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Abstract.    A recent adaptive algorithm, named Ant System, is introduced and used to solve the problem of job
shop scheduling. The algorithm was first introduced by Dorigo, Maniezzo and Colorni in 1991 and is derived
from the foraging and recruiting behaviour observed in an ant colony. It can be applied to combinatorial
optimisation problems. This paper outlines the algorithm’s implementation and performance when applied to job
shop scheduling. The algorithm parameter settings seem to play a crucial role in its eff iciency and determine the
quality of solutions. In this paper we present some statistic analysis for parameter tuning and we compare the
quality of obtained solutions for well -known benchmark problems in job shop scheduling.

1. Introduction

The study from biology of an ant colony shows that
its behaviour is highly structured. Knowing that a
single ant has limited capacities (i.e., a single ant is
not capable of communicating directly with other
ants about past experiences), it is curious to know
how the ants co-operate so as to achieve such a
complex and organised behaviour of the whole
colony. Maybe one of the most studied co-
operation phenomena among ants is the so-called
foraging and recruiting behaviour ([1, 2, 3 and 4]).
This behaviour describes how ants explore the
world in search of food sources, then find their way
back to the nest and indicate the food source to the
other ants of the colony. To do so, ants use an
indirect way to communicate through tracks of
pheromone, a chemical substance that they can
deposit and are attracted to. Each ant, upon finding
a food source, deposit’s fractions of pheromone on
the way back to the nest so as to indicate the source
to the others. The accumulated pheromone serves
as a distributed memory, shared by all the other
ants and marks in terms of probabilit y the most
visited paths between the nest and the food source.

Ants encountering an obstacle between their nest
and a food source initially choose a random
direction of travel. Once a path has fractions of
pheromone deposited, it wil l influence the choice of
the next ant confronting the same obstacle, as this
path weights more in terms of probabilit y, due to
the attracting pheromone. This is ill ustrated in
figure 1.

Figure 1 Positive feedback with accumulated
and evaporated pheromone converges to a
minimum distance path.

The effect of a shorter path between the source and
nest results in having more ants travelling between
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them within the same time-span, thus accumulating
more pheromone. Also taking into account the fact
that fractions of pheromone evaporate over time,
longer paths wil l be more penalised. This positive
feedback with accumulated and evaporated
pheromone wil l automaticall y eliminate the
probabilit y of future ants choosing the longest path.

Inspired by this behaviour, Dorigo ([1, 2,
3 and 4]) developed an algorithm named Ant
System, which uses a population of co-operating
agents, communicating by means of a distributed
and shared memory and which can be applied to
combinatorial optimisation problems. This paper
presents an application of the algorithm applied to
the problem of job shop scheduling. The goal of
this work is to obtain a properly tuned set of the
algorithm parameters such that good quality
solutions wil l be obtained. The outline of this paper
is as follows: section 2 introduces the Ant System
algorithm, section 3 pay’s some attention to the
problem of job shop scheduling and section 4 deals
with the question of how to fit the job shop problem
to the Ant System. Afterwards, in section 5,
convergence properties of the algorithm are
investigated so as to obtain a tuned set of
parameters. Section 6 presents the obtained
simulation results with some benchmark problems.
Finally, in section 7, some conclusions are made.

2. Ant System

The basic principle of the algorithm is to have a
population of l artificial ants that cycli cal construct
solutions to a combinatorial optimisation problem.
The algorithm imposes a definition of the
optimisation-problem into a graph, in which the
ants move along every branch from one node to
another node and so construct paths representing
solutions. Starting in an initial node, every ant
chooses the next node in its path according to the
State Transition Rule:
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The parameters α and β tune the relative
importance in probability of the amount of
pheromone versus the heuristic distance. Most
likely, the definition of the problem will impose
some restrictions on the sequence of nodes that
generate valid solutions. If, given a partial
constructed solution, a next node is not allowed to
be chosen, its probability is set to zero. According
to this rule, nodes that have a higher amount of
pheromone and that are closer to the actual node (in
terms of heuristic distance) will have a higher
probability to be scheduled in the partial solution.
The heuristic distance performs a local greedy
search.

