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Abstract. A recent adaptive dgorithm, named Ant System, isintroduced and used to solve the problem of job
shop scheduling. The algorithm was firgt introduced by Dorigo, Maniezzo and Colorni in 191 and is derived
from the foraging and recruiting behaviour observed in an ant colony. It can be applied to combinatorial
optimisation problems. This paper outlines the algorithm’s implementation and performance when applied to job
shop scheduling. The algorithm parameter settings ®em to play a crucia rolein its efficiency and determine the
quality of solutions. In this paper we present some statistic analysis for parameter tuning and we mmpare the
quality of obtained solutions for well -known benchmark problems in job shop scheduling.

1. Introduction

The study from biology of an ant colony shows that
its behaviour is highly structured. Knowing that a
single ant has limited cgpacities (i.e, asingle ait is
not cgpable of communicaing drealy with other
ants about past experiences), it is curious to know
how the ants co-operate so as to achieve such a
complex and aganised behaviour of the whole
colony. Maybe one of the most studied co-
operation phenomena anong ants is the so-called
foraging and recruiting behaviour ([1, 2, 3 and 4]).
This behaviour describes how ants explore the
world in seach of food sources, then find their way
back to the nest and indicate the food source to the
other ants of the wlony. To do so, ants use a
indired way to communicae through tracks of
pheromone, a chemicd substance that they can
deposit and are attracted to. Each ant, upon finding
a foad source deposit’s fractions of pheromone on
the way back to the nest so as to indicate the source
to the others. The accumulated pheromone serves
as a distributed memory, shared by al the other
ants and marks in terms of probability the most
visited paths between the nest and the food source

Ants encountering an obstacle between their nest
and a food source initially choose a random
diredion of travel. Once apath has fractions of
pheromone deposited, it will influence the choice of
the next ant confronting the same obstacle, as this
path weights more in terms of probability, due to
the dtracting pheromone. This is illustrated in
figure 1.
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Figure 1 Postive feedback with accumulated

and evaporated pheromone converges to a
minimum distance path.

The effect of a shorter path between the source and
nest results in having more ants travelling between



them within the same time-span, thus accumulating
more pheromone. Also taking into acoount the fact
that fractions of pheromone evaporate over time,
longer paths will be more pendised. This positive
feedback with accumulated and evaporated
pheromone will automaticdly €iminate the
probability of future ants choasing the longest path.
Inspired by this behaviour, Dorigo ([1, 2,
3 and 4) developed an dgorithm named Ant
System, which uses a population of co-operating
agents, communicaing by means of a distributed
and shared memory and which can be applied to
combinatorial optimisation problems. This paper
presents an application of the algorithm applied to
the problem of job shop scheduling. The goal of
this work is to oltain a properly tuned set of the
algorithm parameters auch that good quality
solutions will be obtained. The outline of this paper
is as follows. sedion 2 introduces the Ant System
algorithm, sedion 3 pay's sme attention to the
problem of job shop scheduling and sedion 4 dedls
with the question of how to fit the job shop problem
to the Ant System. Afterwards, in sedion 5
convergence properties of the dgorithm are
investigated so as to olain a tuned st of
parameters. Sedion 6 presents the obtained
simulation results with some benchmark probems.
Finally, in sedion 7, some @nclusions are made.

2. Ant System

The basic principle of the dgorithm is to have a
population of | artificial ants that cyclical construct
solutions to a combinatorial optimisation probem.
The dgorithm imposes a definition of the
optimisation-problem into a graph, in which the
ants move along every branch from one node to
another node axd so construct paths representing
solutions. Starting in an initiad node, every ant
chooses the next node in its path according to the
Sate Transition Rule:
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d; - heuristicdistance between node, and node;

p; - probability to branchfromnode, to node;

The parameters a and [ tune the rdative
importance in probability of the amount of
pheromone versus the heurigic distance. Most
likely, the definition of the problem will impose
some restrictions on the sequence of nodes that
generate valid solutions. If, given a partid
constructed solution, a next node is not allowed to
be chosen, its probahility is set to zero. According
to this rule, nodes that have a higher amount of
pheromone and that are closer to the actual node (in
terms of heurigic distance) will have a higher
probability to be scheduled in the partia solution.
The heurigic distance performs a local greedy
search.

