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Abstract - This paper presents the adaptation of an immune 
network model, originally proposed to perform information 
compression and data clustering, to solve multimodal function 
optimization problems. The algorithm is described, theoretically 
and empirically compared with similar approaches from the 
literature. The main features of the algorithm are automatic 
determination of the population size, combination of local with 
global search (exploitation plus exploration of the fitness 
landscape), defined convergence criterion, and capability of 
locating and maintaining stable local optima solutions. 

I. INTRODUCTION 

In spite of the broad applicability of artificial immune 
systems (AIS) to innumerable domains, the field is only now, 
around 15 years after its “birth date”, receiving a more 
careful attention from a theoretical and formal perspective. Y. 
Ishida and collaborators edited the first book in the year 1998 
[1] on immune-based systems. This text was written in 
Japanese, what considerably restricted its diffusion. In early 
1999, another volume [2] with a collection of papers on 
theoretical immunology and artificial immune systems was 
edited. 
 Although there are several authors publishing works in the 
field and defining novel algorithms as artificial immune 
systems, there is no consensus about what is an AIS, when it 
emerged, and most importantly, what characterizes an AIS 
and how to engineer one. A first textbook is now being 
proposed [3] as an attempt to answer to these questions and 
to aid novice and mature researchers in the field on the 
development and formalization of AIS. Basically, the authors 
argue that the shape-space approach [4] can be extended as a 
general framework to create abstract models of immune cells 
and molecules. In addition, several works from the literature, 
taken from various schools, were brought together in order to 
provide a set of general-purpose AIS algorithms. These 
include (but are not restricted to) a negative selection 
algorithm [5], a positive selection algorithm [6], a clonal 
selection algorithm [7], continuous immune network models 
[8], [9], and discrete immune network models [10], [11].  
 The model presented in this paper is based upon previous 
works from the literature and the formalism proposed in [3]. 
It is an adaptation of a discrete immune network algorithm 
originally developed to perform data analysis. The new 
version of the algorithm is evolutionary-like and has several 
interesting features: 1) population size dynamically 
adjustable, 2) exploitation and exploration of the search-
space, 3) location of multiple optima, 4) capability of 
maintaining local optima solutions, and 5) defined stopping 
criterion. 

II. THE ORIGINS 

The clonal selection and affinity maturation principles are 
used to explain how the immune system reacts to pathogens 
and how it improves its capability of recognizing and 
eliminating pathogens [12]. In a simple form, clonal selection 
states that when a pathogen invades the organism, a number 
of immune cells that recognize these pathogens will 
proliferate; some of them will become effector cells, while 
others will be maintained as memory cells. The effector cells 
secrete antibodies in large numbers, and the memory cells 
have long life spans so as to act faster and more effectively in 
future exposures to the same or a similar pathogen. During 
the cellular reproduction, the cells suffer somatic mutations 
with high rates and, together with a selective force, the higher 
affinity cells in relation to the invading pathogen differentiate 
into memory cells. This whole process of somatic mutation 
plus selection is known as affinity maturation. 
 To a reader familiar with evolutionary biology, these two 
processes of clonal selection and affinity maturation are 
much akin to the (macro-)evolution of species. There are a 
few basic differences however, between these immune 
processes and the evolution of species. Within the immune 
system, somatic cells reproduce in an asexual form (there is 
no crossover of genetic material during cell mitosis), the 
mutation suffered by an immune cell is proportional to its 
affinity with the selective pathogen (the higher the affinity, 
the smaller the mutation rate), and the number of progenies 
of each cell is also proportional to its affinity with the 
selective pathogen (the higher the affinity, the higher the 
number of progenies). Evolution in the immune system 
occurs within the organism and, thus it can be viewed as a 
micro-evolutionary process.  
 An immune algorithm, named CLONALG, was developed 
[7] to perform pattern recognition and optimization. The 
authors demonstrated empirically that this algorithm is 
capable of learning a set of input patterns by selecting, 
reproducing and mutating a set of “artificial immune cells”. 
In [7] the authors showed the suitability of the algorithm for 
multimodal search and presented empirical results where it 
could outperform a fitness sharing strategy. All the steps 
involved in CLONALG are also seen in an evolutionary 
algorithm, allowing it to be characterized as an evolutionary 
algorithm inspired in the immune system. Note that there is 
an important conceptual difference between the clonal 
selection algorithm and an evolutionary algorithm. In the 
former, the theory of evolution is used to explain the 
behavior of the system, while in the latter it inspired its 
development.