When all the ants have constructed a
complete solution, that is a sequence of visited
nodes resulting in a complete solution to the
problem, the cycle is complete and a pheromone
update rule is applied. Pheromone Global Update
Rule:
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This rule consists of two actions. First a fraction of
pheromone on all edges in the graph is evaporated.
Second an increment of pheromone is given to
those edges that are scheduled within the solution
of the ant that has the best-so-far solution to the
problem. This increase is inversely proportional to
some given evaluation function. In the next cycle
those edges belonging to the best-so-far solution
will have higher probability, thus exploring this
information performs a certain kind of
reinforcement learning. On the other hand,
evaporation prevents searching in the
neighbourhood of a local minimum. The evolution
of the algorithm is supposed to cyclically minimise
the evaluation function.

A more biological approach for updating
would be to apply an increment to the visited edges
of all the ants in the colony, inversely proportional
to their individual evaluation function value. Ants
that have better solutions would deposit a higher
amount of pheromone on the edges in their path.
However simulation has shown that update with an
elitist strategy (best so far only) results in a better
performance of the algorithm (see section 6). These
alternatives are maintained in the developed
simulator, which allows one to apply the
pheromone update rule with alternatively the best-
so-far ant, all the ants of the population or the two
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combined. In this case, more importance can be
given to the best-so-far ant by incrementing the
number of elitist ants (parameter e). In the
following sections, the best-so-far strategy is taken
as default.

3. Job Shop Scheduling

This paper refers to a standard model of the n-job,
m-machine job shop problem, denoted by:

n/m/G/Cmax,

The parameter G indicates that jobs are connected
with technological production rules, describing
their processing order of machines. This order is
specified in the technological matrix T. An example
for T could be:
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A row of the matrix represents a job, specifying the
sequence of machines to be scheduled. Each
element of the matrix T is referred to as an
operation. The processing time of each operation is
specified by matrix P:
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The matrices T and P together define a job shop
problem. The parameter Cmax stands for the
minimum make-span of the job-shop and indicates
the performance measure used to minimise (the so-
called evaluation function). Given some solution of
a job shop problem, the value of Cmax is then
equivalent to the production time that it takes to
finish all the jobs, taking into account the imposed
restrictions of machine occupation.

4. Implementation

Using Ant System for Job Shop Scheduling, it is
necessary to define the problem into a graph. To do
so, consider the technological matrix T given in the
previous section. In [1], an idea is proposed for how
to define the job shop into a graph. This is
illustrated in figure 2, for the example of the
2/3/G/Cmax job shop defined by T.

Figure 2: Definition of a 2/3/G/Cmax job shop
problem into a graph.

The nodes of the graph represent the operations
given by matrix T (e.g. O11 indicates element T11

and equals machine M1). The nodes belonging to
the same job are connected by the unidirectional
horizontal edges, respecting the technological order
of processing a job. The rest of the edges are bi-
directional. The maximum number of nodes of a
n*m job shop is given by:

Nodes=(n*m)+1

In order to initiate the scheduling, an origin is
added from which the first operation of the first
chosen job is accessed. If |O| indicates the number
of operations in the job shop then the number of
edges in the graph is given by:
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Each edge has associated a pair of values {τij, dij}
representing its amount of pheromone and the
heuristic distance between its nodes. The
processing time of the operation addressed to by
node j can be used as a heuristic distance between
node i and node j,. This value can be easily looked
up in the P matrix. As this heuristic does not take
into account the restrictions implied by a possible
occupation of machines, the heuristic could turn out
to be non-admissible and therefore could easily
misdirect local search. Taking into account the
restrictions of machine occupation, another
heuristic is defined, which is called the completion
time. For both heuristics, an important note is that
in the case of bi-directional edges, their values are
not symmetric. The distance for branching from
node i to node j generally is not equal to the
distance when branching in opposite direction.
Therefore the Ant System has to deal with a non-
symmetric graph which implies that the amount of
pheromone on bi-directional edges also has to be
defined for both directions. The pheromone
intensity is defined as a two-dimensional look-up
table in memory, with size ([n*m]*[n*m]) so as to
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allow non-symmetric values. The algorithm’s
spatial complexity (memory) then is given by the
size of this table. The spatial complexity of Ant
System for Job Shop Scheduling is given by:

Spatial complexity = O([n*m][n*m])

