HEAD: Torsten Sillke's index of Martin Gardner's book with futher references.
HEAD: last update 2000-10-14.
HEAD: mailto:Torsten.Sillke@uni-bielefeld.de
HEAD: URL: http//www.mathematik.uni-bielefeld.de/~sillke/
HEAD: Comments from me are tagged 'sio'.
MGSA: Martin Gardner's Scientific American Mathematical Recreations Books
MGSA: A which is where index to be used with the 'grep' command.
MGSA: MG$1SA$2[.$3][.$4] with $1=booknumber, $2=Chapter, $3=Section, $4=Ref-Tag
MGSA: Another index http://www.ms.uky.edu/~lee/ma502/gardner5/gardner5.html
MG1SA: The Scientific American Book of
MG1SA: Mathematical Puzzles and Diversions
MG1SA: Simon & Schuster (1959)
MG1SA.1 Hexaflexagons
MG1SA.1.a Symmetries of the Trihexaflexagon, M. Mag. 49 (1976) 189-192
MG1SA.1.b V-Flexing the Hexahexaflexagon, AMM 86 (1979) 457-466
MG1SA.1.c Classification of flexagons, Eureka 53 (March 1993)
MG1SA.1.c hexa- tetraflexagons, flexaflops, higher dimensions
MG1SA.2 Magic with a Matrix
MG1SA.3 Nine Problems
MG1SA.3.1 The Returning Explorer
MG1SA.3.2 Poker
MG1SA.3.3 The Mutilated Chessboard (parity)
MG1SA.3.4 The Fork in the Road (logic, truth-teller and liar, one question)
MG1SA.3.5 Scrambled Box Tops
MG1SA.3.6 Bronx v. Brooklyn (probability)
MG1SA.3.7 Cutting the Cube
MG1SA.3.7.a MM 25 (1952) 219, minimal number of cuts for a a*b*c box.
MG1SA.3.7.b AMM (Aug. 1957) E 1279, Solution: (Mar. 1958), cuttung the n-cube
MG1SA.3.8 The Early Commuter (time point)
MG1SA.3.9 The Counterfeit Coins (weighing) -> MG6SA.11
MG1SA.4 Ticktacktoe, or Nougths and Crosses
MG1SA.5 Probability Paradoxes
MG1SA.5.a Birthday paradoxa, coupon collectors, caching algorithms and
MG1SA.5.a self-organizing search, Disc. Appl. Math. 39 (1992) 207-229
MG1SA.5.b Majorization and the Birthday Inequality, M Mag. 64 (1991) 183-188
MG1SA.5.c On birthday, collector's, occupancy and other classical urn problems
MG1SA.5.c Internat. Statistical Review 54 (1986) 15-27 (L. Holst)
MG1SA.5.d The General Birthday Problem (L. Holst)
MG1SA.5.d Random Structures and Algorithms 6:2/3 (1995) 201-208
MG1SA.5.e M. Klamkin and D. Newman, Extensions of the birthday
MG1SA.5.e surprise, J. Comb. Th. 3 (1967), 279-282.
MG1SA.5.f Birthday problems - a search for elementary solutions
MG1SA.5.f Math. Gaz. 82 (1998) issue 493 111-114
MG1SA.5.g The birthday distribution Math. Gaz. 68 (1984) 204
MG1SA.5.g Prob(the rth is duplicate) = r/n*exp(-r*r/(2n)); (asymptotic)
MG1SA.5.g E(R) = Sqrt(Pi*n/2); Var(R) = n*(2-Pi/2)
MG1SA.6 The Icosian Game and the Tower of Hanoi
MG1SA.7 Curious Topological Models
MG1SA.7. M"obius-Band, double layer M"obius-Band, 2 M"obius-Band->Klein Bottle
MG1SA.7.a A Non-singular Polyhedral M"obius-Band Whose Boundary is a Triangle
MG1SA.7.a AMM 55:5 (1948) 309-311, B Tuckerman, made from 9 triangles
MG1SA.8 The Game of Hex
MG1SA.8. Piet Hein invented Hex 1942 (Parker Brothers Inc. 1952) 11*11 board
MG1SA.8. John F. Nash independently invented Hex 1948 (14*14 board)
MG1SA.8. there exists a first player winning strategy. Rex -> MG12SA.12
MG1SA.8. Rex (reverse Hex) odd board second even board first player win
MG1SA.8. C. Shannon suggest an equilateral triangle. the aim is to connect
MG1SA.8. the three sides with a tree (the corner belong to both sides).
MG1SA.8. Hex and Shannon's Hex is a first player win. n*(n+1) Hex (pairing)
MG1SA.8. variations of hex: Schensted, Madcrack Y and Poly Y -> MG75.12SA.117
MG1SA.8.a Beck, et al, Excursions into Mathematics, 1970, 327-339
MG1SA.8.a Hex 14*14 board, Beck's Hex, Hex has a first player move that loses
MG1SA.8.b a winning opening in Reverse Hex, JoRM 7 (1974) 189-192
MG1SA.8.c some variants of Hex (Vex, Tex), JoRM 8 (1975/76) 120-122
MG1SA.8.d Hex must have a winner: an inductive proof, M. Mag. 49 (1976)85-86
MG1SA.8.e C. Berge, Some Remarks about a Hex Problem (14*14 board)
MG1SA.8.e in: (ed. D. A. Klarner) The mathematical Gardner, p25-27
MG1SA.8.f Hex and the Brouwer Fixed-Point Theorem, AMM 86 (1979) 818-827
MG1SA.8.f there exists a connection in Hex <-> Brouwer Fixed-Point Theorem
MG1SA.8.f only one pair can be connected <-> discrete Jordan Curve Theorem
MG1SA.8.g Havannah (C. Freeling), Games&Puzzles No 79 (Winter 1980) 4-7,32
MG1SA.8.g Hexagon (length 8), connect two corners, three sides or build a ring
MG1SA.8.h Hex is PSPACE-Complete, Acta Infomatica 15 (1981) 167-191 (German)
MG1SA.8.i Three Person Winner-Take-All Games with McCarthy's Revenge Rule,
MG1SA.8.i The College Math. Jour. 16:5 (Nov 1985) 386-394 (P. D. Straffin)
MG1SA.8.i Three person Hex played on a hexagon (connect opposite edges), as
MG1SA.8.i soon as it is no longer possible for a player to connect his two
MG1SA.8.i edges, that player is eliminated and may not place any more marks
MG1SA.8.j Hex Games and Twist Maps on the Annulus, AMM 98 (1991) 803-811
MG1SA.9 Sam Loyd: America's Greatest Puzzlist
MG1SA.10 Mathematical Card Tricks
MG1SA.11 Memorizing Numbers
MG1SA.12 Nine More Problems
MG1SA.12.1 The Touching Cigarettes
MG1SA.12.2 Two Ferryboats (arithmetic)
MG1SA.12.3 Guess the Diagonal (geometry)
MG1SA.12.4 The Efficient Electrican
MG1SA.12.5 Cross the Network
MG1SA.12.5. Eulerian path problem solvable on a toric
MG1SA.12.6 The Twelve Matches
MG1SA.12.6. polygon with area 4.
MG1SA.12.7 Hole in the Sphere
MG1SA.12.7.a G Polya, Mathematik und plausibles Schliessen, 1962/63
MG1SA.12.7.a the length of a conic or parabolic hole determines the volume
MG1SA.12.8 The Amorous Beetles
MG1SA.12.8. rotating square, length of a logarithmic spiral -> MMR.8.1
MG1SA.12.9 How Many Children?
MG1SA.12.9. a MG2SA.14.1)
MG2SA.5.3 The Circle on the Chessboard
MG2SA.5.4 The Cork Plug (Volume, principle of Chavalieri)
MG2SA.5.5 The Repeptitious Numbers (7 11 13 = 1001)
MG2SA.5.6 The Colliding Missiles (head Calculation)
MG2SA.5.7 The Sliding Pennies (Triangle - Ring)
MG2SA.5.8 Handshakes and Networks (Parity)
MG2SA.5.9 The Triangular Duel (probability)
MG2SA.6 The Soma Cube
MG2SA.7 Recreatinal Topology
MG2SA.7. Euler-tours with the minimal number of bends (a triangular graph)
MG2SA.7. a string and ring puzzle: move the ring to the other side, two
MG2SA.7. solutions possible, if the ends are not knotted. An impossible variant
MG2SA.7. -> MG7SA.9.3 The Key and the Keyhole (topological equivalent problem)
MG2SA.7. winning Bridg-it = Gale, connection game, strategy -> MG3SA.18
MG2SA.8 Phi: The Golden Ratio
MG2SA.9 The Monkey and the Coconuts
MG2SA.10 Mazes
MG2AS.10.a R. Abbott, Mad Mazes, Bob Adams Inc. Publishers, Holbrook, 1990
MG2AS.10.b Mazes... How to Get Out! 1, A. Treep, CFF 37 (June 1995) 18-21
MG2AS.10.b E(step)=#edges for tree graphs for Algo. Tarry, Tremaux, Minirepli
MG2AS.10.c Mazes... How to Get Out! 2, A. Treep, CFF 38 (Oct. 1995) 22-26
MG2AS.10.d Rouse Ball, Math. Recreations and Essays, 12th Ed., 254-260, Mazes
MG2AS.10.p the labyrinth of Altjessnitz (Bitterfeld) PM 35:6 (1993) 252-255
MG2SA.11 Recreational Logic
MG2SA.12 Magic Squares
MG2SA.13 James Hugh Riley Shows, Inc.
MG2SA.13. cover a circle by five equal circles, cover any area of diameter 1
MG2SA.13.a H. Melissen, Lowest circle covering of an equilateral triangle,
MG2SA.13.a Math Mag 70:2 (Apr 1997) 118-124, 5 circle covering correction
MG2SA.13.b The Worm Problem of Leo Moser I, Quantum 3:3 (1993) 41
MG2SA.13.b which region (min area) covers a worm of length 1?
MG2SA.13. three dice game: Chuck-a-luck or Bird Cage
MG2SA.13. sandwich theorem, number of pieces by cutting a torus
MG2SA.14 Nine More Problems
MG2SA.14.1 Crossing the Desert (-> MG2SA.5.2)
MG2SA.14.1.a Jeeper the Deeper, (-> MG6SA.12.1)
MG2SA.14.2 The Two Children (probability)
MG2SA.14.2. one child is a boy - the probability that both are boys is 1/3
MG2SA.14.2. the older is a girl - the probability that both are girls is 1/2
MG2SA.14.3 Lord Dunsany's Chess Problem
MG2SA.14.4 Professor on the Escalator
MG2SA.14.5 The Lonesome 8
MG2SA.14.6 Dividing the Cake
MG2SA.14.6.a Minimal number of cuts for fair divisions
MG2SA.14.6.a Ars Combinatoria 31 (1991) 191-197, #MR 92c:05016, Zbl 761:05009
MG2SA.14.6.a each person believes he obtains at least his fair share,
MG2SA.14.6.a an divide and conquer algorithm with O(n log n) cuts is given
MG2SA.14.6.b How to Cut a Cake Fairly, AMM 87 (1980) 640-644; 68 (1961) 1-17
MG2SA.14.6.c Die gerechte Teilung, Math.Kabinet.3.3.6
MG2SA.14.6.d toetjes, AMM 97 (1990) 785-794
MG2SA.14.6.d a number is secretly chosen from the interval [0,1], and n player
MG2SA.14.6.d try in turn to guess this number. when the secret number is
MG2SA.14.6.d revealed, the player with the closest guess wins.
MG2SA.14.6.e Ramsey Partitions of Integers and Fair Divisions (Fair Division
MG2SA.14.6.e Algo. for n Person Unequal Shares) Combinatorica 12 (1992)193-201
MG2SA.14.6.f An Envy-Free Cake Division Protocol, AMM 102:1 (Jan 1995) 9-18
MG2SA.14.6.g Dividing a Cake, Math Intell 15:1 (1993) 50-52
MG2SA.14.7 The Folded Sheet -> MG10SA.7
MG2SA.14.8 The Absent-minded Bank Clerk (Diophantine equation)
MG2SA.14.9 Water and Wine
MG2SA.14.9. give some water into the wine and the same amont back to the water
MG2SA.14.9. each mixture has the same amount of the other, proof by volume.
MG2SA.14.9. can you get 50%? Only if the liquid is not infinitly divisible
MG2SA.15 Eleusis: The Induction Game
MG2SA.16 Origami
MG2SA.17 Squaring the Square
MG2SA.17. tiling a square (rectangle) with different squares, -> MG7SA.11
MG2SA.17.a compound perfect squares, AMM 89 (1982) 15-32
MG2SA.18 Mechanical Puzzles
MG2SA.19 Probability and Ambiguity
MG2SA.19. Paradoxes arising in geometric probability, random cord in a circle
MG2SA.19.a Concurrent Lines and Acute Angles, M. Mag. 64 (1991) 204-205
MG3SA: New Mathematical Diversions from Scientific American
MG3SA: Simon & Schuster (1966)
MG3SA.1 The Binary System
MG3SA.2 Group Theory and Braids
MG3SA.2.a A Random Ladder Game: Permutaions, Eigenvalues, and Convergence
MG3SA.2.a of Markov Chains, College Math J. 23:5 (1992) 373-385
MG3SA.2.b PSL(2,7) = PSL (3,2), MR 89f:05094 elegant proof
MG3SA.3 Eight Problems
MG3SA.3.1 Acute Dissection
MG3SA.3.1. Triangle cut into seven acute ones (or eight acute isosceles)
MG3SA.3.1. acute dissection of a square (8), pentagram (5), Greek cross (20)
MG3SA.3.1.a NU-Configurations in tiling the square, Math Comp 59 (1992)195-202
MG3SA.3.1.a tiling a square with integer triangles
MG3SA.3.2 How Long is a "Lunar"?
MG3SA.3.2. radius of the sphere, such that surface = volume
MG3SA.3.3 The Game of Googol (probability)
MG3SA.3.3. maximising the chance of picking the largest objekt
MG3SA.3.3. maximizing the value of the selected object (proposed be Cayley)
MG3SA.3.3.a On a Problem of Cayley, Scripta Mathematica (1956) 289-292
MG3SA.3.3.b An Optimal Mainteanance Policy of a Discrete-Time Markovian
MG3SA.3.3.b Deterioration System, Comp. & Math. with Appl 24 (1992) 103-108
MG3SA.3.3.c A Secretary Problem with Restricted Offering Chances and Random
MG3SA.3.3.c Number of Applications, Comp. & Math. with Appl 24 (1992) 157-162
MG3SA.3.3.d On a simple optimal stopping problem, Disc. Math. 5 (1973) 297-312
MG3SA.3.3.e Stopping time techniques for analysts and probabilits (L. Egghe)
MG3SA.3.3.e LMS LNS 100
MG3SA.3.3.f Algebraic Approach to Stopping Variable Problems, JoCT 9 (1970)
MG3SA.3.3.f 148-161, distributive lattices <-> stopping variable problems
MG3SA.3.3.g secretary problem, Wurzel 27:12 (1993) 259-264
MG3SA.3.3.h Ferguson, Who solved the secretary problem?
MG3SA.3.3.h Statistical Science 4 (1989) 282-296
MG3SA.3.3.i Freeman, the secretary problem and its extensions: a review
MG3SA.3.3.i International Statistical Review 51 (1983) 189-206
MG3SA.3.4 Marching Cadets and a Trotting Dog
MG3SA.3.5 Barr's Belt
MG3SA.3.6 White, Black and Brown (logic)
MG3SA.3.7 The Plane in the Wind
MG3SA.3.8 What Price Pets? (linear Diophantine equation)
MG3SA.4 The Games and Puzzles of Lewis Carroll
MG3SA.5 Paper Cutting
MG3SA.5. theorem of Pythagoras, dissection proof,
MG3SA.6 Board Games
MG3SA.7 Packing Spheres
MG3SA.7.a MG9SA.3, figurative numbers, square, triangular, tetrahedral
MG3SA.8 The Transcendental Number Pi
MG3SA.9 Victor Eigen: Mathemagician
MG3SA.10 The Four-Color Map Theorem
MG3SA.11 Mr. Apollinax Visits New York
MG3SA.12 Nine Problems
MG3SA.12.1 The Game of Hip
MG3SA.12.1. two color the 6*6 square, s. t. there is no monochromatic square
MG3SA.12.1. the number of different squares in the n*n square is n^2(n^2-1)/12
MG3SA.12.1.a enumerating 3-, 4-, 6-gons with vertices at lattice points,
MG3SA.12.1.a Crux Math 19:9 (1993) 249-254
MG3SA.12.2 A Switching Puzzle
MG3SA.12.2. change two cars with a locomotive (circle and tunnel)
MG3SA.12.3 Beer Signs on the Highway (calculus, speed, time, distance)
MG3SA.12.4 The Sliced Cube and the Sliced Doughnut (geometry)
MG3SA.12.4. cut the cube (regular hexagon), doughnut (two intersecting cirles)
MG3SA.12.5 Bisecting Yin and Yang (geometry)
MG3SA.12.5.a Bisection of Yin and of Yang, Math. Mag. 34 (1960) 107-108
MG3SA.12.6 The Blue-Eyed Sisters (probability)
MG3SA.12.7 How old is the Rose-Red City? (linear equations)
MG3SA.12.8 Tricky Track (logic, reconstruct a table)
MG3SA.12.9 Termite and 27 Cubes (hamiltonian circle, parity)
MG3SA.13 Polyominoes and Fault-Free Ractangles
MG3SA.13.a On folyominoes and feudominoes, Fib. Quart. 26 (1988) 205-218
MG3SA.13.b Rookomino (Kathy Jones) JoRM 23 (1991) 310-313
MG3SA.13.c Rookomino (K. Jones) JoRM 22 (1990) 309-316 (Problem 1756)
MG3SA.13.d Polysticks, JoRM 22 (1990) 165-175
MG3SA.13.e Fault-free Tilings of Rectangles (Graham) The Math. Gardner 120-126
MG3SA.14 Euler's Spoilers: The Discovery of an Order-10 Graeco-Latin Square
MG3SA.14.a Universal Algebra and Euler's Officer Problem, AMM 86 (1979)466-473
MG3SA.15 The Ellipse
MG3SA.15.a robust rendering of general ellipses and elliptic arcs,
MG3SA.15.a ACM Trans. on Graphics, 12:3 (1993) 251-276
MG3SA.16 The 24 Color Squares and the 30 Color Cubes (MacMahon)
MG3SA.16. 12261 solutions of the 4*6 rectangle, 3*8 is impossible
MG3SA.17 H. S. M. Coxeter
MG3SA.17. Coxeter's book Introduction to Geometry 1961
MG3SA.17. appl. of the M"obius band, contructions for 257, 65537 gon
MG3SA.17. Morley's triangle, equal bisectors - Steiner-Lehmus Thm
MG3SA.17.a Angle Bisectors and the Steiner-Lehmus Thm, Math. Log 36:3 (1992)1&6
MG3SA.17.b equal external bisectors, not isoscele, M. Math. 47 (1974) 52-53
MG3SA.17.c A quick proof of a generalized Steiner-Lehmus Thm,
MG3SA.17.c Math Gaz. 81:492 (Nov. 1997) 450-451
MG3SA.17.h Morley's triangle (D.J.Newman's proof), M In 18:1 (1996) 31-32.
MG3SA.17. kissing circles, Soddy's formular - Descartes' Circle Theorem
MG3SA.17.d Circles, Vectors, and Linear Algebra, Math. Mag. 66 (1993) 75-86
MG3SA.17. semiregular tilings of the plane, the 17 cristallographic groups
MG3SA.17. tilings of Escher: Heaven-Hell, Verbum
MG3SA.17.e The metamorphosis of the butterfly problem (Bankoff)
MG3SA.17.e Math. Mag. 60 (1987) 195-210 (47 refs)
MG3SA.17.f A new proof of the double butterfly theorem, M. Mag. 63 (1990) 256-7
MG3SA.17.g Schaaf, Bibliography of Rec. Math. II.3.3 The butterfly problem
MG3SA.18 Bridg-it and Other Games
MG3SA.18. winning Bridg-it, pairing stategy (Shannon switching game)
MG3SA.18. Connections (ASS, 1992) = Bridg-it board: connect or circle
MG3SA.18.b Directed switching games on graphs and matroids, JoCT B60 (1986)237
MG3SA.18.c Shannon switching games without terminals, draft (I), see II, III
MG3SA.18.c Graphs and Combinatorics 5 (1989) 275-82 (II), 8 (1992) 291-7 (III)
MG3SA.19 Nine More Problems
MG3SA.19.1 Collating the Coins (coin moving xyxyx -> xxxyy)
MG3SA.19.2 Time the Toast (optimal shedule)
MG3SA.19.3 Two Pentomino Posers
MG3SA.19.3. 6*10 Rectangle with all pentominoes touch the border (unique)
MG3SA.19.4 A Fixed Point Theorem
MG3SA.19.5 A Pair of Digit Puzzles (cryptarithms)
MG3SA.19.6 How did Kant Set His Clock (calculus, time, speed)
MG3SA.19.7 Playing Twenty Questions when Probability Values are Known
MG3SA.19.7. Huffman coding, data compression
MG3SA.19.8 Don't Mate in One (chess)
MG3SA.19.9 Find the Hexahedrons
MG3SA.19.9. there are seven varieties of convex hexahedrons (six faces)
MG3SA.20 The Calculus of Finite Differences
MG3SA.20.d Symmetry Types of Periodic Sequences, Illionois J. of Math.
MG3SA.20.d 5:4 (Dec 1961) 657-665, appl. to music and switching theory
MG3SA.20.a generating two color necklaces, Disc. Math. 61 (1986) 181-188
MG3SA.20.b Generating Necklaces, J. of Algorithms 13:3 (1992) 414
MG4SA: The Numerology of Dr. Matrix, Chap. 1-7
MG4SA: Simon & Schuster (1967)
MG4SA: The Incredible Dr. Matrix, Chap. 1-18
MG4SA: Scribner (1976)
MG4SA: The Magic Numbers of Dr. Matrix, Chap. 1-22
MG4SA: Prometheus Books (1985)
MG4SA.1 New York
MG4SA.1. numerology, Wagner and 13, Plutonium 94 <-> 49 (Manhatten project)
MG4SA.1. Dewey decimal classification of "number Theory": 512.81 (2^9.3^4)
MG4SA.1. ELEVEN & TWO \ ONE is an anagram of TWELVE
MG4SA.1. Number of the Beast 666 with Roman numerals, hundret system
MG4SA.1. american president and the double letter (Rockefeller-Nixon)
MG4SA.1. sequence OTTFFSSENT, cryptarithm FORTY+TEN+TEN=SIXTY, Bach 14-41
MG4SA.2 Los Angeles
MG4SA.2. rookwise-connected antimagic 3*3 square (unique, 10-n transform)
MG4SA.2.a A Remarkable Group of Antimagic Squares, Math. Mag. 44 (1971)13, 236
MG4SA.2. Triskaidekaphobia: an irrational fear of the number 13. numerology
MG4SA.2. 10^2 + 11^2 + 12^2 = 13^2 + 14^2 = 365 and generalizations
MG4SA.2. A. S. Eddington's work on the fine-structure constant 137
MG4SA.2. Thue-Morse sequence a(1)=01, a(k+1)=a(k) & Complement a(k)
MG4SA.2.b Unending Chess, Symbolic Dynamics & Semigroups, Duke Math 11 (1944)1
MG4SA.2.c Is there a sequence of four symbols in which no two adjacent
MG4SA.2.c segments are permutations of one another, AMM 78 (1971) 886-888
MG4SA.2.d On Nonrepetitive Sequences, JoCT A 16 (1974) 159-164
MG4SA.2.g Guy, Unsolved Problems in Number Theory, E21
MG4SA.2.h Dejean's conjecture on 5..11 letter alphabets solved,TCS 95(1992)187
MG4SA.2.h repetition threshold 2->2, 3->7/4, 4->7/5, k->k/(k-1) (k>=5)
MG4SA.2.i Tiling the Morse Sequence, TCS 94:2 (1992) 215-221
MG4SA.2.j Every binary Pattern of Length 6 is Avoidable on the 2-Letter
MG4SA.2.j Alphabet, Acta Informatica 29:1 (1992) 95-107 (P. Roth)
MG4SA.2.k Overlap free words and finite automata, TCS 115:2 (1993) 243-260
MG4SA.2.l Enumeration of irreducible binary words, c n^1.155 CAL)
MG4SA.13. each year has 2..4 perverse (needs six calendar lines) months
MG4SA.14 Honolulu
MG4SA.14. highly composite numbers (hc): sigma0(7!)=60, sigma0(7560)=64 is hc
MG4SA.14. n!+1=m*m has the solutions: (n,m) equals (4,5), (5,11), (7,71).
MG4SA.14.sio n!!+1=m*m has the solutions: (n,m) equals (3,2),(4,3),(5,4),(6,7).