  

 In a subsequent work [10], it was proposed an AIS 
combining CLONALG with the immune network theory 
introduced in [13]. This model named aiNet has been 
successfully applied to several data compression and 
clustering applications [10], [14], including non-linear 
separable and high-dimensional problems. It also 
demonstrated to be a powerful strategy to be hybridized with 
neural networks in order to alleviate some neural network 
limitations such as model selection. 
 The same rationales that led to the development of 
CLONALG are motivations for the implementation of an 
optimization version of aiNet. First, it is possible to view 
clustering as an optimization problem where each cluster 
corresponds to a fitness peak of a subgroup of individuals 
within the whole population. In addition, aiNet is an 
extension of CLONALG with steps involving the interaction 
of the network cells with each other. The advantage of having 
steps in the algorithm that evaluate the degree of similarity 
among cells is that it is possible to maintain a dynamic 
control of the number of network cells, allowing the 
determination of more parsimonious solutions. 

III. AN OPTIMIZATION VERSION OF aiNet 

In order to present an optimization version of aiNet (opt-
aiNet) assume the following terminology:  
• Network cell: individual of the population. In this case no 

encoding is performed, each cell is a real-valued vector in 
an Euclidean shape-space; 

• Fitness: fitness of a cell in relation to an objective function 
to be optimized (either minimized or maximized). The 
value of the function when evaluated for the given cell; 

• Affinity: Euclidean distance between two cells; 
• Clone: offspring cells that are identical copies of their 

parent cell. The offspring will further suffer a somatic 
mutation so that they become variations of their parent. 
The optimization version of aiNet (opt-aiNet) can be 
summarized as follows: 

1.  Randomly initialize a population of cells (the initial number of 
cells is not relevant) 

2.  While stopping criterion is not met do 
2.1 Determine the fitness of each network cell and normalize the 

vector of fitnesses. 
2.2 Generate a number Nc of clones for each network cell. 
2.3 Mutate each clone proportionally to the fitness of its parent 

cell, but keep the parent cell. The mutation follows Eq. (1). 
2.4 Determine the fitness of all individuals of the population. 
2.5 For each clone, select the cell with highest fitness and 

calculate the average fitness of the selected population. 
2.6 If the average error of the population is not significantly 

different from the previous iteration, then continue. Else, 
return to step 2.1 

2.7 Determine the affinity of all cells in the network. Suppress all 
but the highest fitness of those cells whose affinities are less 
than the suppression threshold σs and determine the number of 
network cells, named memory cells, after suppression. 

2.8 Introduce a percentage d% of randomly generated cells and 
return to step 2. 

3. EndWhile 

 The behavior of the new algorithm can be explained in a 
simple form. Steps 2.1 to 2.5: at each iteration, a population 
of cells is optimized locally through affinity proportional 
mutation (exploitation of the fitness landscape). The fact that 
no parent cell has a selective advantage over the others 
contributes to the multimodal search of the algorithm. Steps 
2.6 to 2.8: when this population reaches a stable state 
(measured via the stabilization of its average fitness), the 
cells interact with each other in a network form, and some of 
the similar cells are eliminated to avoid redundancy. Also, a 
number of randomly generated cells is added to the current 
population (exploration of the fitness landscape) and the 
process of local optimization re-starts. 
 A number of interesting features of opt-aiNet can be 
outlined. 1) It presents a deterministic and elitist selection 
mechanism for each clone. 2) The cardinality of the 
population is automatically determined by the suppression 
and diversity introduction mechanisms. 3) The number of 
newcomers increases as the population increases in size. This 
is because if the population is continuously increasing in size, 
it is an indication that the problem has many local optima and 
the more optima it locates, the more it is capable of locating. 
4) No encoding of the individuals of the population is 
required. 5) The associated computational cost of each 
iteration is O(NL) or O(N2), where N is the current population 
size and L is the length of each vector. While performing 
only local search, Steps 2.1 to 2.5, the cost is O(NL), and 
when interacting the network, Step 2.7, the cost is O(N2). 
 The affinity proportional mutation of Step 2.3 is performed 
according to the following expression: 