When al the ants have constructed a
complete solution, that is a sequence of visited
nodes resulting in a complete solution to the
problem, the cycle is complete and a pheromone
update rule is applied. Pheromone Global Update
Rule:

T; (t+n) = (1- p) [F;; (t) + p[AT; (t +n)
O Q
_0
ATii (t+n) = Of cvatuation (beSI _S0_ far)
B). otherwise
p - evaporation coefficient
Q- quantity of pheromoneper unity of distance

Thisrule consigts of two actions. Firgt a fraction of
pheromone on all edges in the graph is evaporated.
Second an increment of pheromone is given to
those edges that are scheduled within the solution
of the ant that has the best-so-far solution to the
problem. This increase is inversely proportional to
some given evaluation function. In the next cycle
those edges belonging to the best-so-far solution
will have higher probability, thus exploring this
information perfforms a certan kind  of
reinforcement learning. On the other hand,
evaporation  prevents  searching in  the
neighbourhood of a local minimum. The evolution
of the algorithm is supposed to cyclically minimise
the evaluation function.

A more biological approach for updating
would be to apply an increment to the visited edges
of all the ants in the colony, inversely proportiona
to their individual evaluation function value. Ants
that have better solutions would deposit a higher
amount of pheromone on the edges in their path.
However simulation has shown that update with an
elitist strategy (best so far only) results in a better
performance of the algorithm (see section 6). These
aternatives are maintained in the developed
simulator, which alows one to apply the
pheromone update rule with aternatively the best-
so-far ant, al the ants of the population or the two



combined. In this case, more importance can be
given to the best-so-far ant by incrementing the
number of ditig ants (parameter €). In the
following sections, the best-so-far strategy is taken
as default.

3.  Job Shop Scheduling

This paper refers to a standard model of the n-job,
m-machine job shop problem, denoted by:

N/M/G/Crax,

The parameter G indicates that jobs are connected
with technological production rules, describing
their processing order of machines. This order is
specified in the technological matrix T. An example
for T could be:

(M1 M2 M3C

“Ha2 m3 miF

A row of the matrix represents a job, specifying the
sequence of machines to be scheduled. Each
eement of the matrix T is refered to as an
operation. The processing time of each operation is
specified by matrix P
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The matrices T and P together define a job shop
problem. The parameter C,. Stands for the
minimum make-span of the job-shop and indicates
the performance measure used to minimise (the so-
called evaluation function). Given some solution of
a job shop problem, the value of C,. is then
equivalent to the production time that it takes to
finish al the jobs, taking into account the imposed
restrictions of machine occupation.

4. Implementation

Using Ant System for Job Shop Scheduling, it is
necessary to define the problem into a graph. To do
so, consider the technological matrix T given in the
previous section. In [1], an ideais proposed for how
to define the job shop into a graph. This is
illugrated in figure 2, for the example of the
2/3/GICe job shop defined by T.

Figure 2: Definition of a 2/3/G/Cpa job shop
problem into a graph.

The nodes of the graph represent the operations
given by matrix T (e.g. Oy indicates element Ty
and equals machine M1). The nodes belonging to
the same job are connected by the unidirectional
horizontal edges, respecting the technological order
of processing a job. The rest of the edges are bi-
directional. The maximum number of nodes of a
n*mjob shop is given by:

Nodes=(n*m)+1

In order to initiate the scheduling, an origin is
added from which the first operation of the first
chosen job is accessed. If |O| indicates the number
of operations in the job shop then the number of
edgesin the graph is given by:

WL

of=n*m

Each edge has associated a pair of values {T;;, d}
representing its amount of pheromone and the
heurigic distance between its nodes. The
processing time of the operation addressed to by
node j can be used as a heurigtic distance between
node i and node j,. This value can be easily looked
up in the P matrix. As this heurigic does not take
into account the restrictions implied by a possible
occupation of machines, the heuristic could turn out
to be non-admissible and therefore could easily
misdirect local search. Taking into account the
restricions of machine occupation, another
heurigtic is defined, which is called the completion
time. For both heurigtics, an important note is that
in the case of bi-directional edges, their values are
not symmetric. The distance for branching from
node i to node j generdly is not egua to the
distance when branching in opposite direction.
Therefore the Ant System has to deal with a non-
symmetric graph which implies that the amount of
pheromone on bi-directiona edges also has to be
defined for both directions. The pheromone
intensity is defined as a two-dimensiona 1ook-up
table in memory, with size ([n*m]*[n*m]) so as to



alow non-symmetric values. The dgorithm's
spatial complexity (memory) then is given by the
size of this table. The spatial complexity of Ant
System for Job Shop Scheduling is given by:

Spatial complexity = O([n*m][n*m])