MG4SA.15 Houston
MG4SA.15. 2001: a space odyssey (A. C. Clarke), HAL - IBM (Ceasar chipher 1)
MG4SA.16 Clairvoyance Test
MG4SA.17 Pyramid Lake
MG4SA.17.a A New Series: F_n+1 = F_n + F_n-2, Fib. Quart. 16 (1978) 335-343
MG4SA.17.a great pyramide of Gizeh (dimensions), p^3 = p^2 + 1,
MG4SA.17.a the triangle (1,p,p^2) has a 120 degree vertex
MG4SA.18 The King James Bible
MG4SA.19 Calcutta
MG4SA.20 Stanford
MG4SA.20. calendar cubes problem: three cubes, three letters for the 12 months
MG4SA.20. ascending primes
MG4SA.20. alphabetic number tables: eight..zero (english), C..XXXVIII (roman)
MG4SA.20. english numbers with letters in ascending order: forty (unique)
MG4SA.20. same in descending order: one
MG4SA.20. lowest number with contains a,e,i,o,u,y ("and" does not count)
MG4SA.21 Chautauqua
MG4SA.22 Istanbul
MG4SA.22. cube vetex labelings: unique labeling 0..7 such that the sum of
MG4SA.22. labels at each edge is a prime (is composite);
MG4SA.22. label with different square numbers, such that all sums are primes
MG4SA.22. cube dissection into three congruent skew pyramids (yangmas)
MG4SA.22. unfold the cube (six pyramids) to form a rhombic dodecahedron
MG5SA: The Unexpected Hanging and Other Mathematical Diversions
MG5SA: Simon & Schuster (1968)
MG5SA.1 The Paradox of the Unexpected Hanging
MG5SA.1.a The surprise examination or unexpected hanging paradox,
MG5SA.1.a AMM 105:1 (1998) 41-51, T Y Chow
MG5SA.2 Knots and Borromean Rings
MG5SA.2.a Borromean Squares, AMM 99:4 (1992) 377; no circles possible
MG5SA.3 The Transcendential Number e
MG5SA.4 Geometric Dissections
MG5SA.4.a More Geometric Dissections, JoRM 7 (1974) 206-212, n-gons: a <-> b
MG5SA.4.b Proof without words: Fair Allocation of a Pizza, MM 67:4 (1994) 267
MG5SA.4.c Dissection 5*5-gons give a 5-gon (15 pieces), alpha 29:6 (1995) 23,38
MG5SA.5 Scarne on Gambling
MG5SA.6 The Church of the Fourth Dimension
MG5SA.7 Eight Problems
MG5SA.7.1 A Digit-Placing Problem
MG5SA.7.1. hamiltonian path in the complementary graph
MG5SA.7.2 The Lady or the Tiger (probability)
MG5SA.7.2. urn problem of Laplace.
MG5SA.7.3 A Tennis Match (parity, arithmetic)
MG5SA.7.4 The Colored Bowling Pins
MG5SA.7.4. triangle of ten spots, no two-color avoids equilateral triangles
MG5SA.7.5 The Problem of the Six Matches
MG5SA.7.5. plane distant one graphs, edges: 1..7 = 1,1,3,5,10,19,39
MG5SA.7.6 Two Chess Problems: Minimum and Maximum Attacks
MG5SA.7.7 How Far Did the Smiths Travel (arithmetic, distance)
MG5SA.7.8 Predicting a Finger Count
MG5SA.8 A Matchbox Game-Learning Machine
MG5SA.8. computerchess, hexapawn, minicheckers, minichess
MG5SA.9 Spirals
MG5SA.10 Rotations and Reflections
MG5SA.11 Peg Solitaire
MG5SA.11. move one peg far into the plane (Conway) -> MG13SA.19
MG5SA.11.a Montreal solitaire, JoCT A 60 (1992) 50-66
MG5SA.11.b UMAP Journal 16:2 (Summer 1995) Special Section on Math. Appl. Games
MG5SA.12 Flatland
MG5SA.12. greates cross section of the unitcube (area=Sqrt(2))
MG5SA.13 Chicago Magic Convention
MG5SA.14 Tests of Divisibility
MG5SA.14. checks if k in {2,3,4,5,6,8,9,10,11} divides n.
MG5SA.14. 9 | n - digitsum(n) as 9 | 100a+10b+c - (a+b+c), nine check
MG5SA.14. 11 | n - altdigitsum(n) as 11 | 100a+10b+c - (a-b+c), eleven check
MG5SA.14. 21 | 10a+b <=> 21 | a-2b as -2*10 = 1 (mod 21), seven test
MG5SA.14. 19 | 10a+b <=> 19 | a+2b as 2*10 = 1 (mod 19), 19-test
MG5SA.14. 39 | 10a+b <=> 39 | a+4b as 4*10 = 1 (mod 39), 13-test
MG5SA.14. 49 | 10a+b <=> 49 | a+5b as 5*10 = 1 (mod 49), seven test
MG5SA.14. 399|100a+b <=> 399| a+4b as 4*100= 1 (mod399), 7*19 test
MG5SA.14. Polynomial proof: 9 | P(10)-P(1) and 11 | P(10)-P(-1)
MG5SA.14. and 7*11*13 | P(1000) - P(-1) for every polynomial P.
MG5SA.14. casting out nines, digital roots -> MG2SA.4
MG5SA.14.a L E Dickson, "Criteria of Divisibility by a Given Number",
MG5SA.14.a History_of_the_Theory_of_Numbers (New York: Chelsea Publishing,
MG5SA.14.a 1952), Vol. I, Chapter 12, pp. 337-46.
MG5SA.14.b E. A. Maxwell, Division by 7 or 13, Math Gaz, 49 (Feb 1965) 84
MG5SA.14.c Die Neunerprobe des Adam Ries und andere Reste, PM 39:6 (1997) 242-6
MG5SA.14.d Adam Ries und die Neunerprobe. Eine historische Studie
MG5SA.14.d H Deubner, Mathematik in der Schule 8:7 (1970) 481-492
MG5SA.14.e B. A. Kordemsky, The Moscow Puzzles, 1972, Chap. 11: Divisibility
MG5SA.14.x out of any set of 2N-1 integers, there is a subset of size
MG5SA.14.x exactly N whose sum is divisible by N. (Erdos-Ginzburg-Ziv theorem)
MG5SA.15 Nine Problems
MG5SA.15.1 The Seven File Cards
MG5SA.15.2 A Blue-Empty Graph (Ramsey)
MG5SA.15.3 Two Games in a Row
MG5SA.15.4 A Pair of Cryptarithms
MG5SA.15.5 Dissecting a Square
MG5SA.15.6 Traffic Flow in Floyd's Knob
MG5SA.15.6.a Braess's Paradox: A Puzzler from Apllied Network Analysis
MG5SA.15.6.a UMAP 13:4 (1992) 303-312
MG5SA.15.7 Littlewood's Foodnotes
MG5SA.15.8 Nine to One Equal 100 (123456789)
MG5SA.15.9 The Crossed Cylinders (volume, geometry)
MG5SA.16 The Eight Queens and Other Chessboard Diversions
MG5SA.17 A Loop of String
MG5SA.17. Leopard Cat's Cradle, a loop-release trick, a ring-release trick,
MG5SA.17. a scissors-release puzzle, Jacob's ladder = Osage Diamonds
MG5SA.17.a Caroline F. Jayne, String Figures, Dover Publ. 1962
MG5SA.17.b Rotation of a String Figure, JoRM 8 (1976) 177-181
MG5SA.17.b a three lozenge (diamond) figure
MG5SA.17. king paths in a letter rectangle (boggle)
MG5SA.18 Curves of Constant Width
MG5SA.19 Rep-Tiles: Replicating Figures on the Plane
MG5SA.19 rep-tiles - reptiles - replicating figures
MG5SA.19.a A Puzzling Journey to the Reptiles and Related Animals
MG5SA.19.a http://www.kiwi.gen.nz/~karl/
MG5SA.20 Thirty-Seven Catch Questions (quickies)
MG5SA.20.1 pythagoren joke
MG5SA.20.2 clock puzzle (time)
MG5SA.20.3 probability (X2 > X1) = 5/12, with dice X1, X2
MG5SA.20.4 what is the exact opposit of 'not in'?
MG5SA.20.5 underdeterminded geometric question (crossed ladders)
MG5SA.20.5.a biquadratic solution (Diophantine), Euclides 68 (1992/93) 228-233
MG5SA.20.6 what was the customer buying? (logarithmic costs, digit costs)
MG5SA.20.7 area of the triangle, 13, 18, 31
MG5SA.20.8 wrong pronouncation
MG5SA.20.9 remarkable coincidence of two sums -> MG4
MG5SA.20.10 angle of two diagonals at the cube (equilateral triangle)
MG5SA.20.11 one word anagram of NEW DOOR
MG5SA.20.12 Thales theorem (inversion) & Pythagoras
MG5SA.20.13 statistiacal correlations between foot size and math. tests
MG5SA.20.14 what is this familiar continuum, (Roy G. Biv. of Rainbow, Oregon)
MG5SA.20.15 a simple formular which gives primes only
MG5SA.20.16 equilateral triangle, point: minimal sum of distances to the sides
MG5SA.20.17 arithmetic: divide 50 by 1/3 and add 3.
MG5SA.20.18 word problem: cross out six letters, BSAINXLEATNTEARS
MG5SA.20.19 arithmetic: is a topologist a doughnut?
MG5SA.20.20 the bookkeeper's question: words with 3 double letters in a row
MG5SA.20.21 Can two bisectors of a triangle intersect at right angles?
MG5SA.20.22 How many month have 30 days? (at least or exactly)
MG5SA.20.23 the last cigarettes, three butts give a new one.
MG5SA.20.24 limerick: 1264853971.2758463
MG5SA.20.25 how long will three pills last, taken one every half-hour?
MG5SA.20.26 knock-out turnament with 137 players, how many play are necessary?
MG5SA.20.27 a ten letter word using only the top row of a typewriter
MG5SA.20.27.a Typewriter Words, in Language on Vacation, Scribner's 1965,171-3
MG5SA.20.28 two US coins = 55 cents, one is not a nickel. What are the coins?
MG5SA.20.29 arithmetic: a fish weigths 20 pounds plus half its own weight.
MG5SA.20.30 a remarkable telegram (palindrome)
MG5SA.20.31 three interpretations of III: x = III/III = III III (alphametic)
MG5SA.20.32 rearrange six full and empty glases FFFEEE -> FEFEFE (one move)
MG5SA.20.33 arithmetic: how many spaces does a wheel with ten spokes have?
MG5SA.20.34 logic, semantic: NOT"the number of words in this sentence is nine"
MG5SA.20.35 two sisters with the same birthday, but are not twins. why?
MG5SA.20.36 how to lose $4. an unfair bet. "I'll bet you $1 that if you give
MG5SA.20.36. me $5 I'll give you $100 in exchange".
MG5SA.20.37 one dollar and 87 cents, 60 cents of if was in pennies (coinage)
MG6SA: M. Gardner's Sixth Book of Mathematical Games from Scientific American
MG6SA: Freeman (1971) San Francisco
MG6SA.1 The Helix
MG6SA.2 Klein Bottles and Other Surfaces
MG6SA.2. folding a Klein bottle (a cross-cap, a projective plane, a torus, a
MG6SA.2. M"obius surface) from a square, topolagical invariants of seven basic
MG6SA.2. surfaces (chromatic number, Betti number), torus-cutting problem
MG6SA.3 Combinatorial Theory
MG6SA.3. Lo Shu magic square, folding stamps, magic hexagon
MG6SA.4 Bouncing Balls in Polygons and Polyhedrons
MG6SA.4. Billiard, liquid-pouring problem
MG6SA.5 Four Unusual Board Games
MG6SA.5. French Military Game, William L. Black's game (analysed), tablut,
MG6SA.5. Sidney Sackson's game of Focus
MG6SA.6 The Rigid Square and Eight Other Problems
MG6SA.6.1 The Rigid Square
MG6SA.6.2 A Penny Bet (n coins versus n+1 coins, probability 1/2)
MG6SA.6.2.a A Card Game with a Positive Payoff, AMM 98 (1991) 760-762, E3330
MG6SA.6.3 Three-dimensional Maze
MG6SA.6.4 Gold Links (n-link chain)
MG6SA.6.5 Word Squares (Rotas Square)
MG6SA.6.6 The Three Watch Hands (the three hands [clock] meets at 12 only)
MG6SA.6.7 Three Cryptarithms
MG6SA.6.8 Maximizing Chess Moves (minimum -> MG5SA)
MG6SA.6.9 Folding a M"obius Strip (smallest ratio)
MG6SA.7 Sliding-Block Puzzles
MG6SA.7. Boss, Dad's, L'Ane Rouge, Line up the Quinties, Ma's, Stotts's Tiger
MG6SA.7.a permutation puzzles (Topspin, Binary Arts) -> S_20
MG6SA.7.a College Math. J. 24:2 (1993) 163-5 -> (sio: simmilay to my Inver)
MG6SA.7.b Dead pigs fly Town -> Dead pigs wont fly (45 moves opt. (Boss))
MG6SA.7.b Euclides 68 (1992/93) 246 Ex 642
MG6SA.7.c The Knight's Tour on the 15-Puzzle, Math Mag 66 (1993) 159-166
MG6SA.8 Parity Checks
MG6SA.8. square root of 2 is irrational, two-color map theorem,
MG6SA.8. the glass trick, reversing pairs of coins - the head parity is fixed
MG6SA.8. R. Sprague's rolling cubes, color opposite faces different, the
MG6SA.8. parity of the 3 visible faces of one color changes every move
MG6SA.8. the enormous shoe box - for graph #{vertices with odd degree} is even
MG6SA.8.-> rolling a tetrahedron (MG6SA.19)
MG6SA.8.a On rolling a cube and a tetrahedron, AMM 90 (1983) 711-712, E6388
MG6SA.8.b Some things never change (invariants, parity),
MG6SA.8.b Quantum 4:1 (1993) 35-37, 60, M91
MG6SA.8.b kernel of "Genius" (4*4 matrix), { (0+-0, -00+, +00-, 0-+0) }
MG6SA.8.b moves: add (mod 1), rows, collomns, parallel of the diagonals.
MG6SA.9 Patterns and Primes
MG6SA.9. Sieve of Eratosthenes, Ulam's square spiral, prime magic square
MG6SA.9. Euler's polynomial x^2+x+41, Mersenne, Fermat, pepunit, gear problem
MG6SA.9.a Lucas-Lehmer Test, AMM 100 (1993) 370-371, simple proof, Mersenne P.
MG6SA.9.b Fermat Numbers (factorizations) Math. Comp. 61 (1993)
MG6SA.9.b 319-350: F9, 463-474: F6 (history)
MG6SA.9.c Lenstra, The development of the number field sieve, LNiM 1554 (1993)
MG6SA.9.c Fermat number factorizations, e. g. F7
MG6SA.9.d A hundred years of prime numbers, AMM 103 (1996) 729-741
MG6SA.9.e Newman's short proof of the Prime Number Theorem, D. Zagier
MG6SA.9.e AMM 104:8 (Oct. 1997) 705-708
MG6SA.10 Graph Theory
MG6SA.10. planar graphs, nomplanar K_3,3, K_5, imbedding in a grid,
MG6SA.10.a A link between the Jordan curve theorem and Kuratowski planarity
MG6SA.10.a criterion, AMM 97 (1990) 216-218; Zbl 736.05036
MG6SA.10.A Discrete Jordan curve theorems, JoCT B 47 (1989) 251-61 MR 90m:05118
MG6SA.10.b Open problems in grid labeling, AMM 97 (1990) 133-135, Zbl741:05058
MG6SA.10.c Cyclic Perfect One Factorizations of K_2n, 259-272
MG6SA.10.c Some Perfect One-Factorizations of K_14, 419-436
MG6SA.10.c Combin. Design Theory, Annals of Discrete Math. 34 (1987)
MG6SA.10.d strictly rectangluar representations, Eureka 52 (Mar 1993) 30-44
MG6SA.10.e Football Pool Problem, JoCT A 67 (1994) 161-168
MG6SA.10.e FPP(11) <= 9477, FPP(12) <= 27702
MG6SA.10. nointersecting Euler path (black-white coloring by T. H. O'Beirne),
MG6SA.10.f Pairwise compatible Euler Tours, JoCT B 53 (1991) 80-92
MG6SA.10.g Double Euler Tours, JoCT B 50 (1990) 198-207
MG6SA.10. Hamiltonian path, impossible rhombic dodecahedron, knight's tours
MG6SA.10. -> KnT: Knight Tours
MG6SA.10. -> MG8SA.14 Knights of the Square Table
MG6SA.10. -> Hamiltonische Linien, MU 24:3 (1978) 5-40
MG6SA.10. - dodecahedron unique circle, Petersen, knight tours
MG6SA.10. - Sachs = Sci Am 10:1992 118-20 (I. Stewart) planar graph criteria
MG6SA.10. -> Hamiltonian Checkerboards, Math. Mag. 57 (1984) 291-294
MG6SA.10. - ham. circles in C_n * C_m. When are left or up moves sufficient?
MG6SA.10. -> Circuits in Directed Grids, Math Intell. 13:3 (1991) 40-43
MG6SA.10. - ham. circles in C_n * C_m. When are left or up moves sufficient?
MG6SA.10. -> Figured Tours (Knight, Rook), Math. Spectrum 25:1 (1992) 16-20
MG6SA.10. - special pattern: e.g. 6*6 knight tour with 1 and 4 in the same row
MG6SA.10. -> Hamiltonian Paths in Graphs of Linear Extensions for Unions of
MG6SA.10. - Posets, SIAM Disc. Math., 5:2 (1992) 199-206 (G. Stachowiak)
MG6SA.10. -> A Hamiltonian path in the transposition graph for multiset
MG6SA.10. - permutations, Congr. Numer. 67 (1988) 27-34, MR 90k:05099
MG6SA.10. -> Leaper graphs (r,s-knights), D. E. Knuth, is the 2*(r+s) square
MG6SA.10. - Hamiltonian (for (r,s)=1)? Checked for r+s<=15.
MG6SA.10. - The Math. Gazette 78 (1994) 274-296
MG6SA.10. -> The Gordon Game of a Finite Group, AMM 99 (1992) 567-569
MG6SA.10. - group-tours x1=e, x2=a1*x1, x3=a2*x2, ... s.t. all moves a_n are
MG6SA.10. - different. A finite abelian group G has a tour iff [G:2G]=2.
MG6SA.10. - So if G is cyclic then ord(G) must be even (all interval series)
MG6SA.10. -> A Fast Method for Sequencing Low Order Non-Abelian Groups, 27-42
MG6SA.10. - Combin. Design Theory, Annals of Discrete Math. 34 (1987)
MG6SA.11 The Ternary System
MG6SA.11. the counterfeit coin problem, sorting procedure (DEMOCRAT cards)
MG6SA.11.a detection of a defective coin with partial weight information,
MG6SA.11.a AMM 91 (1984) 173-179, (history, beam scale, spring scale)
MG6SA.11.b a tale of two coins, AMM 94 (1987) 121-129
MG6SA.11.c how to find many counterfeit coins? Graphs Combin. 2 (1986) 173-7
MG6SA.11.d Updating a Tale of 2 Coins, Ann. NY Acad. Sci. 576 (1989) 259-265
MG6SA.11.e MR 89a:90153, MR 89g:90121
MG6SA.12 The Trip around the Moon and Seven Other Problems
MG6SA.12.1 The Trip around the Moon (deep in the dessert)
MG6SA.12.1.a the jeep once more or jeeper by the dozen, AMM 77 (1970) 493-501
MG6SA.12.1.b a new approach to the jeep problem, Bul. EATCS 38 (1989) 145-154
MG6SA.12.1.b only a discrete amont (one tank) may be deposited
MG6SA.12.1.c Gale's round-trip jeep problem, AMM 102:2 (Apr 1995) 299-309
MG6SA.12.1.c open case solved. Dewdney's variation is solved too.
MG6SA.12.2 The Rectangle and the Oil Well (elementary geometry)
MG6SA.12.3 Wild Ticktacktoe (S. W. Golomb)
MG6SA.12.4 Coins of the Realm (R. Sprague: efficient coin system of 16 coins)
MG6SA.12.5 Bills and Two Hats (maximizing probability)
MG6SA.12.6 Dudeney's Word Square (forword, backword, diagonal)
MG6SA.12.7 Ranking Weights (rank five weights with seven weightings (balance))
MG6SA.12.7.a weighting seven coins in five weightings, AMM (1989) 254-8,E3023
MG6SA.12.7.b Optimal sorting n=12, MR 92g:05007; Knuth, TAOCP 5.1.3
MG6SA.12.8 Queen's Tours (five chess-tour problems)
MG6SA.13 The Cycloid: Helen of Geometry
MG6SA.14 Mathematical Magic Tricks
MG6SA.15 Word Play
MG6SA.15. pangram (sentences with 26 different letters)
MG6SA.15. Claude E. Shannon: Squdgy fez, blank jimp crwth vox!
MG6SA.16 The Pythagorean Theorem
MG6SA.16. chinease proof (dissection of (a+b)^2), shearing proofs, Euclids
MG6SA.16. Thm -> Pyth, Pappus theorem, pythagorean tripples
MG6SA.16.a The Pythagorean Proposition, DC NCTM, 1968, contains 367 proofs
MG6SA.16.b Themenkomplex Pythagoras,
MG6SA.16.b Lehrb"ucher und Monographien zur Didaktik der Mathematik, 39, 1995
MG6SA.16.c Some recent discoveries in elementary geometry,
MG6SA.16.c Math Gaz 81:492 (Nov 1997) 391-397
MG6SA.16.c Faulhaber's generalization of the Pythagorean Thm. to 3-dim.
MG6SA.16.d Note on the Ptolemy Theorem, C. Popescu
MG6SA.16.d Nieuw Archief voor Wiskunde, 15:3 (Nov 1997) 193-197
MG6SA.16.e Zum Satz von Ptolem"aus, MNU 44:8 (1991) 464-466, F. Bodnar
MG6SA.16.e Ptolemy, the convex tetragon (quadrangle), trigonometric proof
MG6SA.16.f Pythagoras und kein Ende? (P Baptiste)
MG6SA.16.f Klett Verlag, Leipzig 1997, 152p
MG6SA.17 Limits of Infinite Series
MG6SA.17. Zeno's Paradox, harmonic series (infinite-offset paradox)
MG6SA.17.a W. Stadje, convergence of parts of the harmonic series (deutsch),
MG6SA.17.a Elem. Math. 46 (1991) 51-54; #MR 92h:11009
MG6SA.17.b partial sums of the harmonic series, AMM 78 (1971) 864-870
MG6SA.17.c Concrete Math. Ex 9.67: Let Q_n be the least integer m such that
MG6SA.17.c H_m > n. Find the smallest integer n such that
MG6SA.17.c Q_n <> [exp(n-gamma)+1/2], or prove that no such n exists. (-> d)
MG6SA.17.d The Form of Comtet Functions of Divergent Series (-> c)
MG6SA.17.d Utilitas Math. 42 (1992) 241-245
MG6SA.18 Polyiamonds
MG6SA.18. hexiamonds, three twins, unique star
MG6SA.19 Tetrahedrons
MG6SA.19. tetrahedron-octahedron space tesselation, pentatope,
MG6SA.19. rolling tetraeder trick, nine problems, impossible magic tetrahedron
MG6SA.19.a Topsy-turvy pyramids (rollings tetrahedra), Quantum 4:1 (1993) 63-64
MG6SA.19.b Cannonball pyramids, Triads, Tumbleweed (rolling tetrahedra)
MG6SA.19.b Quantum (Nov Dec 1993) 63-64
MG6SA.20 Coleridge's Apples and Eight Other Problems
MG6SA.20.1 Coleridge's Apples (linear Diophant problem)
MG6SA.20.2 Reversed Trousers (topology)
MG6SA.20.3 Coin Game (parity)
MG6SA.20.4 Truthers, Liars, and Randomizers (logic)
MG6SA.20.5 Gear Paradox (mechanical puzzle)
MG6SA.20.6 Form a Swastika (Nazi cross)
MG6SA.20.7 Blades of Grass Game (probability for fortune-telling in russia)
MG6SA.20.7. the ends are tied in pairs. two entwined rings indicate marriage.
MG6SA.20.7. 2 perfect matchings form a circle on 2n vertices with
MG6SA.20.7. prob=(2/3)(4/5)*...*((2n-2)/(2n-1))
MG6SA.20.8 Casey at the Bat
MG6SA.20.9 The Eight-Block Puzzle (3*3 Boss puzzles)
MG6SA.21 The Lattice of Integers
MG6SA.21. continued fraction of 2, billiard-ball paths, area of polygons
MG6SA.21.a Das Dreikruegeproblem #ZBl 634.10001 (three-pitchers problem)
MG6SA.21.b Sprague, Zur Theorie der Umfuell-Aufgaben, Jber DMV 49 (1940) 65-73
MG6SA.21.c Musical Scale Constructions: The Continued Fraction Compromise
MG6SA.21.c Utilitas Math. 42 (1992) 97-113 (with historical remarks)
MG6SA.21.d continued fraction [1,2,3,4,5,..] = I_0(2) / I_1(2)
MG6SA.21.d (Hyperbolic Bessel functions) E3264, AMM (Feb 1990)
MG6SA.21.e The Euclidean Algorithm Strikes Again, AMM 97 (1990) 125-129
MG6SA.21.e representations for p: a^2 + b^2 = p = 4k+1 (p prime)
MG6SA.21.f A One-sentence Proof that Every Prime p = 1 (mod 4) is the Sum
MG6SA.21.f of two squares, AMM 97 (1990) 144 (fix point proof)
MG6SA.22 Infinite Regress
MG6SA.22. impossible cubed cube, snowflake curve, Escher's Drawing Hands
MG6SA.23 O'Gara, the Mathematical Mailman
MG6SA.23. philately, path problems, minimum (maximum) turn problems
MG6SA.24 Op Art
MG6SA.24. n-bug problem, length of a logarithm spiral -> MMR.8.1
MG6SA.24. heptiamonds (tiling), tesselation of convex heptagons
MG6SA.24.a The patterns of the isonemal two-color two-way two-fold fabrics
MG6SA.24.a (weaving), Zbl 736.05022
MG6SA.24.b Random Dot Stereogram, AMM 101 (1994) 715-724
MG6SA.25 Extraterrestrial Communication
MG6SA.25. decrypt I. Bell's interplanetary message
MG7SA: Mathematical Carnival
MG7SA: A. Knopf (1975)
MG7SA.1 Sprouts and Brussels Sprouts
MG7SA.1. a topological pencil and paper graph game. There is a fairly thorough
MG7SA.1. description of it in the Peirs Anthony novel "Macroscope".