   c' = c + α N(0,1),           (1) 
 α = (1/β) exp(− f* ), 

where c' is a mutated cell c, N(0,1) is a Gaussian random 
variable of zero mean and standard deviation σ = 1, β is a 
parameter that controls the decay of the inverse exponential 
function, and f* is the fitness of an individual normalized in 
the interval [0,1]. A mutation is only accepted if the mutated 
cell c' is within its range of domain.  
 Fig. 1 depicts the affinity proportional function α for the 
default value β = 100 used in the experiments reported here. 
Note that the mutation ratio from the best individual of the 
population to the worst one is approximately ½. Empirical 
results demonstrated that for large differences in the mutation 
rate (increase in the function decay) the worst individuals 
suffered a mutation much bigger than the best ones, resulting 
in the loss of the lower local optima solutions. In practical 
applications, some low local optima solutions might be the 
result of noise or imprecision on the modeling process. Thus, 
the possibility of adjusting the decay of the exponential 
function becomes an interesting approach to controlling the 
sensitivity of the search for global/local optima.  
 The stopping criterion adopted for the algorithm is based 
upon the size of the memory population. After network 
suppression, a fixed number of cells remains. If this number 
does not vary from one suppression to another, then the 
network is said to have stabilized and the remaining cells are 
memory cells corresponding to the solutions of the problem. 
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Figure 1: Function that performs the affinity proportionate mutation. 

Although this strategy seems rather empirical, simulation 
results demonstrated its effectiveness for the problems tested. 
In any case, a pre-defined number of iteration steps can be 
adopted as an alternative. 

IV. RELATED STRATEGIES: SOME 
THEORETICAL ASPECTS 

There is a number of differences between opt-aiNet and 
CLONALG. While CLONALG encodes the individuals of 
the population using binary strings similarly to a genetic 
algorithm, opt-aiNet is based upon real-valued vectors. The 
opt-aiNet includes the interaction of the network cells with 
the environment (fitness) and with each other (affinity), 
allowing the dynamic control of the population size. In the 
opt-aiNet case, newcomers are only allowed to enter the 
population after the current cells cannot significantly improve 
their average fitness. In CLONALG, the affinity 
proportionate mutation is based upon a control strategy 
suggested in [15] where short bursts of high mutation rates 
are followed by some breathing periods. In contrast, opt-
aiNet follows a Gaussian mutation that is inversely 
proportional to the normalized fitness of each parent cell. 
 Opt-aiNet also presents a number of similarities with the 
evolution strategies (ES) introduced in [16]. Both use real-
valued vectors to represent the individuals of the population. 
The selection mechanism of opt-aiNet can be equated to the 
(µ + λ)-ES, where µ parents generate λ offspring which are 
reduced again to µ parents. The selection operates on the 
joined set of parents and offspring, and parents can survive 
until they are superseded by one of their offspring. In opt-
aiNet, µ = N (the whole population) and λ = Nc. Both 
strategies employ Gaussian mutation, with the difference that 
opt-aiNet has an affinity proportional Gaussian mutation with 
fixed standard deviation, while ES might use a fixed or time 
variant standard deviation and is not proportional to fitness. 
Another major difference between the two strategies is that 
opt-aiNet has a dynamic adjustment of the population size 
through metadynamics (diversity introduction) and network 
suppression, while ESs have a static number of individuals in 
the population. 