Another important topic is how to guarantee that
the Ant System generates a population of feasible
solutions, respecting the technological order of the
jobs. Each ant simply finds a path trough the graph
and will come up with a solution that is a sequence
of scheduled operations, represented by a sequence
of visited nodes. The algorithm must verify that
each ant chooses the nodes in an order that does not
violate the technological order of jobs. This is
implemented by the idea described by Bierwith in
[5], proposing a solution for generating feasible
solutions with a genetic algorithm applied to job
shop scheduling. Accordingly, each ant is equipped
with three lists: one li st denominated G which
contains the nodes not yet visited, one li st
denominated S which contains the nodes allowed to
be visited in the current iteration (as to verify
technological order) and a li st denominated tabu
containing the nodes already visited. Initially all
ants will be placed in the origin of the graph and
referring to the example of figure 2 the lists for the
k´th ant will l ook li ke:

Gk={O11, O12, O13, O21,O22., O23}
Sk={O11, O21}
Tabuk={}

After completion of one cycle, each ant should have
in its tabu-list a sequence of all the nodes (except
for the origin) visited only once and in an order
verifying the technological order of the jobs, thus
indicating a solution for the job shop problem.
Because the algorithm uses a population of artificial
ants that every cycle needs to construct a solution,
the algorithm temporal complexity (computational
time) is given by:

Time complexity = O(NC*l*[n*m])

Where NC is the number of cycles, l represents the
number of ants and [n*m] equals the number of
operations defined by the job shop problem.

5. Parameter Tuning

This section presents an analysis of the
performance of Ant System for job shop scheduling
in different regions in the parameter space. As in
most evolutionary algorithms, the parameter set for

which the algorithm performs a desirable
convergence is rather problem specific and has to
be determined empirical, based on statistic tools, in
the absence of a mathematical model.

We think it is useful to consider the
parameter-space as composed of two independent
sub-spaces. We therefor classify the Ant System
parameters into two groups: those that influence the
state transition (α and β) and those that determine
the pheromone update (the evaporation constant ρ
and the number of ants m). From simulation it
appears that the parameters Q (pheromone
allocation per unity of distance) and τ0 (initial
pheromone level) are of lit tle importance to the
algorithm’s performance. As default value of Q, the
average of a job’s production-time is calculated
from all the jobs, without taking into account the
imposed restrictions. The default value of τ0 can be
set to any number. As to gain some insight into the
influence of the parameters α and β, a first test
criterion is defined, which simply tests for which
sets { α, β} the algorithm converges to the a priori
known optimum of a selected problem. The job
shop selected is the Muth-Thompson 6/6/G/Cmax
benchmark problem taken from [6], with known
optimum at Cmax=55. During the simulations the
values of the evaporation constant and the number
of ants were maintained constant (ρ=0.01, l=
number of nodes) with values empirically proven to
allow the algorithm to converge. The results are
given in table 1.

αα=0 αα=1 αα=2 αα=3 αα=4
ββ=0 >1000 >1000 >1000 >1000 >1000

ββ=1 >1000 >1000 >1000 >1000 >1000

ββ=2 >1000 >1000 >1000 >1000 >1000

ββ=3 >1000 >1000 >1000 >1000 >1000

ββ=4 >1000 614 >1000 150 >1000

ββ=5 >1000 326 442 249 >1000

ββ=6 >1000 437 314 202 228

ββ=7 >1000 283 247 148 267

ββ=8 >1000 310 260 170 121

ββ=9 >1000 293 187 164 96

ββ=10 >1000 186 203 132 96

Table 1: Number of cycles necessary to reach
optimum for different values of αα and ββ. Results
for each pair (αα,ββ) are given by the median over
five simulation of the Muth-Thompson
6/6/G/Cmax problem (maximum number of
cycles NCmax=1000, ρρ=0.01, l=36).

In the case of α=0 and β=0, every ant simply
branches randomly from one node to the other, for
which the algorithm is expected not to find the
optimum. For all those values { α=0, β} the ant
colony does not use communication through
pheromone and every ant simply performs a
heuristic greedy search in probabilit y. As could be
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expected the algorithm is not able to find the
optimum within the maximum number of cycles.
For all those values {α, β=0} the ant colony does
not make use of local heuristic information and
every ant directs its search by the pheromone
intensity levels. Also in this case the algorithm was
not able to find the optimum which states the
necessity of local heuristic information. For the rest
of the values {α, β} that did not reach the optimum
within the maximum number of cycles, the
algorithm directed the search to a local minimum of
the evaluation function, not able to recover the
optimum. Analysis of the bottom line (β=10) of
table 1 shows a declination of the number of cycles
for increasing α. One might suspect this trend to
continue for α>4.