MG7SA.1.a Graph Theory and the Game of Sprouts, AMM 100 (1993) 478-482
MG7SA.2 Penny Puzzles (Coins)
MG7SA.2. doubling problem, close-packing problem (rhomboid <-> circular),
MG7SA.2.a Stacking/doubling Coins (Double Five) in a circle at even positions,
MG7SA.2.a (possible n=10k, n=4k), Crux Math. 19:6 (1993) 185-186, Ex. 1769
MG7SA.2. Triangle-inversion problem, Triangular solitaire, rotation problem,
MG7SA.2. surprising invariance theorem, tree-planting problems, 3penny tricks
MG7SA.3 Aleph-null and Aleph-one
MG7SA.4 Hypercubes
MG7SA.4. Charles Howard Hinton, Hinton cubes, visualizing the tesseract
MG7SA.4. largest square in a cube, gives the largest octahedron in a cube
MG7SA.4. largest cube in a hypercube, Prince Rupert problem
MG7SA.4. 11 hexominoes fold into cubes, 261 ways for the tesseract (hypercube)
MG7SA.4. the number of points, lines, cubes, ... of the n-cube; GF = (1+2x)^n
MG7SA.4.a Symmeties of the Cube and Outer Automorphisms of S6,
MG7SA.4.a AMM 100 (1993) 377-380
MG7SA.4.b Keller's cube-tiling conjecture is false in high dimensions (n>=10)
MG7SA.4.b Bull. AMS 27 (1992) 279-283, MR 93e:52040
MG7SA.4.b Keller: If R^n is tiled by congruent parallel unit cubes, then some
MG7SA.4.b pair shares a complete (n-1) dimensional face.
MG7SA.4.c A new distance metric on strings computable in linear time,
MG7SA.4.c Disc. Appl. Math. 20 (1988) 191-203 (sequence space, edit distance)
MG7SA.4.d two characterizations of the general. hypercube (Hamming sheme)
MG7SA.4.d Disc. Math. 93 (1991) 63-74
MG7SA.4.e Unfolding the tesseract, JoRM 17 (1984-85) 1-16 (261 octacubes)
MG7SA.5 Magic Stars and Polyhedrons
MG7SA.5. impossible magic pentagram (K5), magic hexagram (septagram,octagram)
MG7SA.5. the hexagram is equivalent to octahedron and cube, impossible prism
MG7SA.5.a perimeter-magic polygons, JoRM 7:1 (1974) 14-20
MG7SA.5.b magic graphs, a characterization, Europ. J Comb. 9 (1988) 363-8
MG7SA.5.b MR 89f:05138
MG7SA.6 Calculating Prodigies
MG7SA.6. mental calculaction tricks
MG7SA.7 Tricks of Lightning Calculators
MG7SA.7. mental calculaction tricks
MG7SA.8 The Art of M. C. Escher
MG7SA.8.a Napoleon, Escher, and Tessellation, M. Mag. 64 (1991) 242-246
MG7SA.8.b Tiling Survey, Micro Math 9:2 (1993) 3-24, Book, Poster, Program
MG7SA.9 The Red-Faced Cube and Other Problems
MG7SA.9.1 The Red-Faced Cube (Harris' cube rolling problems)
MG7SA.9.1a Single Vacancy Rolling Cube Problem, JoRM 7 (1974) 220-224
MG7SA.9.2 The Three Cards (logic)
MG7SA.9.3 The Key and the Keyhole (topology)
MG7SA.9.4 Anagram Dictionary
MG7SA.9.5 A Million Points (half the number of points)
MG7SA.9.6 Lady on the Lake (hunting game)
MG7SA.9.7 Killing Squares and Rectangles (combinatorial geometry)
MG7SA.9.8 Cocircular Points (elementary geometry, search in a picture)
MG7SA.9.9 The Poisoned Glass (binary search, expected number of tests)
MG7SA.10 Card Shuffles
MG7SA.10. maximal order of a permutation of 52,
MG7SA.10.a the expected order of a random permutation, Bull LMS 23 (1991) 34-42
MG7SA.10.a Zbl 735.11044
MG7SA.10. Groups of Perfect Shuffles -> Math. Magazine 60 (1987) 3-14
MG7SA.10.b Shuffling Cards, AMM (1986) 333-348
MG7SA.11 Mrs. Perkins' Quilt and Other Square-Packing Problems
MG7SA.11. squared squares, minimum prime dissections for squares,
MG7SA.11. pyramidal = square number (only nontrivial solution n=24, m=70),
MG7SA.11. 1..24 (without 7) squares can be packed into a 70 square
MG7SA.11. open problem: 1..n square packing of a rectangle (other than n=1)
MG7SA.11. table of smallest squares which can be packed by 1..n squares (n<=18)
MG7SA.11. 1/2, 1/3, 1/4, ... squares can be packed into a 5/6 square.
MG7SA.11. squares with total area 1 can be packed into a square of area 2.
MG7SA.11.a Concrete Math. Ex 2.37: can 1/k * 1/(k+1) rectangles be packed into
MG7SA.11.a the unite square? (k=1, 2, ... ) open question
MG7SA.11.b Tile a rectangle with rectangles of the form 1*2, 2*3, ... n*(n+1)
MG7SA.11.b using one tile of each (n<6 solvable), JoRM 24:1 (1992) 57-9 Ex1942
MG7SA.11.c On Some New Simple Perfect Squared Squares,
MG7SA.11.c Disc. Math. 106/7 (1992) 67-75
MG7SA.11.d On Packing Unequal Rectangles in the Unit Square (1/k * 1/(k+1))
MG7SA.11.d JoCT 68 (1994) 465-469, they fit into a 133/132 square.
MG7SA.11.d 1/k * 1/k (k>=2) fit into a rectangle of area=47/72.
MG7SA.11.e Covering a square by e. circles, Elemente d. Math. 50 (1995) 167-170
MG7SA.11.f Dichteste Packungen von gleichen Kreisen in einem Quadrat (densest
MG7SA.11.f circle packing of a square), Elemente d. Math. 49 (1994) 16-26
MG7SA.11.g Tiling a rectangle with the fewest squares, JoCT A 76 (1996) 272-291
MG7SA.11.h Tiling a rectangle with the fewest squares, Math Gaz 82 (1998) 134-5
MG7SA.12 The Numerology of Dr. Flies
MG7SA.12. biorhythm, 23, 28, 33 day cycles, the largest positive interger that
MG7SA.12. can't be expressed as a sum of multiples of two nonnegative integers
MG7SA.12. a and b (relatively prime) is (a-1)(b-1)-1. R Sprague (Problem 26)
MG7SA.13 Random Numbers
MG7SA.14 The Rising Hourglass and Other Physics Puzzles
MG7SA.14.1 Two Hundred Pigeons
MG7SA.14.2 The Rising Hourglass
MG7SA.14.3 Iron Torus
MG7SA.14.4 Suspended Horsehoe
MG7SA.14.5 Center the Cork
MG7SA.14.6 Oil and Vinegar
MG7SA.14.7 Carroll's Carriage
MG7SA.14.8 Magnet Testing
MG7SA.14.9 Melting Ice Cube
MG7SA.14.10 Stealing Bell Rops
MG7SA.14.11 Moving Shadow
MG7SA.14.12 The Coiled Hose
MG7SA.14.13 Egg in Bottle
MG7SA.14.14 Bathtub Boat
MG7SA.14.15 Balloon in Car
MG7SA.14.16 Hollow Moon
MG7SA.14.17 Lunar Bird
MG7SA.14.18 The Compton Tube
MG7SA.14.19 Fishy Problem
MG7SA.14.20 Bicycle Paradox (mechanics)
MG7SA.14.21 Inertial Drive
MG7SA.14.22 Worth of Gold
MG7SA.14.23 Switching Paradox
MG7SA.15 Pascal's Triangle
MG7SA.15.a even Multinomial Coefficients, Math. Mag. 64 (1991) 115-122
MG7SA.15.a Kummer's theorem for multinomial coefficients.
MG7SA.15.a If g is the number of carries in the p-ary addition of
MG7SA.15.a e1, e2, ... et then g is the order of p in Multinom(e1,e2,...et).
MG7SA.15.b Zaphod Beeblebrox's Brain & Pascal Triangle, AMM 99 (1992) 318-331
MG7SA.15.b the number of integers p (mod 2^q) in any row of Pascal's triangle
MG7SA.15.c Only finitly many rows in Pascal's triangel consits exclusively
MG7SA.15.c of rth-power-free integers, AMM 99 (1992) 579-580
MG7SA.15.d Cube Slices, Pictorial Triangles, Prob., M. Mag. 64 (1991) 219-241
MG7SA.15.e A General. of a Congruential Property of Lucas, AMM 99(1992)231-38
MG7SA.15.f The distribution of the Binomial Coefficients modulo P, (Wilf)
MG7SA.15.f J. Number Theory 41 (1992) 1-5
MG7SA.15.g Pascal triangle, Zbl 735.05003
MG7SA.15.h Pascal's T. and (1+x+x^2..x^t)^m, MR 93i:11021
MG7SA.16 Jam, Hot, and Other Games
MG7SA.16. Jam, Hot are equivalent to ticktacktoe, nim, kayles, Henon's string
MG7SA.16. game (kayles), Isaacs' hamstrung squad car game (differential games)
MG7SA.16.a Daisies, Kayles, and the Sibert-Conway decomposiotion in misere
MG7SA.16. octal games, Theor. Comp. Science 96:2 (1992) 361-388
MG7SA.16.b Mate with bishop and Knight in Kriegspiel, TCS 96, 389-403
MG7SA.17 Cooks and Quibble-Cooks
MG7SA.17. wrong solutions, chess opening, Loyd - Dudeney square dissection,
MG7SA.17. Dudeney's rook's-tour, Dudeney's clock-puzzle dissection,
MG7SA.18 Piet Hein's Superellipse
MG7SA.19 How to Trisect an Angle
MG7SA.19. Archimedes' method, Kempe's linkage, the tomahawk trisector.
MG8SA: Mathematical Magic Show
MG8SA: Alfred A. Knopf (1977) New York
MG8SA.1 Nothing
MG8SA.2 More Ado About Nothing
MG8SA.3 Game Theory, Guess It, Foxholes
MG8SA.4 Factorial Oddities
MG8SA.5 The Cocktail Cherry and Other Problems
MG8SA.5.1 The Cocktail Cherry (matches)
MG8SA.5.2 The Papered Cube (maximal cube)
MG8SA.5.3 Lunch At The TL Club (truther, liar, logic)
MG8SA.5.4 A Fair Division (conguence)
MG8SA.5.5 Tri-Hex (game, ticktactoe, geometry of incidence, golden ratio)
MG8SA.5.6 Langford's Problem
MG8SA.5.6. langford sequences: 312132, 41312432; no of solutions for
MG8SA.5.6. 3,4,7,8,11,12 = 1,1,26,150,17792,108144; seq. exists iff n=0,3 mod 4
MG8SA.5.7 Overlap Squares (elementary geometry quicky)
MG8SA.5.8 Families in Fertilia (probability, statistical fallacy)
MG8SA.5.8. expected size of a family, geometric distribution
MG8SA.5.9 Christmas and Halloween
MG8SA.5.9. Halloween = oct. 31 = dec. 25 = Christmas
MG8SA.5.9. octal - decimal, alphametic: 675*31 = 837*25 = 20925 unique
MG8SA.5.10 Knot The Rope (party trick)
MG8SA.6 Double Acrostics
MG8SA.7 Playing Cards
MG8SA.7. poker patience: five poker hands which are are a straight or better
MG8SA.7. are impossible
MG8SA.8 Finger Arithmetic
MG8SA.9 M"obius Bands (Mobius, Moebius Bands)
MG8SA.9.a The Dark Side of the M"obius Strip, AMM 97 (1990) 890-897
MG8SA.9.a concrete embedding of the M"obius strip in R^3, minimal energy
MG8SA.10 Ridiculous Questions
MG8SA.11 Polyhexes and Polyaboloes
MG8SA.11.a Rhombiominoes, JoRM 24:2 (1992) 144-146, Prob 1961
MG8SA.12 Perfect, Amicable, Sociable
MG8SA.12.a Perfect Numbers, Quantum 3:3 (1993) 18-23, 59 (update, history)
MG8SA.12.b new sociable numbers, Math. of Comp. 56 (1991) 871-873
MG8SA.12.c Favorable conditions for amicability, JoRM 24 (1992) 245-249
MG8SA.13 Polyominoes and Rectification
MG8SA.13.a Polyominoes of Order 3 do not exists, JoCT A 61 (1992) 130-136
MG8SA.13.b 15 L3 + N4 -> 7*7 square, Euclides 67 (1991/92) 93 Ex 628
MG8SA.13. pattern for the 7 tetrahexes and 22 pentahexes
MG8SA.13. set of 3 trihexes and 7 tetrahexes sold by Coffin (Snowflake)
MG8SA.13. pattern for the 14 tetrabolos
MG8SA.13. replication problems: tetrabolo, hexomino, octomino
MG8SA.14 Knights of the Square Table
MG8SA.14.a the n*n Knight cover problem (n<=20) JoRM 23 (1991) 255-267
MG8SA.15 The Dragon Curve and Other Problems
MG8SA.15.a reflections on the emergence of space-filling curves, Zbl 736.01002
MG8SA.15.1 Interrupted Bridge Game
MG8SA.15.2 Nora L. Aron (cryptarithm)
MG8SA.15.2.a On the Reversing of Digits, Math. Mag. 42 (1969) 208-210
MG8SA.15.3 Polyomino Four-Color Problem
MG8SA.15.3. 11 monominoes require 4 colors, 6 cubes each pair shares a surface
MG8SA.15.4 How Many Spots?
MG8SA.15.5 The Three Coins
MG8SA.15.6 The 25 Knights (parity)
MG8SA.15.7 The Dragon Curve (paper strip folding)
MG8SA.15.8 The Ten Soldiers (longest increasing (decreasing) subsequences)
MG8SA.15.9 A Curious Set Of Integers
MG8SA.16 Colored Triangles and Cubes (MacMahon)
MG8SA.17 Trees
MG8SA.17.a Tree Isomorphism Algorithm, Speed Clarity, M. Mag. 64 (1991) 252-61
MG8SA.17.b Gen. binary trees (transpose) J. Algorithm 11 (1990) 68-84 (Ruskey)
MG8SA.17.c New Tricks for Old Trees: Maps and the Pigeonhole Principle
MG8SA.17.c AMM 101 (1994) 664-667 (graph-spanner)
MG8SA.17.c Spanning tree of the hypercube-graph has diameter >= 2n+1
MG8SA.18 Dice
MG8SA.18.a Weldon Dice Data Revisted,
MG8SA.18.a Amer. Stat. 45:3 (1991) 216-222, 46:3 (1992) 239-240
MG8SA.19 Everything
MG9SA: Mathematical Circus
MG9SA: Alfred A. Knopf (1979) New York
MG9SA.1 Optical Illusions
MG9SA.2 Matches
MG9SA.3 Spheres and Hyperspheres
MG9SA.3. Soddy's fourth circle poem (with hyperspheres)
MG9SA.3. sphere packings, kissing number, Leech lattice, -> MG3SA.7
MG9SA.3.a On spherical codes generating the kissing number in dim 8 and 24.
MG9SA.3.a Disc. Math. 106/7 (1992) 199-207
MG9SA.4 Patterns of Induction
MG9SA.5 Elegant Triangles
MG9SA.5. Napoleon thm: the triangle of the centers of exterior equilateral
MG9SA.5. triangles is equilateral. (Geometric Transformation, I M Jaglom)
MG9SA.5. 5-con triangles: (8,12,18) and (12,18,27) have 5 common sides+angles
MG9SA.5.a Simultaneous gener. of the theorems of Ceva and Menelaus
MG9SA.5.a Math. Mag. 65:1 (1992) 48-52 Zbl. 756.51016
MG9SA.5. the cross ladders, finding integral parameters
MG9SA.5.c Math Quickies Q 201: Segments determine an equilateral triangle
MG9SA.6 Random Walks and Gambling
MG9SA.6.a letter chains (Kettenbriefe), Stochastik in der Schule 12:3 (1992)37
MG9SA.6.b Probability models of pyramid or chain letter systems demonstrating
MG9SA.6.b that their promotional claims are unreliable,
MG9SA.6.b Operations Research 32 (1984) 527-536
MG9SA.6.c Gleichverteilung-Entropie, Expositiones Math. II:1 (1993) 3-46
MG9SA.6.c Ehrenfest game, urn model, Maxwell demon
MG9SA.7 Random Walks on the Plane and in Space
MG9SA.7. Markov chains
MG9SA.7.a Back to Square One, Eureka 49 (March 1989) 67-70
MG9SA.7.a E(return) = #vertices, for doublestochastic irreduceable matrices
MG9SA.7.b Chip-Firing games on directed graphs, J o Alg. Comb. 1 (1992) 308-328
MG9SA.7.b probabilistic abacus of Engel, undirected -> polynomial run-time
MG9SA.7.c Mr. Markov Plays Chutes and Ladders, UMAP 14:1 (1993) 31-38
MG9SA.8 Boolean Algebra
MG9SA.9 Can Machines Think?
MG9SA.9. Turing machines (addition), Eliza, Turing test,
MG9SA.9.a Noncomputability and the Busy Beaver Problem, UMAP 14:1 (1993) 41-73
MG9SA.9. 2001: a space odyssey (A. C. Clarke), HAL - IBM (Ceasar chipher 1)
MG9SA.10 Cyclic Numbers
MG9SA.11 Eccentric Chess and Other Problems
MG9SA.11.1 Eccentric Chess
MG9SA.11.1.a Martin Gardner's "Royal Problem", Quantum 4:1 (1993) 45-46
MG9SA.11.2 Talkative Eve
MG9SA.11.2. cryptarithm eve/did = .talktalktalk...
MG9SA.11.3 Three Squares (elementary geometry)
MG9SA.11.3. an angle addition problem, elementary solutions with no trigs
MG9SA.11.3. arctan(1/3)+arctan(1/2)=arctan(1), (3+i)(2+i)=5+5i
MG9SA.11.3.a 54 different proofs, JoRM 4 (Apr 1971) 90-99 (Ch Trigg)
MG9SA.11.3.b Math. Gaz. (Dec 1973) 334-336 + (Oct 1974) 212-215 (R. Narth)
MG9SA.11.3.c geometrical proof of a result of Lehmer's, Fib. Quar. 11(1973)539
MG9SA.11.3.c a generalization for n squares in a row. (Ch Trigg)
MG9SA.11.3.sio triangle (a,b,c)=(3,4,5) has (s,s_a,s_b,s_c)=(6,3,2,1), rho=1
MG9SA.11.4 Pohl's Proposition (binary magic trick)
MG9SA.11.5 Escott's Sliding Blocks
MG9SA.11.5. sliding-block puzzle, 4 squares & 6 l-shapes, 30*24 board
MG9SA.11.6 Red, White, and Blue Weights
MG9SA.11.6. six weights, three light and three heavy, three light-heavy pairs
MG9SA.11.6. are colored red, white, blue; two weightings on a balance scale
MG9SA.11.6. three weightings without colors, two different solutions
MG9SA.11.7 The 10-Digit Numbers
MG9SA.11.7.a tally numbers, JoRM 11 (1978-79) 76-77 (F. Rubin)
MG9SA.11.7.b Math.Kabinet.3.1.7 selfdescribing sequences
MG9SA.11.7. Base4: 1210, 2020, Base5: 521200, BaseR>6: (R-4)2100..001000
MG9SA.11.7.c Concrete Math. Ex 2.36, 9.63: Golomb's selfdescribing sequence,
MG9SA.11.7.c f(k) = #{n|f(n)=k}, f is nondescending, 1,2,2,3,3,4,4,4,5,...
MG9SA.11.7.d self-ref-sentences, (attractor, cycles), PM 35:6 (1993) 241-244
MG9SA.11.7.e cyclic counting trios (self-ref), Fib Quart. 25 (1987) 11-20
MG9SA.11.7.f selfdescribing sequences, Math. Mag. 66:4 (1993) 276-277 (refs)
MG9SA.11.8 Bowling-Ball Pennies
MG9SA.11.8. remove minimum number of points, avoiding equilateral triangles
MG9SA.11.9 Knockout Geography
MG9SA.11.9. isola-game on a graph (states of the USA, two states are connected
MG9SA.11.9. if the first letter of one is the last of the other), 2..3 players
MG9SA.11.9.a On Ringeisen's Isolation Game, Disc Math 80 (1990) 297-312
MG9SA.11.9.b The vertex picking game and a variation of the game of
MG9SA.11.9.b dots and boxes, Disc Math 70 (1988) 311-313, MR 89f:05111
MG9SA.12 Dominoes
MG9SA.12.a Tiling with 28 Dominoes, JoRM 24:2 (1992) 157-158 Ex 1881
MG9SA.12.a placing n dominoes in a (2n+1)*(2n+2) rectangle, can
MG9SA.12.a determine the entire tiling.
MG9SA.12.b 23 hexominoes (4 tetrominoes) are tilable with dominoes,
MG9SA.12.b alpha 92:5, p29 + p35
MG9SA.12.c Alternating-Sign Matrices and Domino Tilings, (Elkies,..)
MG9SA.12.c J. of Algebraic Combinatorics 1 (19??)
MG9SA.12.d counting perfect mathchings in hexagonal systems
MG9SA.12.d Graphs, hypergraphs and appl., Proc. Conf. Graph Theory, Eyba, 1984
MG9SA.12.d Teubner-Texte zur Mathematik 73, Leipzig, 72-79
MG9SA.12.e Calcualting the Number of Perfect Matchings and of Spanning Trees,
MG9SA.12.e Pauling's Orders, the Characteristic Polynomial, and the
MG9SA.12.e Eigenvectors of a Benzenoid System (P. John, H. Sachs)
MG9SA.12.e Topics in Current Chemistry 153, Springer, 1990, 145-179
MG9SA.12. 4*4 magic squares with dominoes
MG9SA.13 Fibonacci and Lucas Numbers
MG9SA.13. the only Fibonacci Squares are 1 and 144.
MG9SA.13. the only Fibonacci triangular numbers are 1, 3, and 55.
MG9SA.13.a a Fibonacci Based pseudo-random number generator, z(n)=floor(n*p)
MG9SA.13.a Zbl 735.65001
MG9SA.13.b Fibonacci numbers and Fermat Last Theorem, Acta. Arith. 60(1992)371
MG9SA.13.c Lagarias: Pseudorandom Number Generators, In: Cryptology and Comp.
MG9SA.13.c Number Theory (Proc of Symp. in Appl. Math. AMS 42 (1989))
MG9SA.13.d A Fibonacci version of Kraft's inequality applied to discrete
MG9SA.13.d unimodal search, SIAM J. Computing 22:4 (1993) 751-777
MG9SA.13.e A fast algorithm of the Chinese remainder theorem and its applic.
MG9SA.13.e to Fibonacci numbers, MR 93i:11004
MG9SA.13.f Wie erkennt man eine Fibonacci Zahl? (Fibonacci number detection)
MG9SA.13.f MSem. 45 (1998) 243-246, M M"obius
MG9SA.13.f z is a Fibonacci iff [tau z - 1/z, tau z + 1/z] contains an integer.
MG9SA.14 Simplicity
MG9SA.14. von Aubel's Thm: segments between opposite centers of squares on the
MG9SA.14. side of a quadrilateral have equal length and are perpendicular
MG9SA.14.a Von Aubel's Quadrilateral Thm. (P.J.Kelly),
MG9SA.14.a Math. Mag. (Jan. 1966) 35-37, vector proof and generalizations
MG9SA.14. Leo Moser's Circle Dissection Problem, (1,2,4,8,16,31,...) -> DME1.9
MG9SA.15 The Rotating Round Table and Other Problems
MG9SA.15.1 Rotating Round Table
MG9SA.15.1. no matches on a round table, semiqueen problem on a cylinder
MG9SA.15.2 Single-Check Chess
MG9SA.15.2. one check wins, presto chess, white wins with only 5 knights moves
MG9SA.15.2. first check with a figure that can't be taken wins (open problem)
MG9SA.15.3 Word Guessing Game
MG9SA.15.4 Triple Beer Rings
MG9SA.15.5 Two-Cube Calendar
MG9SA.15.6 Uncrossed Knight's Tours
MG9SA.15.6.a longest uncrossed Knigth's tours n*m, JoRM 2 (1969) 154-157
MG9SA.15.7 Two Urn Problems (probability, Carroll's Pillow Problem 5)
MG9SA.15.8 Ten Quickies
MG9SA.16 Solar System Oddities
MG9SA.17 Mascheroni Constructions
MG9SA.18 The Abacus
MG9SA.18.a the Algorists vs. the Abacists, TCMJ 24:3 (1993) 218-223
MG9SA.19 Palindromes: Words and Numbers
MG9SA.19.a Palindrome squares for various bases, Zbl 755.11004
MG9SA.19.a open problem: is the number of base 2 solutions infinite?
