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Abstract— This paper presents a new sensor based global
Path Planner which operates in two steps. In the first step the
safest areas in the environment are extracted by means of a
Voronoi diagram. In the second step Fast Marching Method is
applied to the Voronoi extracted areas in order to obtain the
shortest path. In this way the trajectory obtained is the shortest
between the safe possible ones. This two step method combines an
extremely fast global planner operating on a simple sensor based
environment modeling, while it operates at the sensor frequency.
The main characteristics are speed and reliability, because the
map dimensions are reduced to a unidimensional map and this
map represents the safest areas in the environment for moving
the robot.

I. INTRODUCTION
Robot motion planing problems have been an important

research topic since the 80’s. A considerable number of
researchers have been working extensively to develop efficient
methods to overcome these problems. This issue has been dealt
with in two general ways: one approach was concentrated in
solving motion planing problems using a previously known
global environment or obstacle information and the robot
characteristics, while the second approach has concentrated in
planing motion using local sensor information and the robot
characteristics.

When we want to move a robot from one location to
another it is necessary to use a global map to calculate a
global trajectory. Mobile robot path planning approaches can
be divided into five classes [1]. Roadmap methods extract
a network representation of the environment and then apply
graph search algorithms to find a path. Exact cell decomposi-
tion methods construct non-overlapping regions that cover free
space and encode cell connectivity in a graph. Approximate
cell decomposition is similar, but cells are of predefined shape
(e.g. rectangles) and do not exactly cover free space. Potential
field methods differ from the other four in that they consider
the robot as a point evolving under the influence of forces
that attract it to the goal while pushing it from obstacles.
Navigation functions are commonly considered a special case
of potential fields.

In order to calculate the trajectory in the global map,
this paper presents a new Path Planning method based in
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the combination of Voronoi Diagram and the Fast Marching
Method.

The Fast Marching Method has been applied to Path Plan-
ning [Sethian:1], and their trajectories are of minimal distance,
but they are not very safe because the path is too close to
obstacles resulting in jerky trajectories.

In order to improve the safety of the trajectories calculated
by the Fast Marching Method, it is possible to give two
solutions:

The first possibility, in order to avoid unrealistic trajectories,
produced when the areas are narrower than the robot, the
segments with distances to the obstacles and walls less than
half the size of the robot need to be removed from the Voronoi
Diagram.

The second possibility, used in this work, is to dilate the
objects and walls in a security distance that ensures that the
robot neither collides with obstacles and walls nor accepts
passages narrower than the robot size.

The last step is to calculate the trajectory in the image
generated by the Voronoi Diagram using the Fast Marching
Method. Then, the obtained path verifies the smooth and safety
considerations required for mobile robot path planning.

The advantages of this method are the easy implementation,
the speed of the method and the quality of the trajectories. The
method works in 2D and 3D, and it can be used at a global
or local scale, in this case operating with sensor information
instead of using an a priori map (sensor based planning).

II. INTRODUCTION TO THE VORONOI DIAGRAM AND
SKELETON

It has been observed that the skeleton is embedded in
the Voronoi diagram of a polygonal shape [2]. Similarly,
the skeleton of a shape described by a discrete sequence
of boundary points can be approximated from the Voronoi
diagram of the points [3]. Both approaches yield a connected,
Euclidean skeleton, but the latter is perhaps more appropriate
for images since point sequences are more easily obtained
than polygons. Although it is not true in general, if one
restricts the shapes to those which are morphologically open
and closed with respect to a finite-sized disk, the resulting
skeleton approximated from the Voronoi diagram of a finite
sampling of the boundary is close to the actual skeleton. In



this case, the approximation error can be quantified, and be
made arbitrarily close to zero.

A. Voronoi Diagram and Skeleton.

Consider the set F , closed in R2. Associated with each point
in F is its Voronoi region.

VF (p) = {q : d(q, p) ≤ d(q, F/{p})} (1)

The Voronoi diagram of F is the union of the boundaries
of all the Voronoi regions.