αα=5 αα=6 αα=7 αα=8 αα=9 αα=10

ββ=10 79 93 73 77 50 49

Table 2: Number of cycles necessary to reach
optimum for different values of αα with ββ=10.
Results are given by the median over five
simulation of the Muth-Thompson 6/6/G/Cmax
problem (maximum number of cycles
NCmax=1000, ρρ=0.01, l=36).

Indeed this fact is confirmed and simulation shows
that a minimum number of cycles can be obtained
with the settings: α=10, β=10.

Once established the values of α and β, the
influence of the parameters that define the
pheromone update can be investigated. Figure 3
shows the performance of the algorithm for
different values of the evaporation constant ρ.
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Figure 3: Influence of different setting of the
evaporation coefficient on the average number
of cycles to reach optimum. Averages are taken
over five runs of the Muth-Thompson
6/6/G/Cmax problem. (Maximum number of
cycles NCmax=1000, αα=10, ββ=10, l=36).

In the case of ρ=0.1, the algorithm does not always
find the optimum. This is due to the fact that when
the evaporation rate is too high, only the edges
belonging to the path with the early encountered
local minimum receive pheromone update every

cycle. The rest of the edges have their pheromone
rapidly decaying to zero with increasing number of
cycles, due to the evaporation. Each new cycle, this
effect is amplified and the ants will be more and
more attracted to the edges that receive pheromone
update, thus searching in the small neighbourhood
of the local minimum. Figures 4 and 5 show the
pheromone intensity levels after 25 cycles with
good and bad parameter settings for ρ.

Figure 4: Pheromone intensity level after 25
cycles for good evaporation coefficient setting
(αα=10, ββ=10, ρρ=0.01). Search is still exploring
the state space with more probability for the
local maximums in pheromone intensity level.

Figure 5: Pheromone intensity level after 25
cycles for bad evaporation coefficient setting
(αα=10, ββ=10, ρρ=0.1). Search is in the small
neighbourhood of the early encountered peaks
of pheromone intensity.

The small variations of the pheromone intensity
obtained with the good evaporation settings will be
amplified more in probability by the state transition
rule according to parameter α>1. The probability of
nodes not belonging to these local maximums in
pheromone intensity maintains relevance. For the
bad settings, this amplification results in
probabilistic elimination of those nodes that do not
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belong to the early found peaks in pheromone
intensity.

The influence of the number of ants in the
colony on the algorithm’s performance is shown in
figure 6.
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Figure 6: Influence of the number of ants on the
rate of convergence. Average number of cycles
to reach optimum is taken over five runs of the
6/6/G/Cmax Muth-Thompson problem.
(Maximum number of cycles NCmax=1000, αα=10,
ββ=10, ρρ=0.01).

The algorithm’s rate of convergence is calculated as
the average number of cycles to reach the optimum
multiplied by the number of ants. From figure 6 it
follows that the optimal number of ants must be
somewhere near to the number of nodes in the
graph (n*m).

6. Results

After optimisation of the parameters in the previous
section for the specific Muth-Thompson
6/6/G/Cmax job shop problem, this section shows
some simulation results of the Ant System to some
more complex benchmark problems, with the set of
tuned parameters as obtained in the previous
section 5. However, first some typical runs of the
Muth-Thompson 6/6/G/Cmax job shop problem are
ill ustrated.

Figure 7 shows a typical run of the Ant
System, comparing the evolution of the evaluation
function belonging to the best-so-far ant for
different parameter settings.

Figure 7: Typical run for the Muth-Thompson
6/6/G/Cmax job shop problem. The importance
of pheromone communication once again is
confirmed.

From figure 8 it follows that the elitist strategy
(introduced in section 4) performs better then its
biological counterpart in which all the ants apply a
pheromone update to the edges in their path,
inverse proportional to their evaluation.

Figure 8: Comparison between two different
pheromone-update strategies.

Pheromone update with all the ants (the more
biological counterpart) results in worse
convergence of the evaluation function of the
population.