Another important topic is how to guarantee that
the Ant System generates a population of feasible
solutions, respeding the technological order of the
jobs. Each ant smply finds a path trough the graph
and will come up with a solution that is a sequence
of scheduled operations, represented by a sequence
of visted nodes. The agorithm must verify that
each ant chooses the nodes in an order that does not
violate the technological order of jobs. This is
implemented by the idea described by Bierwith in
[5], proposing a solution for generating feasible
solutions with a genetic algorithm applied to job
shop scheduling. Accordingly, each ant is equipped
with three lists. one list denominated G which
contains the nodes not yet visted, one list
denominated S which contains the nodes all owed to
be visted in the current iteration (as to wverify
technological order) and a list denominated tabu
containing the nodes dready visited. Initialy all
ants will be placed in the origin of the graph and
referring to the example of figure 2 the lists for the
k'th ant will | ook like:

Gi={O11, O1, O43, 021,02, Oz}
S={O11, Oz}
Tabu={}

After completion of one cycle, each ant should have
in its tabu-list a sequence of all the nodes (except
for the origin) visited only once and in an order
verifying the technological order of the jobs, thus
indicating a solution for the job shop problem.
Because the algorithm uses a population of artificial
ants that every cycle neels to construct a solution,
the dgorithm temporal complexity (computational
time) isgiven by:

Time complexity = O(NC*I*[ n*m])

Where NC is the number of cycles, | represents the
number of ants and [n*m] equals the number of
operations defined by the job shop problem.

5. Parameter Tuning

This sedion presents an analysis of the
performance of Ant System for job shop scheduling
in different regions in the parameter space As in
most evolutionary algorithms, the parameter set for

which the algorithm peforms a desirable
convergence is rather problem spedfic and has to
be determined empirical, based on statistic tods, in
the absence of a mathematical model.

We think it is useful to consider the
parameter-space as composed of two independent
sub-spaces. We therefor classfy the Ant System
parametersinto two groups. those that influencethe
state transtion (a and ) and those that determine
the pheromone update (the evaporation constant p
and the number of ants m). From smulation it
appeas that the parameters Q (pheromone
allocation per unity of distance and 1o (initid
pheromone level) are of little importance to the
algorithm’s performance As default value of Q, the
average of a job's production-time is cdculated
from all the jobs, without taking into account the
imposed restrictions. The default value of 1o can be
set to any number. As to gain some insight into the
influence of the parameters o and B, a first test
criterion is defined, which smply tests for which
sets {a, B} the algorithm converges to the a priori
known optimum of a seleded probdem. The job
shop seleded is the Muth-Thompson 6/6/G/Cmax
benchmark problem taken from [6], with known
optimum at C,=55. During the smulations the
values of the evaporation constant and the number
of ants were maintained congant (p=0.01, I=
number of nodes) with values empirically proven to
allow the dgorithm to converge. The results are
givenintable 1.

a=0 a=1 a=2 a=3 a=4

B=0 >1000 >1000 >1000 >1000 >1000
p=1 >1000 >1000 >1000 >1000 >1000
B=2 >1000 >1000 >1000 >1000 >1000
B=3 >1000 >1000 >1000 >1000 >1000
B=4 >1000 614 >1000 150 >1000
B=5 >1000 326 442 249 >1000
B=6 >1000 437 314 202 228
B=7 >1000 283 247 148 267
B=8 >1000 310 260 170 121
B=9 >1000 293 187 164 96
B=10 >1000 186 203 132 96

Table 1: Number of cycles necessary to reach
optimum for different values of a and 3. Results
for each pair (a,B) are given by the median over
five dmulation of the Muth-Thompson
6/6/G/Cmax problem (maximum number of
cycles NC,,x=1000, p=0.01, |=36).

In the case of a=0 and B=0, every ant simply
branches randomly from one node to the other, for
which the algorithm is expeded not to find the
optimum. For all those values {a=0, B} the at
colony does not use @mmunicaion through
pheromone and every ant smply performs a
heurigtic greedy search in probability. As could be



expected the algorithm is not able to find the
optimum within the maximum number of cycles.
For dl those values {a, =0} the ant colony does
not make use of local heuristic information and
every ant directs its search by the pheromone
intensity levels. Also in this case the algorithm was
not able to find the optimum which states the
necessity of local heuristic information. For the rest
of thevalues {a, B} that did not reach the optimum
within the maximum number of cycles, the
algorithm directed the search to alocal minimum of
the evaluation function, not able to recover the
optimum. Analysis of the bottom line (B=10) of
table 1 shows a declination of the number of cycles
for increasing a. One might suspect this trend to
continue for a>4.

a=5 a=6 a=7 a=8 a=9 a=10

B=10 | 79 | 93 | 73 | 77 50 49

Table 2. Number of cycles necessary to reach
optimum for different values of a with B=10.
Results are given by the median over five
simulation of the Muth-Thompson 6/6/G/Cmax
problem (maximum number of cycles
NCax=1000, p=0.01, 1=36).

