Eshelman, L. J. & Das, R. (1989), “A
Study of Control Parameters Affecting Online Performance of Genetic
Algorithms for Function Optimization”, Proc. of the 3rd Int. Conference
on Genetic Algorithms, pp. 51-60.