MG9SA.20 Dollar Bills
MG10SA: Wheels, Life, and Other Mathematical Amusements
MG10SA: Freeman (1983) New York
MG10SA.1 Wheels
MG10SA.2 Diophantine Analysis and Fermat's Last Theorem (FLT)
MG10SA.2.a On A^4 + B^4 + C^4 = D^4, Math. of Comp. 51 (1988) 825-35
MG10SA.2.b (3+Sqrt(93))^3 + (3-Sqrt(93))^3 = 12^3, Math. Mag. 63 (1990) 55
MG10SA.2. near misses: 10^3 + 9^3 = 12^3 + 1, 6^3 + 8^3 = 9^3 - 1 (t=1, t=-1)
MG10SA.2. (9t^3)^3 + (9t^4)^3 + (-9t^4-3t)^3 = 1 (t=1 Ramanujan, t=-1 Euler)
MG10SA.3 The Knotted Molecule and Other Problems
MG10SA.3.1 The Knotted Molecule (trefoil knot in Z^3)
MG10SA.3.2 Pied Numbers
MG10SA.3.2. represent integer n with the minimum number of Pi. one is allowed
MG10SA.3.2. to use \Pi, + , -, *, \, Sqrt, Floor, [monadic -] which gives
MG10SA.3.2. 4 = -floor(-Pi). n=1..100 computed. -> Four Fours MG4SA.5
MG10SA.3.3 The Five Congruent Polygons (dissection, fake)
MG10SA.3.4 Starting a Chess Game (permutation)
MG10SA.3.5 The Twenty Bank Deposits (linear Diophantine equation)
MG10SA.3.6 The First Black Ace (probability)
MG10SA.3.7 A Dodecahedron-Quintomino Puzzle
MG10SA.3.7. quintominoes: pentagon colored with 5 different colors, there are
MG10SA.3.7. 12 different not counting rotations and reflections. If 11 tile
MG10SA.3.7. the dodecahedron the 12th fits automatically.
MG10SA.3.8 Scrambled Quotation
MG10SA.3.9 The Blank Column
MG10SA.3.10 The Child with the Wart
MG10SA.3.10. sum product problem, x*y*z=36, x+y+z=A (x, y, z positive integer)
MG10SA.3.10. not enough information sum-product problem
MG10SA.3.10.a The Census-Taker Problem, Math. Mag. 63 (1990) 86-88
MG10SA.3.10.a census-taker numbers: products with exactly one pair of sums A
MG10SA.4 Alephs and Supertasks
MG10SA.4. the power set of a set is bigger than the set, proof there is no
MG10SA.4. bijection even in the infinite case (Cantor's proof from 1890).
MG10SA.4. continuum hypothesis, bijection segment - line - square - R^omega
MG10SA.4. examples for 2^continuum: set of all real one-valued functions
MG10SA.4. as there is no highest integer, there are some paradoxes
MG10SA.4. H. Weyl suggested supertasks, Thomson lamp paradox,
MG10SA.4.a Are 'Infinite Machines' Paradoxial?, Science 159 (Jan 1968) 396-406
MG10SA.4.b Zeno, Aristotle, Weyl and Shuard: Two-and-a-half millenia of
MG10SA.4.b worries over number, Math Gazette 64 (Oct 1980) 149-158
MG10SA.4.c On Some Paradoxes of the Infinite. (V. Allis and T. Koetsier)
MG10SA.4.c Brit. J. Phil. Sci. 42 (1991) 187-194. -> Art. 228 of rec.puzzles
MG10SA.4. false proof, bijection integers-reals, reversing digits, pi - e joke
MG10SA.5 Nontransitive Dice and Other Probability Paradoxes
MG10SA.5. Efron nontransitive dices, four dices, each beats another 2:1.
MG10SA.5.a Non-Transitive Dominance (3 dice), Math. Mag. 49 (1976) 115-120
MG10SA.5. wrong usage of the principle of indifference in probalility
MG10SA.5. Pascal's wager, deciding for god, but there are many relegions
MG10SA.5. n-card monte: R red and B black cards are given pick a pair
MG10SA.5. prob(same color) = (C(R,2)+C(B,2))/C(R+B,2)
MG10SA.6 Geometric Fallacies
MG10SA.7 The Combinatorics of Paper Folding
MG10SA.8 A Set of Quickies
MG10SA.8. 36 quick questions, Austin's Dog.
MG10SA.8.7 two closed curved curves have an even number of common intersections
MG10SA.8.10 which base maximizes the area of a isoscelene triangle?
MG10SA.8.16 probability of seeing two sides of a regular pentagon (symmetry)
MG10SA.8.19 superqueens, unique solution on the n=10 board, chess problem
MG10SA.8.24 number of abigous dates mmddyy versus ddmmyy - 12*11
MG10SA.8.30 you are x years old in year x*x
MG10SA.8.33 24 cubes can face-touch, kiss, a central one of the same size
MG10SA.8.33 8 nonoverlapping squares can face-touch a square of the same size
MG10SA.9 Ticktacktoe Games
MG10SA.9. positions, legal, retro analysis.
MG10SA.9. reverse game - making 3 in a line loses.
MG10SA.9. 3d game is won by the first player
MG10SA.9. 4cube game qubic is won by the first player - big game tree
MG10SA.9. go-moku has been analyzed by Victor Allis
MG10SA.9. pairing scheme avoiding 9 in a row or diagonal
MG10SA.10 Plaiting Polyhedrons
MG10SA.10. build the platonic polyhedra with colored strips
MG10SA.10.a Asymptotic Euclidean type constructions without Euclidean tools,
MG10SA.10.a Fib. Quart. 9 (Apr 1971) 199-216 (J P Pedersen) plaiting
MG10SA.10 is the icosahedro or the dodecahedron more round?
MG10SA.11 The Game of Halma
MG10SA.12 Advertising Premiums
MG10SA.12. puzzles of Sam Loyd, the T-puzzle, the Pythagorean-square puzzle,
MG10SA.12. T-puzzle figures: the alternative T, the 'Teezer' puzzle,
MG10SA.12. the Trick Donkeys - three pieces, two jockeys ride two hourses
MG10SA.12. the Pony puzzle (inversion, background)
MG10SA.12. pencil with a loop: buttonholer, magic pencil, Knopflochstab
MG10SA.12.p Wei Zhang, Exploring Math Through Puzzles, 1996, Key Curriculum Pr.
MG10SA.12. Get off the Earth paradox (Chinese warriors on a circle)
MG10SA.12.a The Disappearing Man and Other Vanishing Paradoxes, Games
MG10SA.12.a Nov-Dec 1980, 14-18 (Mel Stover)
MG10SA.12.b A Centennial Tribute to Sam Loyd, College Math J.23 (1992) 402-404
MG10SA.12. mental addition: 1000+40+1000+30+1000+20+1000+10
MG10SA.13 Salmon on Austin's Dog
MG10SA.13 geometric series added backwards, space-time-diagram, Zeno's paradox
MG10SA.13.a Austins's paradox, MM 44 (Jan 1971) Q503, (Sep 1971) Coment 238-239
MG10SA.14 Nim and Hackenbush
MG10SA.15 Golomb's Graceful Graphs
MG10SA.15. harmonious: label the vertices with 0..e-1 such that the
MG10SA.15. f(x)+f(y) (mod e) are distinct for all edges xy.
MG10SA.15.a Graceful and harmonious Labelling of Prism Related Graphs,
MG10SA.15.a Ars Combin. 34 (1992) 213-222, the cube is not harmonious
MG10SA.15.b on edge-graceful regular graphs and trees,
MG10SA.15.b Ars Combin. 34 (1992) 129-142
MG10SA.15.c Labeling Grids (graceful), Ars Combin. 34 (1992) 167-182
MG10SA.16 Charles Addams' Skier and other Problems
MG10SA.16.1 The Flexible Band (topological puzzle)
MG10SA.16.2 The Rotating Disk
MG10SA.16.3 Frieze Pattern
MG10SA.16.4 The Can of Beer (center of gravity)
MG10SA.16.5 The Three Coins
MG10SA.16.6 Kobon Triangles
MG10SA.16.7 A Nine-Digit Problem (alphametic)
MG10SA.16.7. abc*de = fg*hi = P, maximize P, No. 81 of Amusements in Math.
MG10SA.16.7. abc*de = fgh*ij, ab*cde = fghi, a*bcde = fghi, ab*cde = fghij
MG10SA.16.7. ab*c = de+fg = hi, ab*c = de*f = ghi, a*bc = d*ef = g*hi
MG10SA.16.8 Crowning The Checkers
MG10SA.16.9 Charles Addams' Skier
MG10SA.16.9. plausible explanation of a cartoon, ski tracks arround a tree
MG10SA.17 Chess Tasks
MG10SA.17. extremal chess problmes
MG10SA.17. multicolor nonatacking queens,
MG10SA.17. 5-square: 3w+5b queens <=> 3 queens and 5 nonatacked squares (uniq)
MG10SA.18 Slither, 3x+1 and other curious Questions
MG10SA.18. 3x+1 the Collatz problem -> Col
MG10SA.18. chromatic number of the Euclidian plane (distance one graph) <= 7
MG10SA.18.a irrational distance graph (galactic no=3),M Mag. 64 (1991) 141-2
MG10SA.18. triangles dissectable into 5 similar triangles: right, (30, 120, 30)
MG10SA.18. 8 points in the plane, the mid orthogonal of each pair match a pair
MG10SA.19 Mathematical Tricks With Cards
MG10SA.20 The Game of Life, Part I
MG10SA.21 The Game of Life, Part II
MG10SA.22 The Game of Life, Part III
MG10SA.22.a stable, multi-state, time-reversible cellular automata with rich
MG10SA.22.a particle content, Questiones Math. 15 (1992) 325-343
MG11SA: Knotted Doughnuts and Other Mathematical Entertainments
MG11SA: Freeman (1986) New York
MG11SA.1 Coincidence
MG11SA.2 The Binary Gray Code
MG11SA.2. Chinese Ring Puzzle, Tower of Hanoi, The Brain (Mag-Nif)
MG11SA.2. Loony Loop (ternary Gray code), Hammilton Path on the n-Cube (n<6)
MG11SA.2.a Efficient gen. of the bin. reflected Gray code and its appl.
MG11SA.2.a (Gen. combinations (transpose)), CACM 19 (1976) 517-521
MG11SA.2.b Gen. combinations (transpose), MR 90d:05008
MG11SA.2.c The Gray code function g(n) = n xor (n/2); Zbl 764.11011
MG11SA.2.d Toeplitz sequences, paperfolding, Tower of Hanoi and progression
MG11SA.2.d free sequences of integers, MR93j:11017 (unified concept)
MG11SA.2.e A Gray code for necklaces of fixed Density
MG11SA.2.e SIAM J o Disc Math 9:4 (1996) 654-673
MG11SA.2.f Pascal's Triangle and the Tower of Hanoi, AMM 99 (1992) 538-544
MG11SA.2.g Shortest Paths Between Regular States of the Tower of Hanoi,
MG11SA.2.g Information Sciences 63 (1992) 173-181 (A. M. Hinz)
MG11SA.2.h Variation on the Tower of Hanoi, Math Mag. 64 (1991) 199-203
MG11SA.2.h start with the odd and even numbered disks on different pegs
MG11SA.2.i A optimal algorithm for the twin-tower problem, #MR 92a:05001
MG11SA.2.j A Survey of Combinatorial Gray Codes, SIAM Review 39:4 (1997)605-629
MG11SA.2.j generating combinations, variations, permutations, partitions, ...
MG11SA.3 Polycubes
MG11SA.3. Soma figures (9 animals, 3 structures with holes, impossible wall)
MG11SA.3. Soma Cube, Diabolic cube, Mikusinski cube, Tetracubes, Pentacubes
MG11SA.3. Lesk cube, Qube, Dorian cube (subset of 3 units wide Pentacubes)
MG11SA.3. Putzl (two Players: 2*Tetracubes in two colors to build a 4-cube)
MG11SA.3. tricube (9 Triminoes), Solid Pentominoes, 13-hole pentomino problem
MG11SA.3.a Solid Polyomino Constructions, Math. Mag. 49 (1976) 137-139
MG11SA.3.a 3*3*3 Cube == one tricube & six tetracubes, one set is impossible
MG11SA.3.a 4*4*4 Cube == one tetracube & twelve pentacubes or
MG11SA.3.a six tetracubes & eight pentacubes
MG11SA.3.a 2*3*31 Brick from all polycubes of orders one to five
MG11SA.4 Bacon's Cipher
MG11SA.4.a de Bruijn sequences, Math Mag 55 (1982) 131-143
MG11SA.4.b A new look at the de Bruijn graph, (Fredricksen)
MG11SA.4.b Disc. Appl. Math. 37/38 (1993) 193-203
MG11SA.4.c Methods for constructing de Bruijn sequences (Russian) Zbl 764.05006
MG11SA.4.d "Periods" of de Bruijn sequences, (Golomb)
MG11SA.4.d Adv. Appl. Math. 13 (1992) 152-159, Zbl 766.11014
MG11SA.4.e On the de Bruijn Torus Problem, JoCT A 64:1 (1993) 50-62
MG11SA.5 Doughnuts: Linked and Knotted
MG11SA.5. Whether two seperate knots on a closed rope can cancel each other?
MG11SA.5. reversible cloth torus, knotted torus
MG11SA.5.a TWisted Tubes (functions for knots) Mathematica J. 3:1 (1993)
MG11SA.5.b Wente's twisting constant-mean-curvature torus, AMM 95 (1988)570
MG11SA.5.c K Scherer, Rubber Wrapper, JoRM 12 (1979/80) 60, all box knot != ring
MG11SA.5.d S. Moran, The Math. Theory of Knots and Braids (1983)
MG11SA.5.e L. Siebenmann, New geometric splittings of classical knots, LMS75
MG11SA.5.f Torangles and Torboards, Quantum 4:4 (1994) 63-65 (torus chess)
MG11SA.5.g B. M. Steward, Adventures Among the Toroids (Polyhedra)10QC450S849
MG11SA.5.h Jurisic, Aleksandar, The Mercedes knot problem, AMM 103(1996)756-770
MG11SA.6 The Tour of the Arrows and Other Problems
MG11SA.6.1 The Tour of the Arrows (hammiltonian circle)
MG11SA.6.2 Five Couples (handshaking)
MG11SA.6.3 Square-Triangle Polygons (convex polygons)
MG11SA.6.4 Ten Statements (logic)
MG11SA.6.5 Pentomino Farms (fence problems)
MG11SA.6.6 The Uneven Floor (continous argument)
MG11SA.6.7 The Chicken-Wire Trick (paper folding)
MG11SA.6.8 Where was the King? (R. Smullyan chess problem)
MG11SA.6.9 Polypowers (ladders, Infinite Exponetials)
MG11SA.7 Napier's Bones
MG11SA.7. Genaills's Rods, The Mathematica J. 3:2 (1993) 60-62
MG11SA.8 Napier's Abacus
MG11SA.9 Sim, Chomp and Racetrack
MG11SA.9. Chomp is isomorphic to Fred Schuh's divisor game
MG11SA.9.a Chomp, Math Intelligenzer 15:3 (1993) 59-60
MG11SA.10 Elevators
MG11SA.10. The Gamov-Stern elevator problem
MG11SA.11 Crossing Numbers
MG11SA.12 Point Sets an the Sphere
MG11SA.12. Cover the Sphere with arcs of a great circle
MG11SA.12. cromatic number of the plane (distance one graph)
MG11SA.12.a K. V. Mardia, Statistics of Directional Data
MG11SA.12.b Geoffrey Watson, Statistics on Spheres
MG11SA.13 Newcomb's Paradox
MG11SA.14 Refections on Newcomb's Paradox
MG11SA.15 Reverse the Fish and Other Problems
MG11SA.15.1 The Gunport Problem (dominoes on rectangle with many holes)
MG11SA.15.1.a Clumsey Packing of Dominoes, Disc. Math. 71 (1988) 33-46
MG11SA.15.2 Figures Never Lie (number joke)
MG11SA.15.3 Functional Fixedness (the stand problem, the string problem)
MG11SA.15.4 Monochromatic Chess (R. Smullyan chess problem)
MG11SA.15.5 The Two Bookcases (reverse two bookcases)
MG11SA.15.6 Irrational Probabilities (generated with a coin (P Diaconis))
MG11SA.15.6.a Monte Carlo Simulation of Infinite Series,M Mag. 64 (1991)188-96
MG11SA.15.6.b searching for losers (random subsets, not bit optimal)
MG11SA.15.6.b Random Structures & Algorithms 4:1 (1993) 99-110
MG11SA.15.6.c Unbiased coin tossing with a biased coin (random walk, Pascal
MG11SA.15.6.c triangle), The Annals of Math. Statistics 41:2 (1970) 341-352
MG11SA.15.7 Who's Behind the Mad Hatter? (logic, word problem)
MG11SA.15.8 Reverse the Fish (a toothpick (match) puzzle)
MG11SA.15.9 The Intersecting Circles (Elem. Geometry Theorem)
MG11SA.15.9. -> 3 or 4 equal circles, Quantum (May 90) M6, (Sep 91) M33
MG11SA.16 Look-See Proofs
MG11SA.16. figurative numbers, triangular, square, sum of powers
MG11SA.16. sum(i^3) = (sum(i^1))^2, sum(i^5) + sum(i^7) = 2 (sum(i^3))^2
MG11SA.16. 3*3 + 4*4 = 5*5 a four piece dissections
MG11SA.16. 2*2 + 3*3 + 6*6 = 7*7 a five piece dissections
MG11SA.16. 3*3*3 + 4*4*4 + 5*5*5 = 6*6*6 a nine block dissections
MG11SA.17 Worm Paths
MG11SA.17. Spirolaterals, LOGO (Logo)
MG11SA.17.a Serial Isogons of 90 Degrees, Math. Mag. 64 (1991) 315-324
MG11SA.18 Waring's Problems
MG11SA.19 Cram, Bynum and Quadraphage
MG11SA.19. cram (Cogito), crosscram, Bynum, linear cram (.007 = James Bond)
MG11SA.19. Quadraphage: trap a king, bishop, rook, or knight (Silverman)
MG11SA.20 The I Ching
MG11SA.20. probabilities provided by the stick and coin procedures
MG11SA.21 The Laffer Curve
MG11SA.21. the Phillips curve, supply-side defended versus attacked
MG12SA: Time Travel and Other Mathematical Bewilderments
MG12SA: Freeman (1988) New York
MG12SA.1 Time Travel
MG12SA.1. science fiction, tachyons paradoxes, G"odel's cosmos,
MG12SA.2 Hexes and Stars
MG12SA.2. figurative numbers, triangular, square, hex, star, cube
MG12SA.2. hex = cube (only 1), triangular = square = hex (only 1)
MG12SA.2. square = square-pryramid (only 1, 70*70)
MG12SA.2. tetrahedral = square-pryramid (only 1) -> MG12SA.2.i
MG12SA.2.a (Moessner's process) -> Adding up to powers, AMM 97 (1990) 139-143
MG12SA.2.b trapezoidal numbers -> Math. Mag. 58 (1985) 108-110
MG12SA.2.c Tetrahedral Numbers as Sums of Square Numbers, M. Mag. 64 (1991) 104
MG12SA.2.d Squares expressible as a sum of n consecutive squares ->
MG12SA.2.d AMM 96 (1989), 622-625 (Solution 6552);
MG12SA.2.e Khare, Indian J. of Math. 30 (1988) 219-225
MG12SA.2.f Anglin, AMM 97 (1990), 120-124 (Square Pyramid Puzzle)
MG12SA.2.g J. Rung, Praxis der Mathematik, 32 (1990) 102-106
MG12SA.2.h J. Rung, Praxis der Mathematik, 33:5 (1991) 230
MG12SA.2.i Beukers, tetrahedral = pryramid, Nieuw Arch. Wisk. 6 (1988) 203-210
MG12SA.2.j A Halmos problem and a related problem, AMM 101 (Dec 1994) 993-996
MG12SA.2.j sums of consecutive integers: n+(n+1)+...+(n+k) = not a power of 2
MG12SA.3 Tangrams, Part 1
MG12SA.3. history of Sam Loyd's pseudohistory, Tangram paradoxes
MG12SA.4 Tangrams, Part 2
MG12SA.4. 13 convex Tangrams, 53 pentagons, Tangram Heuristics, farm problem
MG12SA.4.a Three-Triangle-Tangram, BIT 24 (1984) 380-382
MG12SA.4.a 3 similar right-angled triangles, (1,a,aa), (a,aa,a^3), (aa,a^3,a^4)
MG12SA.4.a with a^4+a^2=1 -> a=0.78615. 16 different convex figures
MG12SA.4.b Triangle decompositions (germ), Beitr. Algebra Geom. 32 (1991) 87-93
MG12SA.4.b Zbl 761:51014, decomp. triangles into triangles similar to it
MG12SA.5 Nontransitive Paradoxes
MG12SA.5. Arrow's voting paradox, tournament paradox (magic square 3*3)
MG12SA.5. nontransitive sucker bet, bingo cards, W. Penney's penny game
MG12SA.5. triplet and quadruplet probabilities, Conway's algorithm
MG12SA.5. -> "Lucifer at Las Vegas"
MG12SA.5. -> "Nontransitive Dice and Other Probability Problems" MG10SA
MG12SA.5.a How many random digits are required until given sequences are
MG12SA.5.a obtained, J. Appl. Prob. 19 (1982) 518-531, (Blom; Thorburn)
MG12SA.5.b The occurrence of sequence pattern in ergodic Markov chains
MG12SA.5.b Stochastic Proc. Appl. 17 (1984) 369-373, (Benveneto)
MG12SA.6 Combinatorial Card Problems
MG12SA.6. permutation genaration (H. Steinhaus = Johnson-Trotter order)
MG12SA.6. permutation (reflected Gray code with mixed bases)
MG12SA.6. motel problem, traveling-burglar problem (Lehmer)
MG12SA.6. k-swaps, k-drops (Conway), upper for topswops 2^n (Wilf)
MG12SA.6.a randomized adaptive sorting, (skip-sort, skip-list)
MG12SA.6.a Random Structure & Algorithms 4:1 (1993) 37-57
MG12SA.6.b Records: The Mathematica J. 2:4 (1992) 10-12 (Boston Competition)
MG12SA.6.c Gen. alternating permutations (transpose) Order 6 (1989) 227-233
MG12SA.6.d Gen. alternating permutations (lexicogarphic) BIT 30 (1990) 17-26
MG12SA.6.e Card-shuffling can create chaos, Math. Intellig. 14:1 (1992) 54-56
MG12SA.6.e 123456.., 213456.., 324156.., 135264.., (shuffle 1, 2, 3, ...)
MG12SA.6.f The permutational power of a priority queue, BIT 33 (1993) 2-6
MG12SA.6.f a priority queue transforms permutation s -> t.
MG12SA.6.f The number of possible pairs (s, t) is (n+1)^(n-1).
MG12SA.6.g Euler numbers and Skew-Hook, Math Mag 66 (1993) 181-188,
MG12SA.6.g up-down permutations, tangent numbers, tan(x)+sec(x)
MG12SA.6.h the smallest length of a string containing all k-element
MG12SA.6.h permutations (n letter), MR 93k:05008
MG12SA.6.i metrics on permutations, a survey, J Combinatorics, Information &
MG12SA.6.i System Sciences, 23 (1998) 173-185 (M Deza; T Huang)
MG12SA.6. Langford problem, Silverman problem, Ransom problem
MG12SA.6.A Seltsame Zahlreihen - Ketten, die sich selbst abzaehlen,
MG12SA.6.A Math.Kabinet.3.1.7 (selfdescribing sequences, Langford (error))
MG12SA.6.B Game of Cards, Dynamical Systems, and a Characterization of
MG12SA.6.B Floor and Ceiling Functions, AMM 97 (1990)
MG12SA.6.B f(x)=a+ceiling(x/b), (f^k)(x)=ceiling(w+(x-w)b^(-k)), w=ab/(b-1),
MG12SA.6.B f^3 = f(f(f)), w = ab/(b-1), b<>1, x \in Z
MG12SA.6.C Langford seq. perfect and hooked, Disc. Math. 44 (1983) 97-104
MG12SA.6.D selfdescribing programs (Selbstreproduzierende Programme)
MG12SA.6.D J. Kraus, Forschungsbericht 110/1981 Abt. Informatik Uni Do.