Indeed this fact is confirmed and smulation shows
that a minimum number of cycles can be obtained
with the settings: a=10, f=10.

Once established the values of a and 3, the
influence of the parameters that define the
pheromone update can be investigated. Figure 3
shows the performance of the algorithm for
different values of the evaporation constant p.
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Figure 3: Influence of different setting of the
evaporation coefficient on the average number
of cyclesto reach optimum. Averages are taken
over five runs of the Muth-Thompson
6/6/G/Cmax problem. (Maximum number of
cycles NCp=1000, a=10, =10, 1=36).

In the case of p=0.1, the agorithm does not always
find the optimum. Thisis due to the fact that when
the evaporation rate is too high, only the edges
belonging to the path with the early encountered
local minimum receive pheromone update every

cycle. The rest of the edges have their pheromone
rapidly decaying to zero with increasing number of
cycles, due to the evaporation. Each new cycle, this
effect is amplified and the ants will be more and
more attracted to the edges that receive pheromone
update, thus searching in the small neighbourhood
of the local minimum. Figures 4 and 5 show the
pheromone intensity levels after 25 cycles with
good and bad parameter settings for p.

FPheromone table, evaporation coefficient=0.01

pheromone intensity level

index node i oo index nods |

Figure 4: Pheromone intensity level after 25
cycles for good evaporation coefficient setting
(a=10, B=10, p=0.01). Search is till exploring
the state space with more probability for the
local maximumsin pheromone intensity level.

Pheromaone table, evaporation coefficient=05

pheromane intensity lewel

index node i 00 index node j

Figure 5: Pheromone intensity level after 25
cycles for bad evaporation coefficient setting
(a=10, B=10, p=0.1). Search is in the small
neighbourhood of the early encountered peaks
of pheromone intensity.

The small variations of the pheromone intensity
obtained with the good evaporation settings will be
amplified more in probability by the state transition
rule according to parameter a>1. The probability of
nodes not belonging to these local maximums in
pheromone intensity maintains relevance. For the
bad settings, this amplification results in
probabilistic elimination of those nodes that do not



belong to the ealy found peaks in pheromone
intensity.

The influence of the number of antsin the
colony on the dgorithm’s performanceis shown in
figure 6.
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Figure 6: Influence of the number of ants on the
rate of convergence. Average number of cycles
to reach optimum istaken over five runs of the
6/6/G/Cmax M uth-Thompson problem.
(Maximum number of cycles NCp=1000, a=10,
=10, p=0.01).

The dgorithm’ srate of convergenceis cdculated as
the average number of cycles to reach the optimum
multiplied by the number of ants. From figure 6 it
follows that the optimal number of ants must be
somewhere nea to the number of nodes in the

graph (n*m).

6. Results

After optimisation of the parametersin the previous
sedion for the spedfic Muth-Thompson
6/6/G/Cmax job shop problem, this sedion shows
some simulation results of the Ant System to some
more owmplex benchmark problems, with the set of
tuned parameters as obtained in the previous
sedion 5. However, first some typical runs of the
Muth-Thompson 6/6/G/Cmax job shop problem are
ill ustrated.

Figure 7 shows a typical run of the Ant
System, comparing the evolution of the evaluation
function belonging to the best-so-far ant for
different parameter settings.
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Figure 7: Typical run for the Muth-Thompson
6/6/G/Cmax job shop problem. The importance
of pheromone communication once again is
confirmed.

From figure 8 it follows that the ditist strategy
(introduced in sedion 4) performs better then its
biological counterpart in which al the ants apply a
pheromone update to the edges in their path,
inverse proportional to their evaluation.
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Figure 8: Comparison between two different
pheromone-update strategies.

Pheromone update with al the ants (the more
biological  counterpart) results in  worse
convergence of the evaluation function of the
population.

From examining the evaluation of the
entire population, it can be @ncluded that a a
given cycle the seach gets trapped in the small
neighbourhood of a local minimum (figure 9).
Variaions in the evaluation of the whole wlony
mean that the aits are eploring in different
diredions over the search space To prevent the
search for getting trapped, a new operator is
introduced call ed variation that substitutes the State
Transition rule when triggered.



[StateTransitionRule,n > v

jOnodesallowed dij
n- randormumberbetweer{o..]]
Vv - percentageof variatior[o..]]