V D(F ) =
⋃
p∈F

∂VF (p). (2)

A maximal disk in G is one which is contained in G while
not being contained by any other disk in G. Assume that all
maximal disks in G are bounded. The skeleton σ(G) is the set
of centers of maximal disks in G. One desires the skeleton to
be a ”graph-like” retraction of the original set. In general, this
cannot be assured due to the presence of infinitesimal detail.
However, it is possible to eliminate these fine structures by
assuming a reasonable subclass: the regular sets.

A compact set, K, is said to be r − regular [4] if it is
morphologically open and closed with respect to a disk of
radius r > 0. It is possible to show that ∂K is a disjoint
union of closed simple C2 curves with curvature magnitude
no greater than 1/r . The skeleton of the interior of K is
well-behaved and graph-like.

B. Skeleton-based generalization algorithm

One issue that needs improvement is the existence of
spurious hairs on the skeletons generated. This is a well-known
artifact of skeleton generation, where any irregularities in the
boundary generate unwanted skeleton branches. Ogniewicz [?]
attempted to reduce skeletons formed from raster boundary
points to a simple form by pruning the leaf nodes of the
skeleton until a specified minimum circumcircle was achieved,
but with the development of the one-step crust and skeleton
algorithm this process may be greatly simplified. Alt and
Schwartzkopf [5], as well as Blum [6] showed that leaf nodes
of a skeleton correspond to locations of minimum curvature on
the boundary. For a sampled boundary curve this means that
three adjacent sample points are cocircular, with their centre at
the skeleton leaf. If we wish to simplify the skeleton we should
retract leaf nodes to their parent node location. This means
that we now have four cocircular points instead of three. The
retraction is performed by taking the central point of the three
defining the leaf node, and moving it towards the parent node
of the skeleton until it meets the parent node circumcircle.
This smooths outward-pointing salients in the boundary of
the object. The same should be done from the other side of
the boundary, retracting those salients also. This may displace
some of the points involved in the first smoothing step, but as
the process is convergent a small number of iterations suffices
to produce a smoothed curve having the same number of points
as the original, but with a simplified skeleton.

III. INTRODUCTION TO THE LEVEL SET METHOD AND
THE FAST MARCHING METHOD

The level set method was devised by Osher and Sethian as
a simple and versatile method for computing and analyzing
the motion of the interface in two or three dimensions. The
goal is to compute and analyze the subsequent motion of the
interface under a velocity field. This velocity can depend on
position, time, the geometry of the interface and the external
physics. The interface is captured for later time as the zero
level set of a smooth (at least Lipschitz continuous) function.
Topological merging and breaking are well defined and easily
performed.

The original level set idea of Osher and Sethian (Osher [7])
for tracking the evolution of an initial front γ0 as it propagates
in a direction normal to itself with a given speed function V .
The main idea is to match the one-parameter family of fronts
{γt}t≥0, where γt, is the position of the front at time t, with
a one-parameter family of moving surfaces in such a way that
the zero level set of the surface always yields the moving
front. To determine the front propagation, we then need to
find and solve a partial differential equation for the motion of
the evolving surface. To be more precise, let γ0 be an initial
front in Rd, d ≥ 2 and assume that the so-called level set
function φ : Rd × R+ → R is such that at time t ≥ 0 the
zero level set of φ is the front γt. We further assume that
φ(x; 0) = ±d(x); where d(x) is the distance from x to the
curve γ0. We use plus sign if x is inside 0 and minus if x is
outside. Let each level set of φ along its gradient field with
speed V . This speed function should match the desired speed
function for the zero level set of φ. Now consider the motion
of, e.g., the level set{

x ∈ Rd : φ(x; t) = 0
}

. (3)

Let x(t) be trajectory of a particle located at this level set
so that

φ(x(t); t) = 0. (4)

The particle speed dx/dt in the direction n normal to the
level set is given by the speed function V , and hence

dx

dt
· n = V. (5)

where the normal vector n is given by

n = − ∇φ

|∇φ|
. (6)

This is a vector pointing outwards, giving our initialization
of u. By the chain rule

∂φ

∂t
+

dx

dt
· ∇φ = 0. (7)

Therefore φ(x; t) satisfies the partial differential equation
(the level set equation)



∂φ

∂t
− V |∇φ| = 0, (8)

and the initial condition

φ(x; t = 0) = ±d(x). (9)

This is called an Eulerian formulation of the front propaga-
tion problem because it is written in terms of a fixed coordinate
system in the physical domain.

