(2009 Semester Project)
Exploration in a gridworld which has a cliff

Akira Imada

Most recently renewed on

October 23, 2009

1 Introduction

In this project, we study machine learning techniques such as Genetic Algorithm (GA),
artificial Neural Network (NN), Reinforcement Learning (RL), and so on, by observing
an artificial agent who travels a virtual world called a gridworld. The world has the point
for the agent to start with, the point for the agent to aim as a goal, and dangerous cliff
to which if the agent fall the agent will die.

Usually we call “agent” who are to learn to behave intelligently, and here, agent’s aim is
to reach the goal. You may, however, replace the term an “agent” with a “dog,” and the
“goal” with the “place where dog can find a sausage.” That is, a dog learns how he/she
reaches the sausage efficiently, or with a shortest path.

2 The Cliff Walking Problem

The gridworld those agents are going to explore is like a grid shown in Fig. 1. An example
of a trace of agent is also shown in the figure.

The size of the grid is M x N. Agent starts at the leftmost cell at the bottom. We now
denote it as (1,1). The goal is the rightmost cell at the bottom, that is, (1, N). The other
cells at the bottom, that is, all the cells between (1,2) and (1, N — 1) is the cliff. If agent
enters the cliff, which means the agent falls into the cliff, then agent will die. So, the aim
of the agent is to reach the goal alive.

Agent can move only one cell at a time to the neighboring cell, that is, to up, down, right
and left, unless the agent touches the border. When the agent touches the border, the
action that makes the agent cross the border is not performed but it must remain stopped
at the point waiting until the next action. For example, if the agent is at (1,3) and the

(2009 BSTU Semester Project) 2

action is to left, then agent remains at that point, and if the next action is to up, then it
moves to (1,4), or when the next action is right then agent moves to (2, 3).

o[ee

o00000 |0

[[]

oe00 [] RICICIC]
[o|e|e] |® [] o|ej0|0
[] o|e|e [] [] []
oo [] o|e] |®
[oo o (@
oe00 [] o |e
[o|o|e|0|0|0] |0
[] []
start W M goal
cliff

Figure 1: A gridworld with a cliff. Also shown an example of trace by an agent.

Or, try to begin your experiment with more simple gridworld.

Maybe you start with much more simple gridworld — with no cliff, obstacles like wall, nor
border. A huge empty gridworld only with a point to start and the goal. Agent starts
at the center of a huge gridworld, say 1000 x 1000 cells. Agents must spend one unit
of energy to move to the next cell. You set the total energy when the agent starts, for
example, 500 units. Then agent would never reach the border. Let us now represent one
cell with coordinate. Agent starts at (500,500) aiming the goal (600,600) for example.
Then agent should look for the shortest Manhattan distance to the goal point. (How many
such route do you guess?)

A0
°

MOD

D000
°

Figure 2: An empty gridworld. Also shown an example of a random walk by an agent.
Note that this is just a center part of a huge gridworld.

(2009 BSTU Semester Project) 3

3 Experiments

The result of the agent, successful or not, depends on the size of the gridworld. So
experiments would be performed by changing the size of the gridworld — from small one
to the large one — with M and N being increased, say, from 3 to 100.

You may report the number of successful run in which agent reach the goal as a function
of the size of gridworld.

You start your simulation with agent who walk the gridworld at random (Random Walk).
Then you choose at least one of the machine learning technique and study how efficient
the technique you chose is.

If you take only one technique, study it as deep as possible. If you take multiple techniques,
you may compare them with each other as for how efficient each of techniques you chose.

3.1 Random Walk

Agent move one step upwards, downwards, to the right, or to the left, if the action is
possible. If the movement is not possible due to the border of the gridworld, do nothing
and decide the next action again at random. This would be repeated until the agent
reaches the goal, or die by falling down in to the cliff. The maximum number of steps
should be determined depending on the size of the gridworld. For example agent can
move 1000 steps unless it dies during its travel.

We now look at the result of a random walk agent in an empty huge gridworld mentioned
above. See the Figure. 2.

96x96 grid 178 steps 96x96 grid 48 steps

Figure 3: In the grid-world of 96 x 96, starting from (24,24) a robot walks aiming the goal
at (72,72) of which the robot had no a-priori information. Left: A path chosen from 100
trials by random walk. Right: A route of the minimum Manhattan distance to the goal.
(Obtained by GA). Marginal area is omitted in both figures.

(2009 BSTU Semester Project) 4

Then try the gridworld with a cliff. Anyway, in both cases you will summarize your results
as follows.

Experiment 1 (1) Run the algorithm by changing random number seed from run to run.
(2) Count the number of agents who succeeded by repeating the run, say, 200 times. (3)
Show an example of the route the successful agent follows. Or, also the route the agent
failed.