From examining the evaluation of the
entire population, it can be concluded that at a
given cycle the search gets trapped in the small
neighbourhood of a local minimum (figure 9).
Variations in the evaluation of the whole colony
mean that the ants are exploring in different
directions over the search space. To prevent the
search for getting trapped, a new operator is
introduced called variation that substitutes the State
Transition rule when triggered.
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The effect of different percentages of variation is
ill ustrated in figure 9.

Figure 9: Applying the variation operator helps
to open the search. Ants will be forced to explore
more in search space.

Without the variation the population’s evaluation
function converges to a constant level which means
that all the ants are choosing the same path. In the
case that this path minimises the evaluation
function and finds the optimum, this may be
considered a desirable situation. If not so, the
search gets trapped in a local minimum. A
biological explanation for introducing the variation
parameter could be seen as some saturation in
pheromone perception for each ant. For a given
percentage of variation per cycle, the ants will be
insensible to pheromone and thereby guide their
search by heuristic information only.

The Ant System was partially tested on
three well -known benchmark problems provided by
[6]. The first test was the 6/6/G/Cmax Muth-
Thompson problem that was always solved to
optimality Cmax=55 (as described in the previous
sections). The second test was the 10/10/G/Cmax

Muth-Thompson problem with known optimum for
Cmax=930. The third test was the 20/10/G/Cmax

Lawrence problem “ la26”, with known optimal for
Cmax=1218. The obtained results for Ant System
applied to these problems are presented in table 3
for different parameter setting for e and v.

Problem Cmax e v % within
optimum

10/10/G/Cmax 1052 1 0 13%
10/10/G/Cmax 1006 1 1 8%
10/10/G/Cmax 1063 1 10 14%
10/10/G/Cmax 1019 2 2 9.5%
10/10/G/Cmax 1054 3 1 13.3%
10/10/G/Cmax 1041 4 3 12%
20/10/G/Cmax 1604 1 0 31%
20/10/G/Cmax 1607 1 1 31.9%
20/10/G/Cmax 1535 3 1 26%

Table 3: Obtained results for the 10/10/G/Cmax

Muth-Thompson and 20/10/G/Cmax Lawrence
problems. (Maximum number of cycles
NCmax=2000, αα=10, ββ=10, l=n*m).

7. Conclusions

This paper showed how to solve the problem of job
shop scheduling with the Ant System. The goal of
this work was to gain some insight into the
influence of different parameter-settings for Ant
System, which seem to play an important role on its
performance and determine the qualit y of solutions.
Deriving good statistics helped a lot to gain insight
into the system’s behaviour and classifying the
parameter-space into two independent sub-spaces is
a useful way to start experimenting. From this work
we conclude that the parameters α and β of the
State Transition Rule, determine the convergence
rate of the algorithm as well as the quality of the
obtained solution. To allow the algorithm to
converge to a satisfactory solution, the evaporation
constant ϕ has to be well tuned so as to guide the
search into favoured regions in the search space and
at the same time prevent searching in small
neighbourhoods of local optima. The introduction
of the variation-parameter v (similar to the mutation
operator in genetic algorithms) allows to guide the
search more into sub-optimal regions of the search-
space without loosing the algorithm’s capability of
recovering from dead-ends by imposing to also
explore other directions in the search-space. Once
the parameters are properly tuned, the algorithm
converges satisfactory, thus accomplishing the
stated goal of this work. The Ant System was
partiall y tested for more complex job shop
problems. In these cases it could always find an
optimum within 8% of the best known optimum for
the 10/10/G/Cmax Muth-Thompson problem and
within 26% for the 20/10/G/Cmax Lawrence
problem. Reminding that tests were only executed
partiall y (NCmax=2000) due to the algorithms time-
complexity, this can said to be promising.
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The main advantage of the Ant System is
that it easil y deals with combinatorial optimisation
problems defined on a non-symmetric graph. The
only adaptation to be made for dealing with non-
symmetry is the expansion of the pheromone table.
This increases its spatial complexity (memory) but
does not necessaril y require extra computational
power. On the other hand it is exactly the Ant
System’s time-complexity that can be said to be its
major disadvantage. The Ant system time
complexity in comparison with genetic algorithms
increases exponentiall y with the population size.
This is due to the fact that within every cycle, the
Ant System needs to construct solutions for all
elements in the population, where a genetic
algorithm parts from a population with already
constructed solutions. Therefore we suggest a
genetic algorithm approach to those combinatorial
optimisation problems that can be defined by
symmetric graphs.
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