V.   SIMULATION RESULTS 

The opt-aiNet algorithm was applied to several uni- and bi-
dimensional functions in order to assess its performance. The 
results reported in this paper illustrate its behavior for some 
of the problems tested and compare it with those results 
obtained by CLONALG. Three functions were tested: 
1) Multi: function with several local optima solutions and a 
single global optimum all distributed non-uniformly.  
2) Roots: function with six global optima and a large plateau. 
3) Schaffer’s: function with an infinite number of local 
optima and a single global optimum. The training parameters 
chosen for the opt-aiNet were the same in all cases:  
• Suppression threshold: σs = 0.2; 
• Initial number of network cells: N = 20; 
• Number of clones generated for each cell: Nc = 10; 
• Percentage of newcomers: d = 40%; 
• Scale of the affinity proportional selection: β = 100; 
• Maximum number of iterations allowed: Ngen = 500. 
 For the CLONALG, the following parameters were 
chosen: Ngen = 200, n = N = 100, d = 10, β = 0.1 (see [7] for 
a description of the parameters). 

A.  Multi Function 

This function was used in [7] to evaluate the performance of 
CLONALG when applied to multimodal optimization and the 
results compared to that of a GA with fitness sharing. The 
authors claimed that CLONALG demonstrated to be capable 
of locating and maintaining a larger number of optima 
solutions than a GA with sharing. Fig. 2 illustrates the 
performance of CLONALG and opt-aiNet when applied to 
the Multi function (Eq. (2)). The opt-aiNet located 61 peaks, 
while CLONALG located only 18 peaks. Most importantly, 
the opt-aiNet positioned a single individual in each peak, 
avoiding the “waste of resources” presented by CLONALG.  
    g(x,y) = x.sin(4πx) − y.sin(4πy+π) + 1,    x,y ∈ [−2,2]     (2) 
 Fig. 3 presents the average and the best fitness of the 
population for both algorithms. In this case the average 
fitness of CLONALG was larger than the average of opt-
aiNet, indicating that it privileged the highest peaks of the 
function, in contrast to the opt-aiNet that tried to locate all the 
optima solutions. The opt-aiNet converged at iteration 451 
according to the proposed stopping criterion. 
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Figure 2: The Multi function. (a) opt-aiNet. (b) CLONALG. 
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Figure 3: Fitness of the population. Best (solid line) and average (dashed 
line). (a) opt-aiNet. (b) CLONALG.  

B. Roots Function 

The Roots function is defined by Eq. (3). It takes its maxima 
at the six roots of units in the complex plane [17]. It presents 
a large plateau at the height 0.5, centered at coordinates (0,0) 
and surrounded by six thin peaks at height 1.0.  
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where z ∈ C, z = x + iy, x,y ∈ [−2,2]. 
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Figure 4: The Roots function. (a) opt-aiNet. (b) CLONALG. 
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Figure 5: Fitness of the population. Best (solid line) and average (dashed 
line). (a) opt-aiNet. (b) CLONALG.  



  

Fig. 4 presents the results of opt-aiNet and CLONALG when 
applied to the Roots function. In this case, the opt-aiNet 
converged after 246 iterations and was capable of locating all 
the peaks of the function with a final population of only six 
cells. The CLONALG also succeeded in locating all the 
optima of the Roots function, but it lacks a mechanism to 
define a more adequate number of individuals in the 
population. Fig. 5 presents the best and average error of the 
population for both algorithms. Note that the opt-aiNet 
optimizes locally the current population before inserting 
diversity, when the average fitness suffers a reduction, and 
starts the local optimization process again. After the second 
network suppression, the opt-aiNet maintained only six 
individuals as memory cells and converged. 