MG12SA.6.D examples: Simula, Pascal, Assembler, loop-program
MG12SA.6.E selfdescribing programs (Pascal) Wurzel 27:12 (1993) 278-282
MG12SA.7 Melody-Making Machines
MG12SA.8 Anamorphic Art
MG12SA.9 The Rubber Rope and Other Problems
MG12SA.9.1 The Rubber Rope (harmonic series)
MG12SA.9.1.a The beetle and the rubber band, Quantum 4:4 (1994) 42-45
MG12SA.9.2 The Sigil of Scoteia
MG12SA.9.3 Integer-Choice Game (lower number wins except for predecessors)
MG12SA.9.4 Three Circles (conics)
MG12SA.9.5 The Multilated Score Sheet (chess problem)
MG12SA.9.6 Self-Numbers (Kaprekar)
MG12SA.9.6.a Schaaf, Bibliography of Rec. Math. IV.2.8 Kaprekar's Number
MG12SA.9.6.b Conway's RATS and Other Reversals, AMM 96 (1989) 425-428
MG12SA.9.6.c Length of the n-number game, Fib. Quart. 28 (1990) 259-265
MG12SA.9.6.c (s1,..,sn) -> (|s2-s1|,|s3-s2|,..,|sn-s1|), MR 91i:11026
MG12SA.9.6.d Palindromisierungsprozesse, Wurzel 29 (1995) 50-53
MG12SA.9.6.e On non-palindromic pattern in palindromic processes,
MG12SA.9.6.e "additive palindromisation", Math. Gazette 80:489 (Nov 1996) 577-9
MG12SA.9.6.e Base g=2^n: 10(g-1)_r(g-2)(g-1)0_r r>=2 (non-palindromial)
MG12SA.9.7 The Colored Poker Chips (map-coloring with discs)
MG12SA.9.8 Rolling Cubes (John Harris)
MG12SA.10 Six Sensational Discoveries
MG12SA.10. april joke, four-color-map theorem, Ramanujan, chess-program MacHic
MG12SA.10.a Churchhouse, RF & Muir, TE, J. Inst. Math. Appl. 5, 318-328, 1969
MG12SA.10.a Continued Fractions, Algebraic Numbers and Modular Invariants
MG12SA.10.a exp(pi*sqrt(163)) differs from an integer by less than 10^-12.
MG12SA.10.a Why and when does exp(pi*sqrt(x)) approximate an integer?
MG12SA.10. special relativity (Gedankenexperiment), Leonardo da Vinci
MG12SA.10. parapsychology
MG12SA.11 The Csaszar Polyhedron
MG12SA.11. seven vertex polyhedron (torus), (v,e,f) = (7,21,14), polyhedron
MG12SA.11. without diagonals, Steiner tripple systems, Room (Hadamard) Squares
MG12SA.11. regular polyhedra can form a ring (impossible tetrahedron)
MG12SA.11.a A new polyhedron of genus 3 with 10 vertices,
MG12SA.11.a TH Darmstadt Preprint 914 (1985)
MG12SA.11.b The search for Hadamard Matrices, (Golomb,...) AMM 70 (1963) 12-17
MG12SA.12 Dodgem and Other Simple Games
MG12SA.12. Star nim, Lewthwaite's counter game (5x5 square, pairing strategy)
MG12SA.12. Meander (5x5 square, sliding of unit squares), Dodgem (NxN square)
MG12SA.12. N=3 is first player win, Rex = reverse Hex, Ulam's triplet game
MG12SA.12.a Dodgem (dodge-ausweichen; autoscooter), Winning Ways II, p685
MG12SA.12.a 3*3 Dodgem analysis (table), there are no drawn positions
MG12SA.13 Tiling with Convex Polygons
MG12SA.13. classification of monohedral tilings with tri and tetragons
MG12SA.13. monohedral tiling with pentagons (last found 1985 by Rolf Stein)
MG12SA.13.a Tiling Polygons with Parallelograms, (S. Kannan)
MG12SA.13.a Discrete Computational Geometrie 7 (1992) 175-188
MG12SA.13.b Translational Prototiles on the Lattice, M. Mag. 64 (1991) 3-12
MG12SA.13.c The problem of the calissons, AMM 96 (1989) 429-431 (David; Tomei)
MG12SA.13.c bijection: hexagonal tilings <-> (n,n,n) plane partitions
MG12SA.13.c invariance of the orientations s. a. AMM 97 (1990) 131 (Galvin)
MG12SA.13.d Boomerangs cannot tile convex polygons, M. Mag. 60 (1987) 182
MG12SA.13.e Doris Schattschneider, In praise of amateurs, pp 140-166 (1981)
MG12SA.13.e in David Klarner, ed., The Mathematical Gardner.
MG12SA.13.f a new convex pentagon tiler, M. Mag. 58 (Nov. 1995) 308 (+ cover)
MG12SA.13.g Equilateral convex pentagons which tile the plane (Hirschhorn&Hunt)
MG12SA.13.g JoCT A 39 (1985) 1-18, MR 86g:52022
MG12SA.13.h Unsolved Prob. in Geom., C14. Which polygons tile the plane?
MG12SA.14 Tiling with Polyominoes, Polyiamonds, and Polyhexes
MG12SA.14. Karl Scherer: Karl@kiwi.gen.nz
MG12SA.14.a Boxes with the U-Pentacube (90), JoRM 24:2 (1992) 146 Prob 1963
MG12SA.14.a prime boxes: 2.3.5, 3.3.10, 3.7.15; 15^3 possible, (complete sio)
MG12SA.14.a JoRM 25:4 (1994) 226-229, 3.10.10, 4.4.5
MG12SA.14.b Boxes with the Pentacube (61), JoRM 24:1 (1992) 62-64 Ex 1615
MG12SA.14.b prime boxes: 2.3.5, 2.2.5, 5.5.9;
MG12SA.14.c Tilings of Lattice Points in Euklid. n-Space, Disc. Math 29 (1980)
MG12SA.14.c 169-174, each |S|=3 tiles Z^n, (Z*Z tileble -> N*Z tileble)
MG12SA.14.d Tiling with Sets of Polyominoes, JoCT 9 (1970) 60-71 (Golomb)
MG12SA.14.d U5, F5 tiles 10*10.
MG12SA.14.e smallest rectangles with FI, ZI, UI, WI, JoRM 25 (1993) 149-150
MG12SA.14.f Packing rectangles with congruent polyominoes, JoCT A 77:2 (1997)
MG12SA.14.f 181-192, W. R. Marshall
MG12SA.14.g Tiling with Polyominoes, Math Intell 18:2 (1996) 38-47, S W Golomb
MG12SA.14.h Packing boxes with N-tetracubes, Crux Math 23:6 (1997) 336-342
MG12SA.14.sio oo_oo tiles Z*Z but not N*Z.
MG12SA.15 Curious Maps
MG12SA.15. stereographic (cylindrical) projection, Mercator map, Mecca map,
MG12SA.15. Gilbert's prob. problem: n points are randomly distributed around
MG12SA.15. the globe, the prob. that all lie in one hemisphere is (n*n-n+2)/2^n
MG12SA.15.a World Plot (creates maps), Mathematica J. 3:3 (1993) 10-13
MG12SA.15.b The Probability of Covering a Sphere With N Circular Caps,
MG12SA.15.b E. N. Gilbert, Biometrika 52, 1965, p323. p = (N*N-N+2)/2^N
MG12SA.16 The Sixth Symbol and Other Problems
MG12SA.16.1 What Symbol Comes Next?
MG12SA.16.2 Which Symbol is Different?
MG12SA.16.3 Cutting a Cake (two parameter equality)
MG12SA.16.3.a A combinatorial algorithm to establish a fair border
MG12SA.16.3.a Europ. J. Comb. 11 (1990) 301-304, #MR 92a:05237
MG12SA.16.4 Two Cryptarithms
MG12SA.16.4.a Some Ideas about the Solution of Cryptarithms, JoRM 7,309-14
MG12SA.16.5 Lewis Carrol's "Sonnet"
MG12SA.16.6 Third-Man Theme (chess problem)
MG12SA.17 Magic Squares and Cubes
MG12SA.17. Number of 5x5 magic squares, impossible of 4^3 magic cube
MG12SA.17.a Balanced Magic Rectangles, Europ J of Comb. 14:4 (1993) 285-299
MG12SA.17.b Magic squares of order 4, Kathleen Ollerenshaw and Herman Bondi,
MG12SA.17.b Philosophical Trans. of the Roy. Soc. London, A 306 (1982) 443-532
MG12SA.17.c W. S. Andrews, Magic Squares and Cubes
MG12SA.17.d Magic Squares and Linear Algebra, Christopher J. Henrich,
MG12SA.17.d AMM 98:6 (June-July 1991) 481-488. chenrich@monmouth.com
MG12SA.17.e Most-perfect pandiagonal magic squares: their construction and
MG12SA.17.e and enumeration, ISBN 0 90501 06X, Kathleen Ollerenshaw, David Bree
MG12SA.18 Block Packing
MG12SA.18. pangram, Brick-packing Puzzles, harmonic brick: a x ab x abc,
MG12SA.18.a S. Wagon, fourteen proofs, AMM 94 (1987) 601-617, #Zbl 691.05011
MG12SA.18. Color impossible proof for 27 1x2x4 bricks to form a 6x6x6 cube,
MG12SA.18. impossible proofs for 15 1x2x4 bricks to get into a 5x5x5 cube
MG12SA.18. 1st: covering the surface of the cube, a mod 4 restriction.
MG12SA.18. Color impossible proof for 2x2, 3x3 squares to get a 25x25 square,
MG12SA.18. the number of 1x2x4 bricks which can be packed in a NxNxN cube.
MG12SA.18. Conway box: 6*1x2x2 and 3*1x1x1 gives a 3-cube.
MG12SA.18. Conway box: 6*1x2x4, 6*2x2x3, and 5*1x1x1 gives a 5-cube.
MG12SA.18. Conway box: 3*1x1x(2N-1) and 1x2x2 boxes pack a (2N+1)-cube.
MG12SA.18. 3*1x1x3 and 12*1x2x4 boxes pack a 3x5x7 box (Klarner)
MG12SA.18.e 42*1x2x4 + 7*1x1x1 = 7x7x7 ?, AMM 82 (Mar 1975) E2524 question
MG12SA.18.e 42*1x2x4 + 7*1x1x1 != 7x7x7, AMM 83 (Nov 1976) 741-742 E2524 answer
MG12SA.18.b How many 1*2*4 Bricks Can You Get into an Odd Box?
MG12SA.18.b Disc. Math. 133 (1994) 55-78 (rather complex)
MG12SA.18.c Strips on a Board (packing n*m by 1*k) B. Kotlyar
MG12SA.18.c Quantum 5:2 (Nov Dec 1994) 63-65 & 61
MG12SA.18.d J. Fricke, Quadratzerlegung eines Rechtecks,
MG12SA.18.d Math. Semesterberichte 42 (1995) 53-62
MG12SA.18.d rectange x*y is tiled by n times a*a and m times b*b and p holes
MG12SA.19 Induction and Probability
MG12SA.19. Goodman's 'grue' paradox, Simpson's reversal paradox,
MG12SA.19. Blyth's paradox (A beats B, and A beats C, but A is mot the best)
MG12SA.19.a A Mathematical Rating System, UMAP 13:4 (1992) 313-334
MG12SA.20 Catalan Numbers
MG12SA.20. seven interpretations for Catalan numbers, bijective proofs.
MG12SA.20.a JoCT A 27 (1979) 392-3 (Z^n paths below a hyperplan, trees)
MG12SA.20.a let a1, a2 .. am, m=1+Sum ni ki, be an arbitrary sequence of
MG12SA.20.a operands and ni operators of arity ki. there is a unique cyclic
MG12SA.20.a permutation of the sequence which is well.
MG12SA.20.b Bootstrap percolation, the Schr"oder numbers,and the n-King problem
MG12SA.20.b SIAM J. Disc. Math. 4 (1991) 275-280; Zbl 736.05008
MG12SA.20.c How to Guess a Generating Function, SIAM J Disc Math 5 (1992)497-9
MG12SA.20.c LDU decomposition of a Hankel matix, Schr"oder numbers
MG12SA.20.d Sur les Polynomes de Catalan Simples et Doubles
MG12SA.20.d Europ. J. Comb. 12 (1991) 389-396 (Kreveras)
MG12SA.20.e Six etudes in generating functions (Catalan, Motzkin, Narayana)
MG12SA.20.e Intern. J. Comput. Math. 29 (1989) 201-215 (Zeilberger)
MG12SA.20.f The Motzkin family, PU. M. A. Pure Math Appl. A 2:3/4 (1991)249-79
MG12SA.20.f survey: Motzkin, central trinomial, Catalan, Zbl. 756.05003
MG12SA.20.g Catalan Numbers, Their Generalization, and Their Uses,
MG12SA.20.g Math. Intelligenzer, 13 (1991) 64-75 (Hilton, Pederson)
MG12SA.20.h Lattice path enumeration by formal schema, Adv. in Appl. Math.
MG12SA.20.h 13 (1992) 216-251 MR 93i:05007
MG12SA.20.i Lattice path reflections, & dimension changing bijektions
MG12SA.20.i Ars Comb. 34 (1992) 3-15, MR 93i:05008
MG12SA.20.i NSEW-path <--> linear NS-path
MG12SA.20.j Three combinatorial sequences derivable from lattice path counting
MG12SA.20.j Ann. Disc. Math. 52 (1992) 81-92 (45 ref, new), MR 93j:05005
MG12SA.20.k Refinements of the Narayana numbers (6 param.) MR 93j:05008
MG12SA.20.l Super ballot numbers, J. Symb Comp 14 (1992) 170-194 MR 93k:05009
MG12SA.20.m http://www-math.mit.edu/~rstan/ec/catalan.ps.gz R. Stanley
MG12SA.20.m 65 realizations of the Catalan numbers, part of a 47p excerpt.
MG12SA.20.n JoCT A23(1977) 291, gives 14 manifestations of Motzkin numbers
MG12SA.21 Fun with a Pocket Calculator
MG12SA.21. nim game (subtraction game) with moves are adjacent on the 9-block
MG12SA.22 Tree-Plant Problems
MG13SA: Penrose Tiles to Trapdoor Chiphers ... and the return of Dr. Matrix
MG13SA: Freeman (1989) New York
MG13SA.1 Penrose Tiling
MG13SA.2 Penrose Tiling II
MG13SA.2.a Will it tile? try the Conway criterion, M. Mag. 53 (1980) 224-232
MG13SA.3 Mandelbrot's Fractals
MG13SA.3.a Generalized Mandelbrot Rule for Fractal Sections
MG13SA.3.a Physical Rev. A 45 (1992) 654-656
MG13SA.3.b Can we see the Mandelbrot Set? The College Math J 26:2 (1995) 90-99
MG13SA.3.c Area of the Mandelbrot Set, Numerische Math 61 (1992) 59-72 (<-b)
MG13SA.4 Conway's Surreal Numbers
MG13SA.4. picture of John 'Horned' Conway, the Alexander horned sphere, there
MG13SA.4. is a four-horned mechanical puzzle sold as Loony Loop with a loop to
MG13SA.4. removed. surreal numbers mentioned in MG8SA.1 Nothing.
MG13SA.4. Crosscram -> MG11SA.19 which Conway calls Domineering.
MG13SA.4. the games Crosscram, Col, Snort, Silver Dollar Game without the
MG13SA.4. Dollar, Silver Dollar Game with the Dollar, Rims (Conway's name:
MG13SA.4. Ralyes) (rule: take (with optional split)), Prim, Dim, Cutcake
MG13SA.4.a Surreal Numbers, (D. E. Knuth), 1974
MG13SA.5 Back from the Klondike and Other Problems
MG13SA.5. Loyd's Klondike, Chinese checkers, no-three-in-line
MG13SA.5.a no-three-in-line with restricted slopes, ax+by=c, |a|<=2, |b|<=2,
MG13SA.5.a Math. Semesterberichte 39 (1992) 202-203, problem 48, part solution
MG13SA.6 The Oulipo
MG13SA.6. wordplay, palindrom
MG13SA.7 The Oulipo II
MG13SA.8 Wythoff's Nim
MG13SA.8. queen (I. P. Rufus), king, rook, bishop, and combined [reverse] Nim
MG13SA.8.a Berge, Graphs and Hypergraphs, p319-20 (Withoff) Grundy [0..10]^2
MG13SA.8.b From Wythoffs NIM to Chebyshev Inequality, AMM 98 (1991) 889-900
MG13SA.8.c Wythoff Pairs as Semigroup Invariants, Adv in Math 85 (1991) 69-82
MG13SA.8.d (AS-Fraenkel) Nimhoff Games, JoCT A 58 (1991) 1-25
MG13SA.8.e Disjoint Covering Systems of Rational Beatty Sequences,
MG13SA.8.e Discrete Math. 92 (1991) 361-369
MG13SA.8.f Recent Problems and Results About Kernels in Directed-Graphs,
MG13SA.8.f Discrete Math. 86 (1990) 27-31 (C-Berge, P-Duchet)
MG13SA.8.g (king) Wythoff ((0,1),(1,0),(1,1),(1,-1),(-1,1)), PM 35:1 (1993)
MG13SA.8.g 42-43 A641, G(n,m)=0 <=> n and m even, (otherwise G=infinity)
MG13SA.9 Pool-Ball Triangles and Other Problems
MG13SA.9.1 Pool-Ball Tiangles
MG13SA.9.1. absolute-difference triangles of consecutive numbers must have 1
MG13SA.9.1. as its lowest number (C. Trigg). Only order 1..5 are possible.
MG13SA.9.1. No. of solutions: 1..5; 1, 2, 4, 4, 1.
MG13SA.9.1. A triangular array (even) has always an even-odd sum pattern with
MG13SA.9.1. an equal number of even and odd ones (H. Harborth).
MG13SA.9.1. modulo-m-sum triangle of 0..m-1 (order 4 ok, order 5, 6 no)
MG13SA.9.2 Toroidal Cannibalism (topology)
MG13SA.9.2. two linked toruses; one with a hole. This can swallow the other.
MG13SA.9.3 Exploring Tetrads
MG13SA.9.3. four congruent tiles, each pair of which shares a finite portion
MG13SA.9.3. of a common boundary. (polyhex, polyamond, polyomino solutions)
MG13SA.9.4 Knights and Knaves (logic)
MG13SA.9.4. 4 logicals, R. Smullyan, truth teller and liars.
MG13SA.9.5 Lost-King's Tours
MG13SA.9.5. hamiltonian path of a king, which change of direction after each
MG13SA.9.5. move, with minimal number of crossings.
MG13SA.9.5.a A King's Tour of the Chessboard, Math. Mag. 58 (1985) 285-286
MG13SA.9.5.a the king (after the first move) can only move to a square which
MG13SA.9.5.a touches an even number of squares which have already been
MG13SA.9.5.a visited (impossible for rectangles, except 1*1 and 1*2)
MG13SA.9.6 Steiner Ellipses
MG13SA.9.6. find for a triangle the minimal area of a circumscribed ellipse.
MG13SA.9.7 Different Distances
MG13SA.9.7. place n counters on an n*n grid so that the pairwise distences are
MG13SA.9.7. different. This is possible only for n<=7.
MG13SA.9.7. No. of solutions: 1..7; 1, 2, 5, 16, 28, 2, 1.
MG13SA.9.7.a Erd"os, Guy; distinct distances, Elem. Math. 25 (1970) 121-133
MG13SA.9.7.b distinct slopes or lengths, Combinatorica 12 (1992) 39-44
MG13SA.9.7.c distinct slopes (lower bound), Combinatorica 13 (1993) 127-128
MG13SA.9.8 A Limerick Paradox
MG13SA.10 Mathematical Induction and Colored Hats
MG13SA.11 Negative Numbers
MG13SA.12 Cutting Shapes into N Congruent Parts
MG13SA.12.a The L-shaped Dissection Problem, JoRM 24:1 (1992) 64-69 Ex 1771
MG13SA.12.a for which n is a dissection into n congruent pieces possible?
MG13SA.12.b Tiling with n congruent pieces (L), JoRM 22 (1990) 185-191
MG13SA.12.c Dissection of a triangle in 3 similar pieces (Scherer), Quantum 4:5 (1994) 26-27
MG13SA.12.d Alexander Soifer, How does one cut a triangle? (1990)
MG13SA.12.d Center for the Excellence in Math. Education.
MG13SA.12.d Find all n, such that every triangle can be cut into n parts similar (congruent)
MG13SA.12.d to each other. (p13). Solution: I) N\{2,3,5} II) Square numbers
MG13SA.13 Trapdoor Ciphers
MG13SA.13.a Sharing a Secret, UMAP 13:4 (1992) 335-350
MG13SA.14 Trapdoor Ciphers II
MG13SA.15 Hyperbolas
MG13SA.16 The New Eleusis
MG13SA.17 Ramsey Theory
MG13SA.17.b An Extremal Problem for Triangle-Free Graphs, AMM (1989) E3284
MG13SA.17.c Boltyanskij, Geometric etudes in combinatorial math., 1991
MG13SA.18 From Burrs to Berrocal
MG13SA.18. there are 119979 possible pieces for the burr puzzle
MG13SA.18.a the Six-Piece Burr (W. Cutler), JoRM 10 (1977-78) 241-250
MG13SA.18.b Computer Recreations (Dewdney), SA 10/85 16-22
MG13SA.18.c Computer Recreations (Dewdney), SA 01/86 (2-dimensional)
MG13SA.19 Sicherman Dice, the Kruskal Count and Other Curiosities
MG13SA.19.a Renumbering of the Faces of Dice, Math. Mag. 52 (1979) 312-315
MG13SA.19.b Cyclotomic Polynomials and Nonstandard Dice, Disc Math 27
MG13SA.19.b (1979) 245-259; -> Dice with Fair Sums, AMM 95 (1988) 316-328
MG13SA.19.c J. C. Lagarias and R. J. Vanderbei, 1988, The Kruskal Count,
MG13SA.19.c AT&T Bell Laboratories, Murray Hill, New Jersey 07974
MG13SA.19. Visible number of points of a dice: 1 to 15 without 13. Renumber
MG13SA.19.s a dice so that the visible number of points is 1 to 26 (= faces+
MG13SA.19.s egdes+vertices). Set x1,x2,x3,x4,x5,x6 := 1,3,9,18,6,2. (unique)
MG13SA.19.s GF-solution:(1+z^x1+z^x6)(1+z^x2+z^x5)(1+z^x3+z^x4)=(1-z^27)/(1-z)
MG13SA.19. Dice rolling - top even: roll right; top odd: roll up. You end in
MG13SA.19. the 6-cycle: 1,4,5,6,3,2 after at most three rolls.
MG13SA.19. Cube of 8 dice with the minimal=40 (maximal=306) sum of the
MG13SA.19. product of the 12 pair of touching faces.
MG13SA.19. Cube of 27 dice with the minimal=294 (maximal=1028) sum of the
MG13SA.19. product of the 54 pair of touching faces.
MG13SA.19. equal-sized squares in the plane with every vertex is corner of at
MG13SA.19. least two squares, Hypercube projection (Kim's knight problem)
MG13SA.19. 16 knights on a chessboard so that each knight attacks just 4 other
MG13SA.19. Kruskal's principle or Krusckal count (confluence, probability)
MG13SA.19. counterintuitive: the prob is ca 5/6 that any two arbitrarily
MG13SA.19. started chains of cards will intersect (tree)
MG13SA.19.f Card Corner, The Linking Ring (Dec 1976) 82-87
MG13SA.19.f same column (Dec 1957) & (Mar 1978) related trick: Kraus principle
MG13SA.19. a pairing strategy for the amazon game of D. L. Silverman, this is
MG13SA.19. isola-game, old or attacked positions are forbidden.
MG13SA.19.a Checker Jumping in Three Dimensions, Math. Mag. 52 (1979) 227-231
MG13SA.19.b Scouts in Space, JoRM 21:3 (1989) 195-202
MG13SA.19.c Scouts in Hyperspace, JoRM 24:2 (1992) 116-120
MG13SA.20 Raymond Smullyan's Logic Puzzles
MG13SA.21 The Return of Dr. Matrix
MG13SA.21. 3*3 magic square named "lo shu", {{2,7,6},{9,5,1},{4,3,8}} = M3
MG13SA.21. 15 can be partitioned into a triplet of distict integers 1..9 in
MG13SA.21. exactly 8 ways. -> "lo shu" is unique -> MG12SA.17
MG13SA.21.a A replicaton property for magic sq., Math Mag 65 (1992) 175-181
MG13SA.21. Vector space: M = {{a-c,a-b+c,a+b},{a+b+c,a,a-b-c},{a-b,a+b-c,a+c}}
MG13SA.21. magic constant = 3a, GF = x^a (1 + x^b + x^{-b}) (1 + x^c + x^{-c})
MG13SA.21. as M^t M is symmetric according to both diagonals, we have
MG13SA.21. (100,10,1) M3^t M3 (100,10,1) = 276^2+951^2+438^2=672^2+159^2+834^2
MG13SA.21. alphametic squares->Sallows, Abacus 4 (1986) 28-45, (1987) 20-29,43
MG13SA.21. M with one egde 8 and constant 15, -> b-c = 3 -> (a,b,c)=(5,4,1).