The dfed of different percentages of variation is
illugtrated in figure 9.

3000

2800 J L
2600

2400

Evaluation of population

r
)
=1
=]

2000

Alfa=10 | Beta=10, wariation=0

1800
[1}

a 10 15 20 25 30 35 40 45 50
S*Cycles

Figure 9: Applying the variation operator helps
to open the search. Antswill be forced to explore
mor e in sear ch space.

Without the variation the population’s evaluation
function converges to a mnstant level which means
that al the ants are choosing the same path. In the
case that this path minimises the evaluation
function and finds the optimum, this may be
considered a desirable situation. If not so, the
search gets trapped in a loca minimum. A
biological explanation for introducing the variation
parameter could be seen as some saturation in
pheromone perception for each ant. For a given
percentage of variation per cycle, the ants will be
insensible to pheromone and thereby guide their
search by heuristic information only.

The Ant System was partially tested on
threewell-known benchmark problems provided by
[6]. The first test was the 6/6/G/C.x Muth-
Thompson problem that was aways <lved to
optimality C»=55 (as described in the previous
sedions). The sewnd test was the 10/10/G/Ciax
Muth-Thompson problem with known optimum for
Crax=930. The third test was the 20/10/G/Cy
Lawrence problem “la26", with known optimal for
Cex=1218 The obtained results for Ant System
applied to these problems are presented in table 3
for different parameter setting for e andv.

Problem Crax | € |V | % within
optimum
10/10/G/Crsx | 1052 |1 |0 | 13%
10/10/G/Crex | 1006 |1 |1 | 8%
10/10/G/Crsx | 1063 |1 | 10| 14%
1010/G/Crx | 1019 [ 2 | 2 | 9.5%
10/10/G/Crex | 1054 [ 3 |1 | 13.3%
10/10/G/ICrsx | 1041 (4 |3 | 12%
2010/G/Cex | 1604 |1 [0 | 31%
2010/G/ICrex | 1607 |1 [ 1 | 319%
2010/G/Crex | 1535 |3 |1 | 26%

Table 3: Obtained results for the 10/10/G/Cax
Muth-Thompson and 20/10/G/C.»« Lawrence
problems. (Maximum number of cycles
NCnax=2000, =10, =10, I=n*m).

7. Conclusons

This paper showed how to solve the problem of job
shop scheduling with the Ant System. The goal of
this work was to gain some indght into the
influence of different parameter-settings for Ant
System, which seem to play an important role on its
performance and determine the quality of solutions.
Deriving goaod statigtics helped a lot to gain insight
into the system’'s behaviour and classfying the
parameter-space into two independent sub-spacesis
a useful way to start experimenting. From this work
we onclude that the parameters o and 3 of the
State Trangtion Rule, determine the mnvergence
rate of the dgorithm as well as the quality of the
obtained solution. To alow the agorithm to
converge to a satisfactory solution, the evaporation
constant ¢ has to be well tuned so as to guide the
search into favoured regionsin the search space and
a the same time prevent seaching in small
neighbourhoads of local optima. The introduction
of the variation-parameter v (similar to the mutation
operator in genetic algorithms) alows to guide the
search more into sub-optimal regions of the seach-
space without loasing the dgorithm’s capability of
recovering from dead-ends by imposing to aso
explore other diredions in the search-space Once
the parameters are properly tuned, the algorithm
converges stisfactory, thus accomplishing the
stated goal of this work. The Ant System was
partialy tested for more @mplex job shop
problems. In these @ses it could always find an
optimum within 8% of the best known optimum for
the 10/10/G/C.o Muth-Thompson probem and
within 26% for the 20/10/G/C,. Lawrence
problem. Reminding that tests were only executed
partially (NC,»=2000 due to the agorithms time-
complexity, this can said to ke promising.



The main advantage of the Ant System is
that it easily deals with combinatorial optimisation
problems defined on a non-symmetric graph. The
only adaptation to be made for dealing with non-
symmetry is the expansion of the pheromone table.
This increases its spatial complexity (memory) but
does not necessarily require extra cmputationa
power. On the other hand it is exactly the Ant
System’s time-compl exity that cen be said to beits
major disadvantage. The Ant system time
complexity in comparison with genetic algorithms
increases exponentialy with the population size.
Thisis due to the fact that within every cycle, the
Ant System neels to construct solutions for al
elements in the population, where a genetic
algorithm parts from a population with aready
constructed solutions. Therefore we suggest a
genetic algorithm approach to those cmbinatorial
optimisation problems that cen be defined by
symmetric graphs.
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