If the speed function V is either always positive or always
negative, we can introduce a new variable (the arrival time
function) T (x) defined by

φ(x, T (x)) = 0. (10)

In other words, T (x) is the time when φ(x; t) = 0. If
dx
dt 6= 0, then T will satisfy the stationary Eikonal equation

V |∇T | = 1, (11)

coupled with the boundary condition

T |d(x)=0 = 0. (12)

The advantage of this formulation 11 is that we can solve
it numerically by the fast marching method [8], which is
precisely what we will do in this paper.

Fig. 1. Map of the room used in the first experiment with its Voronoi
Diagram.

Summing up, the central mathematical idea is to view the
moving front γt as the zero level set of the higher-dimensional
level set function φ(x; t). Depending on the form of the speed
function V , the propagation of the level set function φ(x; t)
is described by the initial problem for a nonlinear Hamilton-
Jacobi type partial differential equation 7 of first or second
order.

If V > 0 or V < 0, it is also possible formulate the problem
in terms of a time function T (x) which solves a boundary
value problem for a stationary Eikonal equation 11.

Fast Marching Methods are designed for problems in which
the speed function never changes sign, so that the front

 

Fig. 2. Enlarged Voronoi Diagram of the room.

 

Fig. 3. Inverted image of the Enlarged Voronoi Diagram of the room.

Fig. 4. Trajectory calculated by Fast Marching Method in the inverted image
of the Enlarged Voronoi Diagram of the room.



is always moving forward or backward. This allows us to
convert the problem to a stationary formulation, because the
front crosses each grid point only once. This conversion to a
stationary formulation, plus a whole bunch of numerical tricks,
gives it its tremendous speed

Level Set Methods are designed for problems in which the
speed function can be positive in some places are negative in
others, so that the front can move forwards in some places
and backwards in others. While significantly slower than Fast
Marching Methods, embedding the problem in one higher
dimension gives the method tremendous generality.

Because of the nonlinear nature of the governing partial
differential equation 7 or 11, solutions are not smooth enough
to satisfy this equation in the classical sense (the level set
function and the time function are typically only Lipschitz).
Furthermore, generalized solutions, i.e., Lipschitz continuous
functions satisfying the equations almost everywhere, are not
uniquely determined by their data and additional selection
criteria (entropy conditions) are needed to pick out the (physi-
cally) correct generalized solutions. The correct mathematical
framework in which to treat Hamilton-Jacobi type equations
is provided by the notion of viscosity solutions (Crandall [9],
[10]).

After its introduction, the level set approach has been
successfully applied to a wide collection of problems that
arise in geometry, mechanics, computer vision, and manufac-
turing processes, see ( Sethian [11]) for details. Numerous
advances have been made to the original technique, including
the adaptive narrow band methodology ( Adalsteinsson and
Sethian [12]) and the fast marching method for solving the
static Eikonal equation ( Sethian [13], [11]). For further details
and summaries of level set and fast marching techniques for
numerical purposes, see ( Sethian [11]). The Fast Marching
Method is an O(n log(n)) algorithm.

IV. IMPLEMENTATION OF THE METHOD

This method operates in two steps. The first step starts with
the calculation of the Voronoi Diagram of the 2D or 3D a
priori map of the environment (which are the cells located
equidistant to the obstacles). This process is done by means
of morphological operations on the image of the environment
map. To be more precise, it is done a skeletonization with
the image techniques previously mentioned, in order to obtain
the Voronoi Diagram. After that, a dilatation is done in order
to have a thick Voronoi Diagram where to calculate the
propagation of a wave front. This is done in order to obtain two
characteristics, on one side the Voronoi Diagram has abrupt
changes of gradient, especially in nodes and in other side Fast
Marching Method used in next step, is a method designed for
more than one dimension.