MG13SA.21. prime 3*3 magic square, smalest constant is 177
MG13SA.21. 3*3 magic square with consecutive primes (a,b,c)=(1480028171,12,30)
MG13SA.21.b Characteristic Polynomials of Magic Squares, M.Mag. 57(1984)220-1
MG13SA.21.b the inverse of a 3*3 magic square is also magic
MG13SA.21. Smith numbers: composite integers with sum of digits is equal
MG13SA.21. the sum of digits of the prime factorisation
MG13SA.21. Smith brothers (n, n+1), palindromic Smiths, 3*3 Smith magic square,
MG13SA.21. Conjecture: the density of Smith numbers is 3%.
MG13SA.21. From every repunit whose prime factors are known one can construct
MG13SA.21. a Smith number -> the set of Smith numbers is infinite.
MG13SA.21. Feynman's fraction 1/243 in decimal notation (Los Alamos joke)
MG14SA: Fractal Music, Hypercards and More Math. Recreations from SA Magazin
MG14SA: Freeman (1991) New York
MG14SA.1 White, Brown, and Fractal Music
MG14SA.2 The Tinkly Temple Bells
MG14SA.2. Bell and Stirling 2nd numbers, set partition, rhyme shemes
MG14SA.2.a Asymt. Estimates of Stirling Numbers, Studies Appl Math 89 (1993)233
MG14SA.2.b Apropos, Two Notes on Notations (Stirling 1st, 2nd), D. E. Knuth
MG14SA.2.b AMM 101 (1994) 771-778
MG14SA.3 Mathematical Zoo
MG14SA.4 Charles Sanders Peirce
MG14SA.5 Twisted Prismatic Rings
MG14SA.6 The Thirty Color Cubes (Mac Mahon)
MG14SA.6.a Der Keplersche Koerper und andere Bauplaene (Kowalewski)
MG14SA.6.a JFM 64 (1938) 643-644
MG14SA.7 Egyptian Fractions
MG14SA.8 Minimal Sculpture
MG14SA.9 Minimal Sculpture II
MG14SA.10 Tangent Circles
MG14SA.11 The Rotating Table and Other Problems
MG14SA.11.1 The Rotating Table
MG14SA.11.1.a Rotating-table games and derivatives of words
MG14SA.11.1.a TCS 108 (1993) 311-329 (Yehuda, Etzion, and Moran)
MG14SA.11.1.a coins with S states, soluble iff S and N are power of the same prime
MG14SA.11.2 Turnablock
MG14SA.11.2. Game of ONaG, nim-multiplication
MG14SA.11.3 Persistences of Numbers
MG14SA.11.4 Nevermore
MG14SA.11.5 Rectangling the Rectangle
MG14SA.11.6 Three Geometric Puzzles
MG14SA.12 Does Time Ever Stop? Can the Past Be Altered?
MG14SA.13 Generalized Ticktacktoe
MG14SA.13.a tic-tac-toe using invariant subsets JoRM 25 (1993) 128-135
MG14SA.14 Psychic Wonders and Probability
MG14SA.15 Mathematical Chess Problems
MG14SA.15. n-queens problem (reflected, modular), partition of n*n
MG14SA.15.a A gener. of the n-queen problem, MR 92k:05042
MG14SA.15.b On the Queen Domination Problem, Disc. Math. 86 (1990) 21-26,cover
MG14SA.15.c Queen Attacks, JoRM 12 (1979) 53 (k=1)
MG14SA.15.d A Problem of Chess Queens, JoRM 24 (1992) 264-271 (k<=4)
MG14SA.15.d greatest number of queens, s. t. each attacks precisely k others
MG14SA.15.e On the 8-Queens-problem, Proc. Edin. Math. Soc. 17 () 43-68 (n<12)
MG14SA.16 Douglas Hofstadter's G"odel, Escher, Bach
MG14SA.17 Imaginary Numbers
MG14SA.18 Pi and Poetry: Some Accidental Patterns
MG14SA.18. e^pi > pi^e as x^(1/x) has a maximum value for x=e
MG14SA.18. positive solutions x^y = y^x are x=(1+1/t)^(t+1) and y=(1+1/t)^t
MG14SA.19 More on Poetry
MG14SA.20 Packing Squares
MG14SA.20.a On Tiling an m*m Square with m Squares,
MG14SA.20.a Crux Math. 19:7 (1993) 189-191, cases 11-33 solved
MG14SA.20.a 1^3 + 2^3 .. + n^3 = (n(n+1)/2)^2
MG14SA.20.b (update of a) Cuttler determined the minimum 8.
MG14SA.21 Chaitin's Omega
MG14SA.21.a Information-Theoretic Incompletness (Chaitin)
MG14SA.21.a Appl. Math. and Comp. 52 (1992) 83-101
MG15SA: The Last Recreations, Hydras, Eggs, and Other Math. Mystifications
MG15SA: Springer (1997) New York
MG15SA.1 The Wonders of a Planivers
MG15SA.2 Bulgarian Solitaire and Other Seemingly Endless Tasks
MG15SA.3 Fun with Eggs, Part I
MG15SA.4 Fun with Eggs, Part II
MG15SA.5 The Topology of Knots
MG15SA.6 M-Pire Maps
MG15SA.7 Directed Graphs and Cannibals
MG15SA.7. river crossing problems: 3 missionaries and 3 cannibals
MG15SA.7.a The jealous husbands and the missionaries and cannibals,
MG15SA.7.a I. Pressman, D. Singmaster, Math Gazette 73 (Jun 1989) 73-81
MG15SA.8 Dinner Guests, Schoolgirls and Handcuffed Prisoners
MG15SA.8. Kirkman's schoolgirl problem, Steiner triple systems, designs
MG15SA.9 The Monster and Other Sporadic Groups
MG15SA.9. the classification of finite simple groups.
MG15SA.10 Taxicab Geometry
MG15SA.10. geometry with the 1-norm.
MG15SA.11 The Power of the Pigeonhole
MG15SA.11.a Pigeonhole principle (problem book, russian) (Letchikov)
MG15SA.11.a Zbl 749.00004
MG15SA.11.b three into two won't go, Math Gazette 61:415 (Mar. 77) 25-31
MG15SA.11.c the pigeonhole principle, TYCMJ mock issue (Jan 1979) 4-12
MG15SA.11.d Das Schubfachprinzip (Pigeonhole, Ramsey, Kronecker, Schur)
MG15SA.11.d MU 25:1 (1979) 23-37; 61 Aufgaben, 14 Beispiele
MG15SA.11.f pigeons in every Pigeonhole, Quantum, (Jan 1990) 25-26, 32
MG15SA.11.e Das Schubfachprinzip I, alpha 29:5 (1995) 30-33 (10 problems)
MG15SA.11.e Das Schubfachprinzip II, alpha 29:9 (1995) 30-34 (30 contest prob.)
MG15SA.11.g Appl of the pigeonhole principle, Math Gazette 79 (1995) 286-292
MG15SA.12 Strong Laws of Small Primes
MG15SA.12. -> SEQ: sequences, strong law of small numbers
MG15SA.13 Checker Recreations Part I
MG15SA.14 Checker Recreations Part II
MG15SA.15 Modulo Arithmetic and Hummer's Wicked Witch
MG15SA.16 Lavinia Seeks a Room and Other Problems
MG15SA.16.1 Lavinia Seeks a Room
MG15SA.16.2 Mirror-Symmetric Solids
MG15SA.16.3 The Damaged Patchwork Quilt
MG15SA.16.3. 2 part dissection: 9*12 - 1*8 = 10*10, (checkered 3 parts)
MG15SA.16.4 Acute and Isosceles Triangles
MG15SA.16.5 Measuring with Yen
MG15SA.16.6 A New Map-Coloring Game
MG15SA.16.7 Whim
MG15SA.16.7. The Nim game plus the whim move (selects the type: normal-misere)
MG15SA.17 The Symmetry Creations of Scott Kim
MG15SA.17.a Inversions, Scott Kim, Byte 1981, Key Curriculum Press 1996
MG15SA.18 Parabolas
MG15SA.19 Non-Euclidean Geometry
MG15SA.19.a The Trigonometriy of Escher's Woodcut "Circle Limit III",
MG15SA.19.a Math Intell. 18:4 (1996) 42-46
MG15SA.20 Voting Mathematics
MG15SA.20.a approval voting: a best buy method for multi-candidate elections
MG15SA.20.a S. Merrill, MM 52 (Mar 1979) 98-102
MG15SA.20.b Democraty and math. (Problems and paradoxes in free elections)
MG15SA.20.b Quantum 3:3 (1993) 4-9, 58 (Arrow's Theorem)
MG15SA.21 A Toroidal Paradox and Other Problems
MG15SA.21.1 A Poker Problem
MG15SA.21.2 The Indian Chess Mystery
MG15SA.21.2. chess logic, retro analysis, which color corresponds to White?
MG15SA.21.2.a The Chess Mysteries of Sherlock Holmes, R. M. Smullyan, 1979
MG15SA.21.3 Redistribution in Oilaria
MG15SA.21.4 Fifty Miles an Hour
MG15SA.21.4. averaging a continous function
MG15SA.21.5 A Counter-Jump "Aha!"
MG15SA.21.5. parity in peg jumping
MG15SA.21.6 A Toroidal Paradox
MG15SA.22 Minimal Steiner Trees
MG15SA.23 Trivalent Graphs, Snarks, and Boojums
MMR: Madachy's Mathematical Recreations
MMR: Joseph S. Madachy, Dover Publ., 2nd 1979
MMR.1 Geometric Dissections
MMR.2 Chessboard Placement Problems
MMR.3 Fun With Paper
MMR.3.1 geometric constructions with paper only
MMR.3.2 flexagons
MMR.3.3 other flexagon diversions
MMR.3.4 solid flexagons
MMR.4 Magic and Antimagic Squares
MMR.4.a Unsolved problems on magic squares, Disc. Math. 127 (1994) 3-13, G. Abe
MMR.4.b J L Fults, Magic Squares, 1974, Open Court Publ. Co, La Salle Illinois
MMR.4.1 magic squares
MMR.4.2 miscellaneous magic configurations
MMR.4.3 antimagic squares
MMR.4.4 talisman squares
MMR.5 Puzzles and Problems
MMR.5.1 moonshine sharing
MMR.5.2 number toughies
MMR.5.2. 10^9 = a*b with a, b zerofree (for which p are 2^p, 5^p zerofree?)
MMR.5.2. 2^p zerofree: 1..9, 13..16, 18, 19, 24, 25, 27, 28, 31..37, 39,
MMR.5.2. 49, 51, 67, 72, 76, 77, 81, and 86. (Check upto p<46000000)
MMR.5.2. 2^33250486 -- the last 176 digits (out of 10009394) are non-zero
MMR.5.2. 2^18894561 -- the last 174 digits (out of 5687830) are non-zero
MMR.5.2. 2^4400728 -- the last 164 digits (out of 1324752) are non-zero
MMR.5.3 nine-coin move
MMR.5.3. NPDNPDNPD -> DDDPPPNNN
MMR.5.4 scotch and water
MMR.5.5 geometric construction
MMR.5.5. smalest (largest) equilateral triangle incribable in a square
MMR.5.5.a An old Max-Min Problem Revisted, AMM 96 (1989) 421
MMR.5.5.a inscribing a max area rectangle into a triangler.
MMR.5.6 the mad hatted! (logic) -> MG13SA.10
MMR.5.7 high stakes (binary)
MMR.5.8 death in the decanter (logic)
MMR.5.9 problems in probabilities (different random digits)
MMR.5.9.a The first digit problem, AMM 83 (1976) 521-538 (Benford's Law)
MMR.5.9.b Sequential Partitioning, AMM 99 (1992) 846-855
MMR.5.9.b leapfrog sequence, logarithmic sequence, optimal cutting procedure
MMR.5.9.b Steinhaus' Three Gap Theorem (points on the circle), Benford's Law
MMR.5.9.c Optimal spacing of points on a circle, Fib. Quart. 27 (1989) 18-24
MMR.5.9.d The distribution of leading digits and uniform distribution mod 1,
MMR.5.9.d Diaconis, Ann. Probability 5 (1977) 72--81, MR 54 #10178
MMR.5.10 the golden spheres
MMR.5.11 a paper-covering problem
MMR.5.12 the commoner's dilemma
MMR.5.12. how to get white from an urn with black marbles
MMR.5.13 did the butler do it? (congruence)
MMR.5.14 an airport problem
MMR.5.15 the seven fortunes (Diophantine)
MMR.5.16 occupational mix-up (logic)
MMR.5.17 a traveling man (arithmetic)
MMR.5.18 a problem in confusion (arithmetic)
MMR.5.19 cigarette selling (Diophantine)
MMR.5.19. Frobenius Problem, (Sylvester)
MMR.5.19. largest number not representable n*a+m*b with (a,b)=1, n>=0, m>=0.
MMR.5.19.a ax+by+cz = N, MR 93e:11033
MMR.5.19.b Math. Scand. 58 (1986) 161-175, ZBl 607.10038
MMR.5.19.c The coin exchange problem for arithmetic progressions
MMR.5.19.c AMM 101 (1994) 779-781
MMR.5.19.d http://www.cs.cmu.edu/~kannan/Papers/pubs.html gives an algorithm
MMR.5.20 eight stamps (logic) -> MMR.5.6, MG13SA.10
MMR.5.21 squared eggs (Diophantine, Pell)
MMR.5.22 the oracle of the three gods (logic)
MMR.5.23 cube formation
MMR.5.23. What is the shortest strip of paper 1'' wide and black on one side
MMR.5.23. that can be folded to form a 1'' cube that is black on all sides?
MMR.5.24 balancing cubes (Diophantine)
MMR.5.25 major Perkins (logic)
MMR.5.26 the chicken yolks (arithmetic)
MMR.6 Number Recreations
MMR.6.1 numbers and their divisors
MMR.6.1.a $\sigma_7(n)=\sigma_3(n)+120\sum_{m=1}^{n-1}\sigma_3(m)\sigma_3(n-m)$
MMR.6.1.a where for each $d$ we denote by $\sigma_d(k)$ the sum of the $d$-th
MMR.6.1.a powers of the divisors of $k$.
MMR.6.1.a N.P. Skoruppa, A quick combinatorial proof of Eisenstein series
MMR.6.1.a idenities, J. Number Theory, vol. 43, 68-73, 1993.
MMR.6.2 perfect and multiperfect numbers
MMR.6.3 prime numbers
MMR.6.4 amicable numbers
MMR.6.5 0123456789, or digital diversions
MMR.6.5. 123 - 45 - 67 + 89 = 100 // uses +, -, conc
MMR.6.5. 1+2+3+4+5+6+7+8*9 = 100 // uses +, *, conc
MMR.6.5. (1 + 2 - 3 - 4)(5 - 6 - 7 - 8 - 9) = 100 // uses +, -, *
MMR.6.5. (1!)(2!)(3! + 4!) - 5! + 6! - ((7!)(8!)/9!) = 100
MMR.6.5. 98 - 76 + 54 + 3 + 21 = 100
MMR.6.5.sio impossible with +, conc only as the sum is equal zero mod 9.
MMR.6.5.sio but possible with repeating decimal fractions: 98.'765+1.'234 = 100
MMR.6.5. squares: 139854276=11826^2, 923187456=30384^2
MMR.6.6 narcissistic numbers
MMR.6.6. 153=1^3+5^3+3^3, numbers which are the sum of the cubes of there digits
MMR.6.6.a Armstrong numbers: 153=1^3+5^3+3^3, Fib. Quart. 30 (1992) 221-224
MMR.6.6.a MR 93e:11014; Zbl 759.11001 -> (b) Zbl 98.262, (c) Zbl 524.10007
MMR.6.6.b Can. J. Math. 12 (1960) 374-389
MMR.6.6.c Nieuw Arch. Wiskd. IV (1) (1983) 345-360
MMR.6.6. Digital Invariants
MMR.6.6. PDI (perfect digital invariant)
MMR.6.6. RDI (recurring digital invariant) 55: 5^3+5^3 -> 250 -> 133 -> 55
MMR.6.6. ADI (amicable digital invariant) 136: 1^3+3^3+6^3 -> 244 -> 136
MMR.6.6. VR (Visible Representation) 5882353 = 588^2 + 2353^2
MMR.6.6. sum of factorials: 40585 = 4! + 0! + 5! + 8! + 5!
MMR.6.6. sum of powers: 34012224 = (3+4+0+1+2+2+2+4)^6
MMR.6.6. Multigrades: 1^n+5^n+8^n+12^n=2^n+3^n+10^n+11^n (n = 1, 2, 3)
MMR.6.6. 792 has 11 representations as sum of three cubes
MMR.6.7 factorial products
MMR.6.8 printer's "errors"
MMR.6.9 automorphic numbers
MMR.6.10 two rather large numbers
MMR.7 Alphametics
MMR.7.a A/DE + B/FG + C/HI = 1 (Digits 1..9) unique, REC 8:5 (1993) 5-6 (Nob)
MMR.8 Conglomerate
MMR.8.1 the problem of the mice
MMR.8.1.a a computer assisted study of pursuit in a plane, AMM 82 (1975) 804-12
MMR.8.1.b Ant Trails, Math. Intell. 15:2 (1993) 59-62 (pursuit problems)
MMR.8.2 deployment
MMR.8.2. a tick-tack-toe like game played on a 5*5 square with 4 symbols.
MMR.8.3 domino recreations
MMR.8.4 lost cords
MMR.8.5 bouncing billiard balls
DG1MI: Tracking the Automatic Ant,
DG1MI: David Gale, Springer, New York, 1998
DG1MI.1 Simple Sequences with Puzzling Properties
DG1MI.1. Somos sequences
DG1MI.1. A Theorem Joke: Perfect squares don't exist
DG1MI.2 Probability Paradoxes
DG1MI.3 Historic Conjectures: More Sequence Mysteries
DG1MI.4 Privacy-Preserving Protocols
DG1MI.4. Somos sequences update
DG1MI.5 Surprising Shuffles
DG1MI.5. A Re-view of some Review: Erd"os - Integral distances
DG1MI.6 Hundrets of New Theorems in a 2000 Year-Old Subject: Where will it End?
DG1MI.6. Clark Kimberling explores the special points of a triangle
DG1MI.7 Pop Math ans Protocols
DG1MI.8 Six Variations on the Variational Method
DG1MI.8. gcd, Sylvester's problem, Billiard balls
DG1MI.9 Tiling a Torus: Cutting the Cake
DG1MI.10 The Automatic Ant: Compassless Constructions
DG1MI.11 Games Real, Complex Imaginary
DG1MI.12 Coin Weighing: Square Squaring
DG1MI.13 The Return of the Ant and the Jeep
DG1MI.14 Go
DG1MI.15 More Paradoxes. Knowledge Games
DG1MI.16 Triangles and Computers
DG1MI.16. The dance of the Simson Lines
DG1MI.16. Configurations with Rational Angles
DG1MI.17 Packing Tripods
DG1MI.18 Further Travels with My Ant
DG1MI.19 The Showlace Problem
DG1MI.20 Triangles and Proofs
DG1MI.20. The Morley Triangle (Newman's proof)
DG1MI.20. Fermat point, Kiepert's hyperbola, projective generalization
DG1MI.21 Polyominoes (Golomb)
DG1MI.22 A Pattern Problem, A Probability Paradox, and A Pretty Proof
DG1MI.23 The Sun, the Moon, and Mathematics
DG1MI.24 In Praise of Numberlessness
DG1MI.a1 A Curious Nim-Type Game
DG1MI.a2 The Jeep Once More or Jeeper by the Dozen
DG1MI.a3 Nineteen Problems in Elementary Geometry (Armando Machado)
DG1MI.a4 The Truth and Nothing But the Truth
DME1: Ross Honsberger
DME1: Mathematical Gems 1
DME1: The Dolciane Mathematical Exposition No. 1, MAA, 1973
DME1: german: Mathematische Edelsteine
DME1.1 an old chinease theorem and Pierre de Fermat
DME1.1.a A generalization of Euler's theorem, Math Gaz 82:493 (1998) 80
DME1.1.a let (a, m_i) = 1 for all i then (with [...] is the lcm) we have
DME1.1.a a ** [phi(m1), phi(m2), ..., phi(mk)] = 1 (mod [m1, m2, ..., mk])
DME1.1.b Combinatorial Proof of Fermat's little Theorem, AMM 63 (1956) 718
DME1.1.c A maximal generalization of Fermat's (little) Theorem, MM 39 (1966)
DME1.1.c 103-107 - Fermat, Euler, Carmichael, Gauss, Redei.
DME1.2 Louis Posa
DME1.3 equilateral triangles
DME1.3. Sum of the distances to the sides is constant (Viviani)
DME1.3. Fermat point, Torricelli problem, Steiner's proof with ellipses
DME1.3. Napoleon thm: the triangle of the centers of exterior equilateral
DME1.3. triangles is equilateral.
DME1.3.a Napoleon thm made simpler, 3 proofs, extendable
DME1.3.a Complex Numbers & Geometry, Liang-shin Hahn, MAA (1994), 60-62, 180-81
DME1.3.b G. Pickert, Bemerkungen zum Satz von Napoleon, MSem 39 (1992) 37-41
DME1.3.c L. Gerber, Napoleon's Thm and the Parallelogram Inequality for
DME1.3.c Affine-Regular Polygons, AMM 87:8 (Oct 1980) 644-648
DME1.3 a set of diameter 1 can be covered with a equilateral triangle s=sqrt(3)
DME1.4 the ochart problem
DME1.5 delta curves
DME1.6 its combinatorics that counts!
DME1.7 Hamiltonial circles
DME1.8 the theorem of Morley
DME1.9 a combinatorial problem
DME1.9. diagonals in a convex polygon, counting crossings and regions
DME1.10 multiperfect, superabundant and practical numbers
DME1.11 circles, squares, lattice points
DME1.12 recursion
DME1.13 Poulet's, super Poulet's and other numbers
DME1.13. pseudoprime numbers of base 2, Mersenne numbers
GG: The Grazing Goat in n Dimensions (Weidende Ziege)
GG: A goat is tethered to the circumference of a circular field radius R.
GG: How long does the goat's tether need to be so that it can eat half the
GG: grass in the field?
GG- Geometry Problem 30, AMM 1 (1894) 395-396
GG- M. Fraser, A tale of two goats, Math. Mag., 55:4 (1982) 221-227
GG- M. D. Meyerson, Return of the grazing goat in n dim., CMJ 15 (1984) 430-432
GG Correction for the infinit dim. case, CMJ 15:2 (1984) 126-134, 0-1 law
GG In odd dimensions the problem reduces to a polynomial equation
GG- D. Treiber, Zum Problem der "Weidenden Ziege", PM 33:3 (1991) 97-100
GG- Bild der Wissenschaft 1970, S. 928 u. 1050
GG- Problem 711 aus PM 21 (1979) 282
GG- Bemerkung zur "Weidenden Ziege", PM 33:6 (1991) 277-278 (G. Bach)
GG- another grazing problem (P 710), JoRM 12 (1979/80) 74-75
GG- FAQ for the Swarthmore Forum's "Ask Dr. Math."
GG http://forum.swarthmore.edu/dr.math/faq/faq.grazing.html
GG- http://mathworld.wolfram.com/GoatProblem.html
GG- rec.puzzles FAQ ==> analysis/goat <==
GG- The Bull and the Silo: An Application of Curvature, AMM 105:1 (1998) 55-58
GG the bull is eating at the outer side of a convex curve. M. E. Hoffman
LB: Ladder-Box Problem (Leiter und Kiste Problem)
LB: |\
LB: 1/a | \ c given b and c, calculate a
LB: |__\
LB: 1/b | |\ x = a + b
LB: |__|_\ y = 1/a + 1/b
LB: b a c_min = (b^(2/3) + b^(-2/3))^(3/2)
LB: Solution-type for (b=1): T(rigonometric), C(onic section),
LB: L(adder-symmetry), S(ymmetry a + 1/a), P(olynomSym in a),
LB: N(umeric), D(iophantic Solutions)
LB: rel: similar triangles: x/y = a/(1/b) = b/(1/a)
LB: rel: 2 * triangle area: x*y = (1/b)*x + b*y
LB: rel: Pythagorean thm: (a+b)^2 + (1/a+1/b)^2 = c^2
LB- Arthur Cyril Pearson, The twentieth century standard puzzle book,
LB George Routledge & Sons, London 1907, Part II, no. 102, p. 103
LB box = (15, 12), ladder = 52, -> (x, y) = (20, 48) (<- Euclides Ex 623)
LB- G. Mott-Smith, Math. Puzzles, Dover Publ. (1954, 1946 repr.) Problem 102
LB The Bay Window, box = (3,9), ladder = 20, -> (x, y) = (12, 16) [D]
LB- A. Sutcliffe, A ladder and wall problem, AMM 74 (1967) 325-326 [D]
LB E1832 [1965, 1021] <- Schaaf, Bibliography of Rec. Math. II.3.12
LB- A. Dunn, Mathematical Bafflers, Dover Publ. (1980, 1964 repr.), p14 [S]
LB- Bild der Wissenschaft (Math. Kabinet) 10:1970 p1050 [T]
LB- Bild der Wissenschaft (Math. Kabinet) 1:1972 p89 [S]
LB- Bild der Wissenschaft (Math. Kabinet) 9:1978 p147-147 [C]
LB- Bild der Wissenschaft (Math. Kabinet) 1:1979 p112 [S]
LB- H. Apsimon, Math. Byways in Ayling, Beeling, and Ceiling,
LB Oxford Univ. Press 1984, (Chap. 1 [S?] & Chap. 2 [D])
LB- M. Zerger, The ladder problem, Math. Magazine 60:4 (1987) 239-242 [T,L,(C)]
LB- letter to the editor, Math. Magazine 61:1 (1988) 63 (->Zerger) [L]
LB- section of circle and hyperbola, mathematiklehren 1 (1983) 50-54 [C?]