C.   Schaffer’s Function 

The function used in [18] to study global optimization is 
described by Eq. (4). This function has a single global 
optimum at (0,0), f(x,y) = 1, and a large number of local 
optima. The global optimum is difficult to find because the 
value at the best local optimum differs from only about 10−3. 
As the local optima are not punctual, they form crowns 
around the global optimum, there are in fact an infinite 
number of local optima that form a sort of a trap around the 
global optimum. Fig. 6 illustrates the Schaffer’s function in 
bi- and uni-dimensional plots. Note the subtle difference 
between the global optimum and the local optima. 
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 Fig. 7 presents the simulation results for opt-aiNet and 
CLONALG. Both algorithms were capable of locating the 
global maximum of the function. One difference is that the 
opt-aiNet performs a better exploration of the search space. 
The individuals of the population are more uniformly spread 
over the surface. In Fig. 8 it can be observed that CLONALG 
determined the global optimum faster than opt-aiNet and 
also, that the opt-aiNet did not converge for the 500 
iterations. This means its population was still increasing in 
size and trying to locate a very large (infinite) number of 
local optima solutions. 
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Figure 6: The Schaffer’s function. (a) Bi-dimensional plot. (b) Uni-
dimensional plot. 
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Figure 7: Simulation results for the Schaffer’s function. (a) opt-aiNet. 
(b) CLONALG. 
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Figure 8: Fitness and final number of individuals in the population. Best 
(solid line) and average (dashed line) fitness. (a) opt-aiNet. (b) CLONALG.  

VI. DISCUSSION 

Both algorithms are stochastic in nature. Each time they are 
run a different result is obtained. The performances 
illustrated in Figs. 2 to 8 can be said to be typical for the 
problems evaluated. However, it is important to evaluate the 
average performance of each algorithm. Table 1 summarizes 
the behavior of the algorithms when applied to the Multi and 
Roots functions. The values presented are the average and 
standard deviation taken over 10 runs of the algorithms. The 
number of peaks located by each algorithm is presented. In 
the opt-aiNet case, the number of iterations for convergence 
is also depicted. ItG corresponds to the number of iterations 
performed until the algorithms were capable of locating at 
least one global optimum of the function. Note that the opt-
aiNet, on average, requires a higher number of iterations to 
locate the global optimum. This result is expected mainly 
because as the population grows dynamically in opt-aiNet, 
the algorithm started with a small initial population of size 
20, five times smaller than the CLONALG population with 
100 individuals. Nevertheless, the opt-aiNet is still capable of 
locating a larger number of optima solutions, automatically 
defining a stopping iteration and population size. No results 
are presented for the Schaffer’s function because it has an 
infinite number of local optima. 
 As future trends for the optimization version of aiNet, 
several aspects still have to be accounted for. First, the 
algorithm sensitivity to its tuning parameters must be 
assessed. It has to be applied to real world and deceptive 
problems. It would also be interesting to compare the 
performance of both algorithms to any niching or crowding 
technique for a GA. 

Table 1: Average performances for CLONALG and opt-aiNet when applied 
to the problems Multi and Roots. Peaks: number of peaks determined; ItG: 
number of iterations to locate the global optimum; ItC: number of iterations 
for convergence. 

 CLONALG opt-aiNet 
 Peaks ItG Peaks ItG ItC 

Multi 31.6±3.53 43.1±19.84 56.10±4.36 53.50±57.19 278.50±70.09 
Roots 6±0 23.30±5.50 6±0 86.89±34.31 295.00±129.74

VII. CONCLUDING REMARKS 

This paper presented a modified version of an artificial 
immune network model specially designed to solve 
multimodal optimization problems. It was theoretically 
compared with a clonal selection algorithm also applied to 
perform multimodal optimization, and evolution strategies.  
 The modified algorithm was presented and its performance 
illustrated for three bi-dimensional functions. The algorithm 
demonstrated to be capable of combining exploitation with 
exploration of the fitness landscape and showed a good 
stabilization of the population. Its search method is based on 
local search intertwined with global search. Other important 
features of the algorithm are dynamic search for an optimum 
population size based upon the network suppression 
threshold and a well-defined stopping criterion.  
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