This way, the enlarged Voronoi Diagram will let the Fast
Marching Method in the second step to plan the shortest
trajectory. This trajectory is obtained inside the most safe
areas provided by the enlarged Voronoi Diagram and prop-
erly smooth because the Fast Marching Method selects a
continuous path in gradient terms.Besides the path extraction

is very fast because the Fast Marching Method propagates
in an almost unidimensional curve (it is not completely uni-
dimensional due to the Voronoi Diagram is enlarged in the
perpendicular direction to the Diagram curves in some cells).

After that,it is necessary to invert the image because it
is necessary to have a viscosity map where the wave goes
faster in the clearer zones and slower in the darker ones. The
calculation of the evolution of the wave front is done with the
Fast Marching Method.

Fig. 5. Trajectory calculated by Fast Marching Method directly, without
the previous Voronoi Diagram. The trajectory is not safe because touches the
corners and walls.

Fig. 6. Raw Laser data read by the robot (Local map).

The method proposed, can also be used for sensor based
planning, working directly on a raw sensor image of the
environment, as shown in figures 7 and 8.

V. RESULTS

To illustrate the capabilities of the proposed method three
test are presented in this section. In the first test, the method is



Fig. 7. Enlarged Laser data read by the robot (Local map).

Fig. 8. Voronoi Diagram of the Enlarged Laser data read by the robot (Local
map).

Fig. 9. Trajectory calculated with Fast Marching over the Voronoi Diagram
of the Enlarged Laser data read by the robot (Local map).

applied to local environment path planing task where the laser
scanner measurement data are used to generate the trajectories.
Figures 7 to 10 illustrate the achieved good trade off between
trajectory length, distances to obstacles and smooth changes
in the trajectory. In the second test, a difficult test room
environment and the floor of the laboratory environment have
been used. Figures 1 to 5 and 11 to 12 show the capabilities
of the method to generate adequate paths on a global scale.

The last test is dedicated to illustrate the capability of
the proposed method to adapt to changing environment to
accommodate possible dynamic features of the environment
such as moving obstacles and persons in the vicinity of the
robot. During the motion, the robot observes the environment
with its laser scanner, introduces the new information in the
map and plan a new trajectory. Local observations (obstacle
in the middle of the corridor) generate modified trajectories in
order to avoid the detected obstacles. In the last figure the
obstacles detected block the corridor and the sensor based
global planner generates a completely different safe trajectory.
The dimensions of the environment are 116x14 meters (the cell
resolution is 12 cm). For this environment the first step (the
Voronoi extraction) takes 0.06 seconds in a Pentium 4 at 2.2
Ghz, and the second step (Fast Marching) takes 0.20 seconds
for a long trajectory.

The proposed method is highly efficient from a computa-
tional point of view because it operates directly over a 2D
image map (without extracting adjacency maps), and due to
the fact that Marching complexity is O(n) and the Voronoi
path calculation is also of complexity O(n), where n is the
number of cells in the environment map.

The method provides smooth trajectories that can be used at
low control levels without any additional smooth interpolation
process.

The results are shown in fig 10 (The environment map of the
Robotics Lab.) 11 and fig 12 (the path obtained after applying
the Fast Marching method to the previous Voronoi diagram
image).

VI. CONCLUSION

A new global sensor based path planner is presented in
this paper. The proposed method is able to deal simultane-
ously with both global and local planing requirements. The
advantages of the approach can be summarized in the fact
that obtained trajectories are smooth and safe and at the same
time free of local traps due to the integration of the instant
sensor information in the recalculation of the path.

The algorithm complexity is O(n), where n is the number
of cells in the environment map, which let us use the algorithm
on line.
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