LB- Euclides 66 (1990/91) 222 Ex 623 (2 refs) [???]
LB- rec.puzzles FAQ ==> geometry/ladder.and.box <== [???]
LB- sio: general solution for b=1 and special problem parameter otherwise.
LB b=2, c=10/3: (x,y) = (8/3, 2) or (2.949163, 1.553560) cubic root
LB b=2, c=7/2: (x,y) = (3.249, 1.300) or (2.5178, 2.4312) with
LB a1 = (-2 - Sqrt[5] + Sqrt[23 + 10 Sqrt[5]])/2
LB a2 = (-2 + Sqrt[5] + Sqrt[23 - 10 Sqrt[5]])/2
LB b=1: standard case
LB a + 1/a = z = - 1 + sqrt( 1 + c^2 )
LB a1 = (z + sqrt(z^2 - 4))/2, a2 = (z - sqrt(z^2 - 4))/2
LB x1 = (z + 2 + sqrt(z^2 - 4))/2, x2 = (z + 2 - sqrt(z^2 - 4))/2
LB b=1: special case c = 2*r + 1/r for some rational r.
LB a1 = (Sqrt[c^2 + 1] + Sqrt[4*r^2 + 1] - Sqrt[r^-2 + 1] - 1)/2
LB a2 = (Sqrt[c^2 + 1] - Sqrt[4*r^2 + 1] + Sqrt[r^-2 + 1] - 1)/2
LB x1 = (Sqrt[c^2 + 1] + Sqrt[4*r^2 + 1] - Sqrt[r^-2 + 1] + 1)/2
LB x2 = (Sqrt[c^2 + 1] - Sqrt[4*r^2 + 1] + Sqrt[r^-2 + 1] + 1)/2
LB b=1, c=3 (r=1): (x,y) = (1.670, 2.492) or (2.492, 1.670)
LB a1 = (Sqrt[10] + Sqrt[5] - Sqrt[2] - 1)/2
LB a2 = (Sqrt[10] - Sqrt[5] + Sqrt[2] - 1)/2
LB x1 = (Sqrt[10] + Sqrt[5] - Sqrt[2] + 1)/2
LB x2 = (Sqrt[10] - Sqrt[5] + Sqrt[2] + 1)/2
LB b=1, c=9/2 (r=2): (x,y) = (1.302, 4.307) or (4.307, 1.302)
LB a1 = (Sqrt[85] + 2*Sqrt[17] - Sqrt[5] - 2)/4
LB a2 = (Sqrt[85] - 2*Sqrt[17] + Sqrt[5] - 2)/4
LB x1 = (Sqrt[85] + 2*Sqrt[17] - Sqrt[5] + 2)/4
LB x2 = (Sqrt[85] - 2*Sqrt[17] + Sqrt[5] + 2)/4
LB b=1, c=11/3 (r=3/2): (x,y) = (1.420, 3.381) or (3.381, 1.420)
LB a1 = (Sqrt[130] + 3*Sqrt[10] - Sqrt[13] - 3)/6
LB a2 = (Sqrt[130] - 3*Sqrt[10] + Sqrt[13] - 3)/6
LB x1 = (Sqrt[130] + 3*Sqrt[10] - Sqrt[13] + 3)/6
LB x2 = (Sqrt[130] - 3*Sqrt[10] + Sqrt[13] + 3)/6
LB- sio[S]: you can shear the box (rombic box) without disturbing symmetry (b=1)
LB a + 1/a = z = cos(phi) - 1 + sqrt( (cos(phi)+1)^2 + c^2 )
LB a1 = (z + sqrt(z^2 - 4))/2 a2 = (z - sqrt(z^2 - 4))/2
CCh: Conway's Recursive Sequence (series): 1, 11, 21, 1211, 111221, 312211, ...
CCh- J. H. Conway, Eureka 46 (1986) 5-16, reprinted in:
CCh Open Problems in Communications and Computations, Springer, 1987, 173-188
CCh The Weird and Wonderful Chemistry of Audioactive Decay
CCh (Correction of the final asymptotic formula: Ilan Vardi)
CCh- Ilan Vardi, Computational Recreations in Mathematica, Chapter 1. (1991)
CCh ilan@leland.Stanford.EDU (ilan vardi)
CCh Organization: DSG, Stanford University, CA 94305, USA
CCh- Endless self-description (Hilgemeier's "likeness sequence",
CCh [Die Gleichniszahlen-Reihe]) Quantum 4:1 (1993) 17
CCh- Hilgemeier, M., Die Gleichniszahlen-Reihe, BdW (Dec. 1986) 19
CCh- "One Metaphor Fits All" : A Fractal Voyage With Conway's Audioactive Decay
CCh http://www.is-bremen.de/~mhi/frahor00.htm
CCh- P 958 R"atselhafter Folgenanfang? Praxis der Mathematik, 33:3 (1991) 136
CCh- Lsg P 958: Praxis der Mathematik, 34:1 (1992) 42-43 -> C. Stoll.
CCh Folge: 1, 11, 21, 1211, 111221 = a1, a2, a3, a4, a5 gegeben.
CCh Lsg I: V(n) = N(n-1) V(n-1) : 1, 1, 2, 12, ... (n >= 2 auÞer n=3)
CCh N(n) = V(n-2) N(n-2) : -, 1, 1, 11, ... (n >= 3)
CCh a(n) = V(n) N(n)
CCh Lsg II: Fibonacci Lsg von Paasche ist Quatsch.
CCh Lsg III: a(n) sei in Trinaersystem dargestellt, dies gibt im
CCh Dezimalsystem 1, 4, 7, 49, 376, ...
CCh Interpoliere durch ein Polynom 4ten Grades.
CCh Lsg IV: Ersetze: 11->21, 1->11, 2->12 indem man immer die erste
CCh moegliche Ersetzung (links nach rechts) macht.
CCh- Clifford Stoll, Kuckucksei, Fischer Verlag, Kap. 48, S. 358
CCh- 1, 11, 21, 1211, 1231, 131221, ..., REC 7:4 (Sep 1992) 4-5
CCh- On a Curious Property of Counting Sequences, AMM 101 (1994) 560-563
CCh- XXX math.CO/9808077 Shalosh B. Ekhad, Doron Zeilberger
CCh Proof of Conway's Lost Cosmological Theorem
Col: Collatz sequence, syrakuse-algorithm, 3n+1 problem,
Col- E16, R. K. Guy, Unsolved problems in number theory, 1981, 10 Refs <= 1978
Col- MG10SA.18 Slither, 3x+1 and other curious Questions
Col- Lagarias, the 3x+1 problem and its general., AMM 92 (1985) 3-23 (70 refs)
Col http://www.cecm.sfu.ca/organics/papers/lagarias/paper/html/node1.html
Col- G. Venturini, Iterates of number theoretic functions with periodic
Col rational coefficients, Studies in Appl. Math., 86 (Apr. 1992) 185-218
Col- P. Filipponi, On the 3n+1 problem: Something old, something new, (1991)
Col Zbl 735.11010 uncomplete proof.
Col- Adv in Appl. Math. 10 (1989) 344-347
Col- Jeffrey Lagarias, The Set of Rational Cycles for the 3x+1 problem, Acta
Col Arithmetica. LVI 1990, 33-53; #MR 91i:11024. Lagarias considers the same
Col problem on the set of rationals that have an odd denominator [local ring
Col of fractions of the integers at the ideal (2)]. In this ring the situation
Col differs from the one conjectured for Z, and has many interesting features.
Col He proves several theorems, formulates other interesting conjectures and
Col povides heuristic arguments for them.
Col On a different side, John H.Conway showed in _Unpredictable Operations_
Col (Proc. of the 1972 Number Theory Conference. Boulder-Colorado. pp. 49-52)
Col that for the following generalized problem:
Col ========================================================================
Col g(n) = a_i n + b_i (n congruent to i mod p) with the
Col a_i's and b_i's rationals chosen so that g(n) is always an integer
Col ========================================================================
Col the question of whether there is a k-th iterate of g(n) which equals one,
Col for a given n, is undecidable; and that is still true even if b_i = 0.
Col This doesnt mean that Collatz's problem is undecidable, but it gives an
Col idea of how hard it probably is.
Col- new lower bounds on nontrivial cycle length, Disc Math 118 (1993) 45-56
Col- Lagarias also maintains an online annotated bibliography that covers work
Col since his AMM 92 (1985) 3-23 article.
Col http://www.cecm.sfu.ca/organics/papers/lagarias/paper/html/links.html
Col- R. Guy, Conway's Prime Producing Machine, Math. Mag., 56:1 (1983) 26-33
Col contains a construction of Conway to prove unsolvable the convergence
Col of a certain class of congruential iteration problems.
Col- S. Burckel, Functional equations associated with congruential functions
Col Theor. Comp. Sci. 123 (1994) 397-406 (generalize Conway's construction)
CPS: Conway's permutation sequence, N -> N (bijective) (-> "Col")
CPS 2n -> 3n, 4n-1 -> 3n-1, 4n+1 -> 3n+1
CPS- E17, R. K. Guy, Unsolved problems in number theory, 1981, 1 Ref
CPS- J. H. Conway, Unpredictable iterations, Proc Number Theory Conf., Boulder
CPS 1972, 49-52
HOS: Hofstadter Sequence:
HOS a(1)=a(2)=1, a(n) = a(n-a(n-1)) + a(n-a(n-2))
HOS- E31, R. K. Guy, Unsolved problems in number theory, 1981, 1 Ref
HOS- S. M. Tanny, A well-behaved cousin of the Hofstadter sequence,
HOS Disc. Math. 105 (1992) 227-239
HOS- Conway's Challenge Sequence, AMM 98 (1991) 5-20, 99 (1992) 563-564
HOS- Conway's Challange, AMM 100 (1993) 396-397
HOS- -Tal Kubo kubo@math.harvard.edu or kubo@zariski.harvard.edu
HOS A draft of the article is available (in AMSLaTeX format). Interested
HOS parties should contact me by e-mail. <- Conway's Challenge Sequence
NCS: Newman Conway Sequence:
NCS p(1) = p(2) = 1, p(n) = p(p(n-1)) + p(n-p(n-1))
NCS- Math Mag 68:5 (1995) 400-401 Solution 1459
NCS (*) 0 <= p(n+1) - p(n) <= 1 (**) p(2n) <= 2*p(n)
MNQ: modular n-queen problem (n Damen Problem)
MNQ- T. Klove, Disc. Math. 19 (1977) 289-291, 36 (1981) 33-48
MNQ part II contains solutions with rotational sym.: n=49 and n=77
MNQ open: are there always solutions if n contains prime factors 3 mod 4?
MNQ- O. Heden, Disc. Math. 102 (1992) 155-161, on the modular N-Queen Problem
MNQ place n-2 queens for all n (solved), Addendum: Disc Math 118 (1993) 293
MNQ -> AMM 1989 (E 3162)
MNQ- O. Heden, Disc. Math. 120 (1993) 75-91, Maximal partial spreads and
MNQ the modular N-Queen Problem
MNQ- Sprague, Mathematische Unterhaltungen... , Aufgabe 16 (zwei Tafelrunden)
MNQ- G. Polya, Uber die "doppelt-periodischen" Losungen des n-Damen Problems
MNQ (in: W. Ahrens, Mathematische Unterhaltungen und Spiele, Bd II
MNQ (1918), 374-374), Collected Papers IV, 237-247
MNQ- ..., I. Vardi, The n-queens problem, AMM 101 (1994) 629-639
MNQ exponential lower bound 2^(n/5) if for a prime-factor p = 1 mod 4.
MNQ- infinite queens, Annals New York Acad. Sci. 555, p133
MNQ iteration of the (13524) solution
MNQ- A Neural Network solves n-Queens, Biolog. Cybern. 66 (1992) 375
MNQ- Fast Search Algor. n Queens, IEEE Trans. on Syst. Man and Cybern.
MNQ 21:6 (1991) 1572-76
MHP: Monty Hall Paradox (let's make a deal)
MHP- AMM 99:1 (Jan 1992) 3-7
MHP- Math. Gazette 75 (Okt 1991) 275-277
MHP- Math. Teacher 85:4 (Apr 1992) 250-252-256, 85:6 (Sep 1992) 409
MHP- Math. & Comp. Education 26:2 (1992) 153-156
MHP- E. Engel, A. Ventoulias, Chance 4:2 (1991) 6-9
MHP- Der Spiegel 34/1991 212-213 Drei Tueren Problem
MHP- Der Spiegel 36/1991 12-13 (Leserbriefe zum Drei Tueren Problem)
MHP- Spektrum der Wissenschaft, 11/1991 12-16
MHP- Die Zeit 34/1991 58 -> Die Zeit 30/1991 und 33/1991 (Leserbriefe)
MHP- Stochastik in der Schule, 11:3 (1991) 46-51 Problemecke
MHP- Math. Magazine 64 (1991) 359 [Reviews], -> New York Times, Focus
MHP- H. Winter, JMD 13:1 (1992) 23-53, intuitive Aufkl"arung prob. Paradoxien
MHP- von Randow, Das Ziegenproblem, rororo 1992
MHP- The 5-Step Probability Solver, Pi Mu Epsilon J. 9 (1992) 445-447
MHP- Simulation..., Stochastik in der Schule 12:3 (1992) 2-25
MHP- The Problem of the Car and Goats (survey)
MHP The College Math. J. 24:2 (1993) 163-165
MHP- Probability Problems References (Update)
MHP The College Math. J. 26:2 (1995) 132-134
MHP- Generalizing Monty's Dilemma
MHP Quantum 5:4 (Mar Apr 1995) 17-21 & 59-60 and 40-41
MHP- http://www.cartalk.msn.com/About/Monty/
MHP- http://www.cut-the-knot.com/hall.html
PFE: Patological Functions
PFE- Gelbaum, Olmstedt; Counterexamples in analysis, 1964
PFE- Everywhere differentiable nowhere monoton function, AMM 81 (1974) 349-354
PFE- On functions that are monoton on no interval, AMM 88 (1981) 754-755
PFE- Functions with a proper local maximum in each interval, AMM 90 (1983) 281-2
PFE- A universal entire fuction, AMM 90 (1983) 331-332
PFE- On van der Waerden's nowhere differentiable function, AMM 91 (1984) 307-8
PFE- Holes in Graphs, Quantum 2:1 (Sep/Oct 1991) ..-14, 19, 63
PFE function continuous only on the integers; bijection irrational -> real
PFE- White and Brown Musik, Fractal Curves and 1/f Fluctuations, SA 4/1978, 16
PFE- Nowhere-Differential Functions (Kieswetter Curves), AMM 99 (1992) 565-566
PFE- Noncentral Difference Quotients and the Derivative, AMM 95 (1988) 551-553
PFE (f(h)-f(ah))/((1-a)h) -> f'(0) for a <> +/- 1
PFE- Derivatives, Why They Elude Classification, Math. Mag. 49 (1976) 5-11
PFE- A. Bruckner, J. Leonard, Derivatives, AMM 73 Part II (1966) 24-56; 216 Refs
PFE a necessary and sufficient condition that a set E subset of [a,b] be the
PFE set of discontinuities of a derivative, is that E be an F_sigma of the
PFE first category (meager). (theorem p27). E may have mesure one
PFE- Critical Points of Gateaux Differential Functions, AMM 95 (1988) 566-567
PFE f'(x)=0, f''(x)>0 (Gateaux) =/=> x is local minimum
PFE- holomorphic functions C -> C, with Q -> Q are more than polynomials(Achim)
PFE f(x) = Sum[ c_i Product[ x-x_i, {i,n} ], {n, Infinity} ] (Newton form)
PFE N -> Q: i -> x_i (surjektive), c_i rational and small enough.
PFE- there is no differential metric for R^n, AMM 86 (1979) 585-586
PFE- Continuous Functions and Connected Graphs, AMM 97 (1990) 337-339
PFE- The Shortest Planar Arc of Width 1, AMM 96 (1989) 309-327
PFE- Every Smooth Map of Euclidean Space into Itself is an Expansion Followed
PFE by a Contraction, AMM 95 (1988) 713-716; continuity is not sufficient
PFE- Composition of differential functions f(f(x))=exp(x), M. Mag. 64(1991)354-5
PFE- Cantorset C: C+C = [0,2]. Math. Mag. 64 (1991) 357, A785
PFE- real functions, Bull. LMS 19 (1987) 396-398 (review LNiM 1170)
PFE- Gegenbeispiele zum Infimum und Supremum bei Ableitungen,
PFE Math. Semesterberichte 39 (1992) 137-142 (G. Pickert)
PFE- On the definition of 0^0, FU-Berlin Preprint A-92-5 (W. Koepf)
PFE |y(t)| < M (x(t))^a, with M>0, a>0, then lim_{t->0} x(t)^y(t) = 1
PFE- The Exotic World of Invertible Polynomial Maps (Jacobi Conjecture)
PFE Nieuw Archief voor Wiskunde 11 (1993) 21-31
PFE- G. Harris and C. Martin, The roots of a polynomial vary continuously
PFE as a function of the coefficients, Proc. Amer. Math. Soc. 100 (1987),
PFE 390-392. (SHORTER NOTES)
PFE- T. Sauer, Ein algorithmischer Zugang zu Polynomen und Splines,
PFE Math. Semesterberichte, 43 (1996) 169-189. Bezier, Casteljau, de Boor
AGM: arithmetic-geometric mean
AGM- Gauss, Landen, Ramanujan, the a-g mean, ellipses, and the ladies diary,
AGM AMM 95 (1988) 585-608
AGM approximations for the perimeter of the ellipse (table, history)
AGM in each formula is the error increasing with eps; max error, err<10^(-6)
AGM Pi (a+b) <= P [Kepler] 21.46% eps<.0894
AGM Pi Sqrt[2(a^2+b^2)] >= P [Euler] 11.07% eps<.0894
AGM 2 Pi ( (a+b)/(Sqrt[a]+Sqrt[b]) )^2 >= P [Sipos] 57.08% eps<.4446
AGM Pi ( 3/2 (a+b) - Sqrt[ab] ) >= P [Peano] 17.81% eps<.4883
AGM 2 Pi ((a^(3/2) + b^(3/2))/2)^(2/3) <= P [Muir] 1.046% eps<.5492
AGM Pi ( 3(a+b) - Sqrt[(a+3b)(3a+b)] ) <= P [Ramanujan] 0.416% eps<.8280
AGM Pi (a+b) (1+3z^2/(10+Sqrt[4-3z^2]))<= P [Ramanujan] .0402% eps<.9811
AGM Pi a (3 z^4 - 128)^2 / (2048 (4 - z^2)(1 + z )) + a*O(z^9) [Eric Blom]
AGM z = (a-b)/(a+b)
AGM- the Gauss-Slamin algorithm, Math. Gazette 76 (July 1992) 231-242
AGM- elementary approximations to the area of n-dimensional ellipsoids,
AGM AMM 78 (1971) 280-283; Pi(a+b) <= P <= Pi Sqrt[2(a^2+b^2)];
AGM 4 Pi (bc+ca+ab)/3 <= A <= 4 Pi Sqrt[((bc)^2+(ca)^2+(ab)^2)/3]
AGM false: 4 Pi (a^2+b^2+c^2)/3 <= A <= 4 Pi Sqrt[(a^4+b^4+c^4)/3] (Polya)
AGM- bccarlson@decst2.ams.ameslab.gov
AGM B. C. Carlson, elliptic integrals, Math of Comp 59 (1992) 165-180
AGM- Area of an Ellipsoid: a=b, c
AGM A = 2 Pi a^2 (1 + 1/Sqrt[1-(a/c)^2] Arctan[Sqrt[(c/a)^2-1]]) for c>a,
AGM A = 2 Pi a^2 (1 + 1/Sqrt[(a/c)^2-1] Arctanh[Sqrt[1-(c/a)^2]]) for c u(2n+1)-2u(2n-1) is the nth
SEQ digit in the binary expansion of Sqrt[2]. Math. Mag. 64 (1991) 168-171
SEQ- Periodicity of Somos Sequences, Proc AMS 116 (1992) 613-619
SEQ- The strange and surprising saga of the Somos sequences,
SEQ Math. Intelligenzer 13:1 (1991) 40-42 (Gale)
SEQ-> v(n+1) = v(n)**2 - c
SEQ- Aho & Sloane, Some doubly exponential sequences, Fib. Quart.
SEQ 11 (1973), 429-437;
SEQ- Franklin & Golomb, A function-theoretic approach to the study
SEQ of nonlinear recurring sequences, Pacific J. Math. 56 (1975), 455-468.
SER: Euler and the series \Sum n! (-x)^n
SER- Hardy, Infinite Series, II.A, Euler and the series \Sum n! (-x)^n
SER- Knopp, Unendliche Reihen, Par. 66
SER- Bromwich, Infinite Series, 2nd Ed, Pra. 104, 105, 109(2)
SER- Carlson, Special Functions, Chap. .. 2F0
CAL: Calender, Easter, Day of Week, Friday 13th
CAL- Calendrical Calculations, (N. Dershowitz, E. M. Reingold),
CAL Cambridge Univ. Press, 1997
CAL URL http://emr.cs.uiuc.edu/home/reingold/calendar-book/index.html
CAL URL http://emr.cs.uiuc.edu/~reingold/calendar.C (C++ source)
CAL- calendrical calculations, (N. Dershowitz, E. M. Reingold),
CAL Software Practice and Exp. 20:9 (Sep 1990) 899-929
CAL Julian, Gregorian, Islam, Hebrew, Conversions, Gnu Lisp program
CAL- calendrical calculations II, (E. Reingold, N. M. Dershowitz, S. Clamen),
CAL Software Practice and Exp. 23:4 (Apr 1993) 383-404,
CAL three historical calendars
CAL- Chr. Zeller, Kalender-Formeln, Acta Mathematica, 9 (1887) 131-136
CAL- Hatcher, D. A., Simple Formulae for Julian Day Numbers and Calendar Dates,
CAL Quarterly Journal of the Royal Astronomical Society, 25 (1984) 53-55.
CAL- Hatcher, D. A., Generalized Equations for Julian Day Numbers and Calendar
CAL Dates, Quarterly Journal of the Royal Astronomical Society, 26 (1985)
CAL 151-155. Includes coefficients for various calendar systems,
CAL including the Egyptian, Alexandrian, Roman, Gregorian, and Islamic.
CAL- Keith & Craver; The ultimate perpetual calendar?, JoRM 22:4 (1990) 280-282
CAL day of the week as a 44 character expression in C. (illegal use of --)
CAL The following 45 character C expression by Keith is correct.
CAL dow(y,m,d) { return (d+=m<3?y--:y-2,23*m/9+d+4+y/4-y/100+y/400)%7; }
CAL- Mathematics of the Gregorian Calendar (V F Rickey)
CAL The Math. Intelligenzer, 7:1 (1985) 53-56, leap year rules, history
CAL- Kalender-Formeln (C. Zeller), Acta Mathematica, 9 (1887) 131-136
CAL- The Day of the Week for Gregorian Calendars (A. D. Bradley) ?? 82-87
CAL- W. S. B. Wodhouse, Calendar, Encyclopaedia Britannica,
CAL 11th and 13th ed., 4, 987-1004
CAL- Feast or Famine of Friday the 13th, AMM 98 (1991) 646-649
CAL- B. H. Brown - Friday the 13th -, AMM 40 (1933) 607
CAL the 13th is most likely to be a Friday
CAL- S. R. Baxter - Friday the 13th -, Math. Gazette 53 (1969) 127-129
CAL the 13th is most likely to be a Friday
CAL- J. O. Irwin, Friday 13th, Math. Gazette, 55 (1971) 412-415
CAL The number of Friday 13th per year is at least one and at most three.
CAL- A. W. Butkewitsch, M. S. Selikson - Ewige Kalender, Teubner (Leipzig) 1974
CAL Kleine Naturwissenschaftliche Bibliothek, Bd. 23
CAL- Ilan Vardi, Computational Recrations in Mathematica, (1991)
CAL Chap 4: The Calender, p35-55
PhG: Physical Games
PhG- Superball (Flummy) MNU 45:8 (1992) 477-483
MaM: Mastermind
MaM: The origin of mastermind is 'bulls and cows'.
MaM- The Computer as Mastermind, JoRM 9:1 (1976) 1-6 (D. E. Knuth)
MaM- Towards an Optimum Matermind Strategy, JoRM 11:2 (1978) 81-87 (Irving)
MaM- Some Stategies for Mastermind, ZOR 26 (1982) 257-278 (Neuwirth)
MaM- Mastermind Strategies, JoRM 18:3 (1985) 194-202 (Flood)
MaM- Sequential Search Strategies with Mastermind Variants-Part 1&2
MaM JoRM 20:2 (1988) 105-126, 20:3 (1988) 168-181 (Flood)
MaM- A Prolog Matermind Program, JoRM 23:2 (1991) 81-93
MaM- Mastermind as a Test-Bed for Search Algorithms, Chance 6 (1993) 31-37
MaM- An optimal Mastermind Strategy, (4 pos, 6 colors)
MaM JoRM 25:4 (1994) 251-256
PRN: Pseudo Random Numbers
PRN- random numbers (Tech Correspondence) CACM 36:7 (1993) 105-110
PRN- LNiEaMS 374 (1992) Part III, random numbers, transformation, package.
PRN- Karloff, Raghavan; Randomized Algorithms and Pseudorandom Numbers,
PRN J ACM 40:3 (1993) 454-476
PRN quicksort can be bad with pseudorandom numbers (lin. congruence)
PRN- Eduardo M. Engel, A Road to Randomness in Physical Systems (1992) (10QB...)
PRN- A McGrail, Randomness Properties of Two Chaotic Mappings, p265-295
PRN in: Cryptography and Coding III (Ed. M. J. Ganley) Clarendon Press (1993)
PRN some new references for testing PRNs.
PRN- G. Marsaglia, A current view of random number generators
PRN Computer Science and Statistics (Ed. L Billard) (1985) 3-10
PRN- B A Cipra, AAAS'94: Random Numbers, Art and Math, SIAM News 27:7(1994)24,18
PRN- Rehashing Pearson's string hash (Letters), C++ Report (Feb. 1995) 6-15
PRN bad use of rand() to generate a good mixing permutaion
PRN- S. v Hoerner; Herstellung von Zufallszahlen auf Rechenautomaten,
PRN Z. Angew. Math. Physik 8 (1957) 26-52 (v. Neuman mid-square-method)
PRN- Halton; SIAM Review 12 (1970) 1-63
PRN- Random HP42S, CACM 38:1 (1995) 121-124
DRS: Descartes Rule of Signs
DRS- A Pedersen, A Refinement of Descartes Rule of Signs, AMM 98 (1991) 862-865
DRS if v in S with: a(v-1) a(v) < 0, a(v) a(v+1) < 0 and
DRS a(v)^2 <= a(v-1) a(v+1)
DRS the intersection on all v in S: [ -a(v)/a(v+1), -a(v-1)/a(v) ]
DRS is not empty then : #positive roots <= #sign changes - 2 #S
DRS- The Sign Rule from Descates Formulation (1637) to Gauss Proof (1828)
DRS Archive for Hist. of Exact Sci. 45:4 (1993) 335-374
DRS- Fekete, Polya; Ueber ein Problem von Lagerre,
DRS Rend. Circolo Mat. Palermo 34 (1912) 1-32
TOP: finite Topologies, finite Posets (T0 Topologies)
TOP- Posets Pu(n) : 1, 2, 5, 16, 63, 318, 2045, 16999, 183231, 2567284,
TOP 46749427, 1104891746, 33823827452, ... Sloane 588
TOP- Topologies Tu(n): 1, 3, 9, 33, 139, 718, 4535, ... Sloane 1133
TOP- Posets (labeled) P(n) : 1, 3, 19, 219, 4231, 130023, 6129859,
TOP 431723379, ...
TOP- Topologies (labeled) T(n) : 1, 4, 29, 355, 6942, 209527, 9535341,
TOP 642779354, 63260289423, ...
TOP- N. J. A. Sloane, A Handbook of Integer Sequences, p14-16
TOP posets (labeled): series 588 (1244)
TOP topologies (labeled): series 1133 (1476)
TOP connected topologies (labeled): series 648 (1245)
TOP- N. J. A. Sloane & S. Plouffe, Academic Press, ISBN 0-12-558630-2.
TOP The Encyclopedia of Integer Sequences
TOP- Chaunier & Lygeros, Proges dans l'enumeration des posets,
TOP C. R. Acad. Sci. Paris 314 serie I (1992) 691-694
TOP- Chaunier & Lygeros, The Number of Orders with Thirteen Elements,
TOP Order 9:3 (1992) 203-204 (Table: P(n) n=1..13)
TOP- Culberson & Rawlins, New results from an algorithm for counting posets,
TOP Order 7 (1991) 361-374
TOP- H J Proemel, Counting Unlabeled Structures, JoCT A 44 (1987) 83-93
TOP Cor 2.3a: Almost all partial ordes are rigid, i. e. have no
TOP nontrivial automorphism.
TOP Cor 2.3: Let Pu(n) denote the number of unlabeled partial orders on
TOP an n-element set. Then there exists a constant s such that
TOP Pu(n) <= P(n) / n! ( 1 + s / 2^(n/4) ).
TOP- D Kleitman and B Rothschild, The number of finite topologies,
TOP Proc. AMS, 25, 1970, 276-282.
TOP- D Kleitman & B Rothschild, Asymptotic enumeration of partial orders on a
TOP finite set, Trans. AMS V 205 (1975) 205-220
TOP almost all posets (labeled) consists of three levels. This is a
TOP deep result. An explicid formular (for 3 levels) is given (a double sum).
TOP- M Erne, The Number of Posets with More Points Than Incomparable Pairs,
TOP Disc Math 105 (1992) 49-60
TOP- M Erne & K Stege, Counting finite posets and topologies,
TOP Order 8 (1991) 247-265
TOP- M Erne, On the cardinalities of finite topologies and the number of
TOP antichains in partially ordered sets, Disc Math 35 (1981) 119-133
TOP table of labeled posets 1..8
TOP- M Erne, Struktur- und Anzahlsformeln fuer Topologien auf endlichen
TOP Mengen, Manuscripta Math. 11 (1974) 221-259
TOP- J. W. Evans, F. Harary and M. S. Lynn; On the computer enumeration of
TOP finite topologies; Comm. Assoc. Computing Mach. 10 (1967), 295--298.
TOP- L Comtet, Advanced Combinatorics, (1974), p229 Ex.
TOP table of labeled topologies 1..9
TOP- L Comtet, Recouvrements, bases de filtre et topologies d'un ensemble fini,
TOP C. R. Acad. Sci. Paris 262 A (1966) 1091-1094
TOP tables of labeled posets and topologies 1..6
TOP- Das, Shawpawn Kumar: Jour. ACM 24 (1977) 676-692
TOP- Rodionov. V.I. MR#83k:05010 T(12) and T0(12) calculated (Russ)
TOP- Borevich, Z.I. MR#83K:05004b k==l (mod p-1) => T0(k)==T0(l) (mod p) (Russ)
TOP- Davison, Asymptotic Enumeration of Partial Orders,
TOP Congressus Numerantium 53 (1986) 277-286 (labeled partial orders)
TOP He evaluates the double sum of Kleitman and Rothschild.
TOP P(n) = (1+O(1/n)) Sqrt[2/(Pi n)] 2^(n^2/4 + 3n/2) c(n)
TOP c(n) = sum_{k in Z} 2^(-(k+1/2)^2) for n even
TOP c(n) = sum_{k in Z} 2^(-k^2) for n odd
TOP for the unlabeled case see Proemel.
TOP- Congressus Numerantium, 8 (1973) 180,
TOP Table T(n): n=1..7
TOP- R. Bumby, R. Fisher, H. Levinson and R. Silverman; Topologies on
TOP Finite Sets; Proc. 9th S-E Conf. Combinatorics, Graph Theory, and
TOP Computing (1978), 163--170
TOP- P. Renteln, ``On the enumeration of finite topologies'', Journal of
TOP Combinatorics, Information, and System Sciences, 19 (1994) 201-206
TOP- P. Renteln, ``Geometrical Approaches to the Enumeration of Finite Posets:
TOP An Introductory Survey'', Nieuw Archief voor Wiskunde, 14 (1996) 349-371
TOP- R W Robinson, Countng labeled acyclic digraphs, 239-273,
TOP in: New directions in the theory of graphs, F Haray, Academic Press 1973
TOP- Dave Rusin (rusin@math.niu.edu)
TOP http://www.math.niu.edu/~rusin/known-math/point-set.top/finite.top
PAC: Trickpack
PAC- Euclides 69 (1993) 92 [646]
PAC 2 different trick packings for the box: (Euclides and Nob)
PAC- P. van Delft and J. Botermans,
PAC Creative Puzzles of the World, 1977
PAC (German: Denkspiele der Welt, Deutsche Bearbeitung Eugen Oker, 1977
PAC Section: The dissected block (the T. H. O'Beirne box)
PAC- V(3a,3b,3c) + V(a,b,c) = V(2b,2c,7a) = 28abc, V-Increment = 1/27
PAC [ -3, 2, 0 ]-1 [ 9, 6, 4 ]
PAC [ 0, -3, 2 ] = [ 14, 9, 6 ] = M
PAC [ 7, 0, -3 ] [ 21, 14, 9 ]
PAC (a,b,c) = M * (d_a,d_b,d_c). All vectors are column-vectors.
PAC + (a,b,c) = (4,6,9) = M * (0,0,1) (Haba)
PAC V(12,18,27) + V(4,6,9) = V(12,18,28)
PAC several rearrangements for the small box possible as: 3a=2b, 3b=2c.
PAC + (a,b,c) = (6,9,14) = M * (0,1,0) (T. H. O'Beirne)
PAC V(18,27,42) + V(6,9,14) = V(18,28,42)
PAC a small box (18,28,41) with hole (1,14,18) is possible too.
PAC + (a,b,c) = (9,14,21) = M * (1,0,0) (sio)
PAC V(27,42,63) + V(9,14,21) = V(28,42,63)
PAC + (a,b,c) = (10,15,23) = M * (0,1,1)
PAC V(30,45,69) + V(10,15,23) = V(30,46,70)
PAC + (a,b,c) = (13,20,30) = M * (1,0,1)
PAC V(39,60,90) + V(13,20,30) = V(40,60,91)
PAC + (a,b,c) = (15,23,35) = M * (1,1,0)
PAC V(45,69,105) + V(15,23,35) = V(46,70,105)
PAC + (a,b,c) = (19,29,44) = M * (1,1,1) (Euclides)
PAC V(57,87,132) + V(19,29,44) = V(58,88,133)
PAC + (a,b,c) = (108,164,249) = M * (4,6,9) (sio)
PAC maximal increment factor: 1 + 1/81
PAC + (a,b,c) = (164,249,378) = M * (6,9,14) (sio)
PAC maximal increment factor: 1 + 1/81
PAC + (a,b,c) = (249,378,574) = M * (9,14,21) (sio)
PAC maximal increment factor: 1 + 1/81
PAC - 8+1 Boxes: {a, 2a} * {b, 2b} * {c, 2c} plus (a,b,c).
PAC- V(3a,5b,6b) + V(a,2b,3b) = V(4b,4a,6b) = 96abb, V-Increment = 1/15
PAC [ -3, 4 ]-1 [ 5, 4 ]
PAC [ 4, -5 ] = [ 4, 3 ] = M
PAC (a,b) = M * (d_a,d_b). All vectors are column-vectors.
PAC + (a,b) = (4,3) = M * (0,1)
PAC V(12,15,18) + V(4,6,9) = V(12,16,18)
PAC + (a,b) = (5,4) = M * (1,0) (Nob)
PAC V(15,20,24) + V(5,8,12) = V(16,20,24)
PAC + (a,b) = (9,7) = M * (1,1) (sio)
PAC V(27,35,56) + V(9,14,21) = V(28,36,56)
PAC + (a,b) = (31,24) = M * (3,4) (sio)
PAC V(93,120,144) + V(31,48,72) = V(96,124,144)
PAC maximal increment factor: 1 + 1/30
PAC + (a,b) = (40,31) = M * (4,5) (sio)
PAC V(120,155,186) + V(40,62,93) = V(124,160,186)
PAC maximal increment factor: 1 + 1/30
PAC + (a,b) = (26,20) : Koffer packen (Hannappel)
PAC - 6+1 Boxes: {a, 2a} * ({3b} * {2b, 4b} and {2b} * {6b}) plus (a,2b,3b).
PAC- V(3a,b,5c) + V(a,b,c) = V(b,4c,4a) = 16abc, V-Increment = 1/15
PAC [ -3, 1, 0 ]-1 [ 5, 5, 4 ]
PAC [ 0, -1, 4 ] = [ 16, 15, 12 ] = M
PAC [ 4, 0, -5 ] [ 4, 4, 3 ]
PAC + (a,b,c) = (14,43,11) = M * (1,1,1) (sio)
PAC V(42,43,55) + V(14,43,11) = V(43,44,56)
PAC + (a,b,c) = (46, 141, 36) = M * (3,3,4)
PAC maximal increment factor: 1 + 1/45
PAC + (a,b,c) = (60, 184, 47) = M * (4,4,5)
PAC maximal increment factor: 1 + 1/45
PAC + (a,b,c) = (235, 720, 184) = M * (15,16,20)
PAC maximal increment factor: 1 + 1/45
PAC - 2+1 Boxes: {3a} * {b} * {c, 3c} plus (a,b,c).
PAC- V(3a,2b,5c) + 2abc = V(b,4c,8a) = 32abc, V-Increment = 1/15
PAC + (a,b,c) = (92, 282, 144)
PAC maximal increment factor: 1 + 1/45
PAC- V(7c,3a,3b) + V(a,b,c) = V(4a,4b,4c) = 64abc, V-Increment = 1/63
PAC [ 4, 0, -7 ]-1 [ 16, 21, 28 ]
PAC [ -3, 4, 0 ] = [ 12, 16, 21 ] = M
PAC [ 0, -3, 4 ] [ 9, 12, 16 ]
PAC + (a,b,c) = (65,49,37) = M * (1,1,1) (sio)
PAC V(259,195,147) + V(65,49,37) = V(260,196,148)
PAC + (a,b,c) = (760, 573, 432) = M * (16,12,9) (sio)
PAC maximal increment factor: 1 + 1/189
PAC + (a,b,c) = (1008, 760, 573) = M * (21,16,12) (sio)
PAC maximal increment factor: 1 + 1/189
PAC + (a,b,c) = (1337,1008, 760) = M * (28,21,16) (sio)
PAC maximal increment factor: 1 + 1/189
PAC- V(5a,5b,5c) + V(a,b,c) = V(3b,6c,7a) = 126abc, V-Increment = 1/125
PAC [ -5, 3, 0 ]-1 [ 25, 15, 18 ]
PAC [ 0, -5, 6 ] = [ 42, 25, 30 ] = M
PAC [ 7, 0, -5 ] [ 35, 21, 25 ]
PAC + (a,b,c) = (58,97,81) = M * (1,1,1) (sio)
PAC V(290,485,405) + V(58,97,81) = V(291,486,406)
PAC + (a,b,c) = (1128, 1885, 1575) = M * (15,25,21) (sio)
PAC V(5640,9425,7875) + V(1128,1885,1575) = V(5655,9450,7896)
PAC maximal increment factor: 1 + 1/375
PAC + (a,b,c) = (1350, 2256, 1885) = M * (18,30,25) (sio)
PAC maximal increment factor: 1 + 1/375
PAC- V(5a,5b,5c) + 3abc = V(4b,4c,8a) = 128abc, V-Increment = 3/125
PAC + (a,b,c) = (400, 504, 635)
PAC maximal increment factor: 1 + 1/125
EXC: Exchange (Register Swap without tmp-memory)
EXC- Dennis Shasha, Codes, Puzzles, and Conspiracy, Freeman (1992), Ex. 37
EXC exchange 2 registers, cyclic permute 7 registers (without minimal. proof)
EXC- Peter van der Linden, Expert C Programming - Deep C Secrets,
EXC Prenctice Hall (SunSoft Press) (1994), p 287-289
EXC The Limitations of Program Proofs
EXC- sio: S_n is a subgroup of GL(n,F2).
EXC S_n is generated by transpositions, GL(n,F2) is generated by 'exoring'.
EXC Elementary Matrices E_i,j : E_i,j(n,m) = (n == i)(m == j)
EXC I_i,j := I + E_i,j with i != j.
EXC Generate GL(n,F2) = < {I_i,j | i != j} >
EXC Problem: Is #transpositions = 3*#exorings for permutaion-matrices?
EXC Problem: How long is a worst case minimal representation?
EXC Infomation theoretic bound is: c * n^2 / log(n)
EXC trivial upper bound (gauss elimination): n^2
EXC- Kiltinen, How few transpositions suffice? ... you already know
EXC M. Mag. 67:1 (Feb 1994)
EXC- Letter: M. Mag. 68:1 (Feb 1995) 79 (How few transpositions suffice?)
EXC- Jacobson, Lectures in Abstract Algebra I (1951) p 36 (transpositions)
EXC- Sury, An Integral Polynomial, M. Mag. 68:2 (Apr 1995) 134-135
EXC Let a1 < a2 < ... < a(n) integers
EXC Product_(i>j) (a(i) - a(j))/(i - j) is an integer.
EXC Product_(i>j) (x^(a(i)-a(j)) - 1)/(x^(i-j) - 1) is an integral polynom.
ROT: roots of a polynomial
ROT For any cubic with three different irrational real roots,
ROT the roots are NOT elements of the real-radical field. (H"older, Isaacs)
ROT- A new approach to solving the cubic, Cardan's solution revealed
ROT The Math. Gazette 77 (1993) 354-359
ROT- H\"older. Math. Annalen 38, 307 (1891)
ROT- I. M. Isaacs. Am. Math. Monthly 92, 571 (1985)
ROT- B. K. Spearman, K. S. Williams; Characterization of Solvable Quintics
ROT x**5 + a*x + b, AMM 101 (Dec. 1994) 986-992
ROT- H. B. Griffiths, A. E. Hirst; Cubic equations, or where did the
ROT examination question come from?, AMM 101 (Feb. 1994) 151-161
ROT- Polynome 4. Grades mit ganzzahligen Null- und Extremstellen --
ROT pythagoreische Zahlentripel, PM 35 (1993) 39
ROT a^2 + b^2 = c^2 <-> f = (x-a-b)(x-a+b)(x+a-b)(x+a+b),
ROT f'= 4x(x-c)(x+c)
ROT- College Math. J. 29 (1998), no. 4, 276-277, Michael D. Hirschhorn
ROT The Fundamental Theorem of Algebra, (homotopy proof)
ROT- Fine & Rosenberg, The fundamental theorem of Algebra, Springer UTM
ROT give at least 8 different proofs...
KnT: Knight Tours
KnT- Uncrossed Knight's Tours (MG9SA.15.6)
KnT- Knights of the Square Table (MG8SA.14)
KnT- Hamiltonian path, knight's tours (MG6SA.10.)
KnT- W. Ahrens, Mathematische Unterhaltungen und Spiele I, 2nd Edition (1910)
KnT Chap11: Roesselsprung 319-398, contains many references
KnT- H. Schubert, Mathematische Mussestunden, Chap29: Roesselspruenge
KnT- A. Kowalewski: Die Buntordnung Heft 1; JFM 48 (1922) 70
KnT see also: JFM 56 (1930) 97-98, JFM 45 356, 46 110, 47 59, 13 153-154
KnT- A. Kowalewski: Topologische Bedeutung von Buntordnungssystemen,
KnT Wien Ber., 126 (1917) 963-1007; JFM 46 (1920) 110
KnT- A. De Polignac; Note sur la marche du cavalier dans un echiquier,
KnT Bulletin de la Societe Mathematique de France, Paris, IX (1881) 17-24
KnT cyclic Knight's Tours n>=6, n even; JFM 13 (1881) 153-154
KnT- W.W. Rouse Ball, H.S.M. Coxter, Mathematical Recreations and Essays,
KnT Chap6: Chess-Board Recreation (re-entrant paths on a chess-board)
KnT- I. Stewart, Another fine math you've got me into, Freeman, 1992,
KnT Chap7: Knights of the flat Torus
KnT- D. E. Knuth, Leaper graphs (r,s-knights), is the 2*(r+s) square
KnT Hamiltonian (for (r,s)=1)? Checked for r+s<=15.
KnT The Math. Gazette 78 (1994) 274-296
KnT- Figured Tours (Knight, Rook), Math. Spectrum 25:1 (1992) 16-20
KnT special pattern: e.g. 6*6 knight tour with 1 and 4 in the same row
KnT- Hamiltonische Linien, MU 24:3 (1978) 5-40
KnT dodecahedron unique circle, Petersen, knight tours
KnT Sachs = Sci Am 10:1992 118-20 (I. Stewart) planar graph criteria
KnT- roesselspruenge 6*6, Elem. Math. 43 (1988) 1-17, Zbl 734.05011
KnT- (4r+2)^2 roesselspruenge (rot 90 sym), PM 34:4 (1992) 178-180
KnT- geschlossene roesselspuenge (4r)^2, PM 34 (1992) 229-231
KnT- Number Pattern I, JoRM 10 (1977/78) 195-201, knight tour symmetry
KnT- das Springerproblem, Informatik Spektrum 15:3 (1992) 169-172
KnT- Hamiltonian Checkerboards, Math. Mag. 57 (1984) 291-294
KnT ham. circles in C_n * C_m. When are left or up moves sufficient?
KnT- Circuits in Directed Grids, Math Intell. 13:3 (1991) 40-43
KnT ham. circles in C_n * C_m. When are left or up moves sufficient?
KnT- Which Rectangles have a Knight's Tour, M. Mag. 64:5 (1991)325-332
KnT complete inductive solution for Knight's circuits on rectangles
KnT- Knight's circuits and tours, Ars Combinatoria 17A (1984) 145-167
KnT the Knight graph of the 4*4 and 3*6 board has crossing number 2.
KnT every finite concatenation of 4*4 board (>1) has a knight's tour
KnT- Die Rundtour der Narren, Math.Kabinet.3.3.7
KnT- Knight's Tour, mathematik-lehren, 53 (1992) 67-70
KnT- Touring M*N Boards (#hamiltonian tours), JoRM 27:4 (1995) 267-276
KnT- Conrad, Hindrichs, Morsy, Wegener; Solution of the knight's Hamiltonian
KnT path problem on chessboards, Disc Appl Math 50 (1994) 125-134
KnT for n>=6 all s-t path exists (s, t have right colors)
KnT- Kyek, Parberry, Wegener; Bounds on the number of knight's tours,
KnT Tech. Report 555, (1994), Univ. Dortmund, Informatik II
KnT 1.3535 <= Tours(n,n)^(1/n^2) <= 4 (lower bound for large n)
KnT- M. Loebbing, I. Wegener; The number of Knight's Tours Equals
KnT 33439123484294 - Counting with Binary Decission Diagrams,
KnT Tech. Report 589, (1995), Univ. Dortmund, Informatik II (13 pages)
KnT undirected tours, symmetry group has not been factored out
KnT (Number is false, as not a multiple of 4.)
KnT- M. Loebbing, I. Wegener; The number of Knight's Tours Equals
KnT 33439123484294 - Counting with Binary Decission Diagrams,
KnT Electronic J. Combin., 3 (1996) R5 (4 pages) (Number is false)
KnT- B. McKay; Knight's Tours of an 8*8 Chessboard, Australian Nat. Univ. 1997
KnT The number of undirected tours is 13267364410532 and the number of
KnT equivalence classes under rotation and reflection is 1658420855433.
KnT There are 608233 equivalence classes of symmetrical tours.
LiG: Little Games
LiG- Philip D. Straffin, Graphing the Berry Patch,
LiG UMAP J. 17:2 (Sum 1996) 117-122
LiG Berry Path Scramble: B W the game is drawn
LiG W o B
LiG B|W
LiG- Philip D. Straffin, Position Graphs for Pong Hau K'i and Mu Torere
LiG Math Mag 68 (1996) 382-386 (Corr fig. 69 (1996) 65)
LiG Pong Hau K'i: B | B Mu Torere: W W W both games are drawn
LiG (B starts) o W o B
LiG W W B B B
LiG- Philip D. Straffin - straffin@beloit.edu
ABB:
ABB- AMM = American Mathematical Monthly
ABB- BdW = Bild der Wissenschaft
ABB- CACM = Comunications of the ACM
ABB- CFF = Cubism For Fun, Dutch Cubus Club
ABB- CMJ = The College Mathematical Journal
ABB- DMV = Deutsche Mathematische Vereinigung
ABB- JFM = Jahrbuch "uber die Fortschritte der Mathematik
ABB http://www.emis.de/projects/JFM/
ABB- JMD = Journal f"ur Didaktik der Mathematik
ABB- JoRM = Journal of Recreational Mathematics
ABB- JoCT = Journal of Combinatorial Theory
ABB- LMS = London Mathematical Society
ABB- LNiCT = Lecture Notes in Computer Science, Springer
ABB- LNiM = Lecture Notes in Mathematics, Springer
ABB- MAA = Mathematical Association of America
ABB- MG = The Mathematical Gazette
ABB- M In = Math Intell = The Mathematical Intelligenzer
ABB- MM = M Mag = Mathematical Magazine
ABB- MNU = Der mathematisch naturwissenschaftliche Unterricht
ABB- MR = Mathematical Reviews
ABB- MSem = Mathematische Semesterberichte
ABB- MU = MU - Der Mathematikunterricht
ABB- PM = Praxis der Mathematik
ABB- SciAm = Scientific American
ABB- TAOCP = The Art of Computer Programming (Knuth)
ABB- TCS = Journal of Theoretical Computer Science
ABB- TYCMJ = The Two Year College Mathemetical Journal
ABB- Wurzel= (a german Math magazine)
ABB- XXX = xxx Math Archive Front at http://front.math.ucdavis.edu/
ABB- ZBl = Zentralblatt der Mathematik
ABB- ZOR = Zeitschrift fuer Operations Research