3.2 Genetic Algorithm

Borrowing the idea from biological evolution, we can be solved certain types of problems
by an algorithm which we call Genetic Algorithm. In this case we express the problem we
want to solve by a vector which we call chromosome. Chromosome is made up a number
of genes. At the beginning we create a population of, say 100, chromosomes at random.
They are not good solutions at all because they are randomly created. But some are a
little better than others. So we pick up two chromosomes such that better chromosomes
are more likely to be chosen. Here, let’s choose them at random from better half of the
population. This is called truncate selection.!

Let’s call these two chromosomes parents. Then we create a child from these two parents
by crossover operation.

Standard crossover is what we call one-point-crossover. We cut two parent chromosome
at a same location at random. That is, the location to be cut is chosen by creating a
random integer from one to N — the total number of chromosome. Then we take the
first part from one parent and second part from the other parent and unite the two parts.
See the following Figure.

o A T
£
v
‘ «©

e W77

Or, yet another crossover is called uniform-crossover where we choose genes one by one
either from parents at random. See the following figure.

29222222222 222222
C0000000C0OD0O00ODOD0OO0GO

|

©22002002220202600

'We have a couple of different type of selection such as roulette-wheel-selection and tournament-
selection.

(2009 BSTU Semester Project) 5

Then by repeating this procedure (select two parent chromosomes and create one child
chromosome), say 100 times, we create the next generation. The population of the next
generation includes same number of chromosomes in the previous population. Thus we
can evolve the first random population of chromosomes generation by generation. We can
expect those chromosomes’ performance becomes better and better gradually.

We also give a mutation to introduce new genes. This is to avoid for individuals in the
population to be trapped into a local minimum. The probability for mutation to occur is
small — typically 1/number-of-genes.

Agent in GA behaves by following its chromosome

What we assume here is an evolution in an agent’s brain in advance the action. That is
a population of chromosomes in the brain will be evolved. Then after a convergence, the
agent acts following the best chromosome.

Our chromosome in this study of exploring gridworld is made up of 4 different genes move
(i) up, (ii) down, (iii) to right , and (iv) to left. See an example below.

(311113323322333131442411141)

goal

start

Figure 4: An example of a chromosome and the path represented by it.

A GA implementation

Assuming now the total energy when the agent starts is 500 units, as an example, all
chromosome has 500 genes whose value is 1, 2, 3, or 4. Then (1) Create 100 such chromo-
somes at random. This is the initial population; (2) Evaluate fitness — how good is the
chromosome — by the Manhattan distance when the route approaches to the goal with a
closest distance. Note that the smaller the fitness, the better the chromosome; (3) Sort
the population according to the fitness. With the best at the top and with the worst
at the bottom; (4) Pick up two parent chromosomes randomly from the upper half of

(2009 BSTU Semester Project) 6

the population and create one child chromosome by uniform crossover; (5) Mutate the
child chromosome by replacing the gene with 1, 2, 3, or 4 at random. This should be
done by selecting the gene to be mutated with a probability of 1/500. Not all the genes;
(6) Repeat (4) and (5) 100 times to create the next generation; (7) Record the average
fitness and maximum fitness in each generation; (8) Stop the iteration when fitness of any
chromosome becomes 0, which means the chromosome is successful, then stop the run.

The following Figure is the maximum fitness versus iteration of such a run.

Number of steps to the goal
300

96 x 96 grid
250 | i

200 i
150} i
100 + i

50+ N

(0}

o 100 200 300 200 500 600
Generation

Figure 5: Random walk evolved to be minimized by GA.

3.3 Reinforcement Learning

In Reinforcement Learning (RL), an agent takes one state at a time chosen from pre-
defined all possible states. In each of those state, also all possible actions are given one
by one with a probability of how likely the action will be made.

It might be helpful to understand this if we imagine that we sometimes in a state of being
happy or in a state of being sad. Then assume now we see a cat. Also assume the possible
actions will be (i) hug the cat; (ii) neglect; (iii) kick the cat. When we are in a happy
state, most likely action will be hug the cat, while when we are in a state of sad, we might
neglect the cat or might kick the cat.

Agent in RL behaves by following its policy

Thus, RL is defined with a set of states and a set of actions. Then, we have a table called
policy in which each of all possible pairs of state and action corresponds to its probability.
Starting with a random assignment of this probability at the beginning, the the policy
will be renewed according to the agent’s experience.

(2009 BSTU Semester Project) 7

Table 1: A toy example of policy. Agent action depends on its state.

hug and caress neglect kick

Happy 0.80 0.15 0.05
Normal 0.20 0.70 0.10
Unhappy 0.10 0.50 0.40

Q-learning

States of our current study of agent’s exploration in a gridworld is the cell in which the
agent is located. So we have M x N different states. The possible actions is either up,
down, right and left.

To choose the action in one state, we employ what we call e-greedy strategy. That is, we
choose an action at random with probability € (a pre-fixed small value such as 0.1) and
the action with the highest value in the Q-table with probability 1 — e.

One method of renewing the policy table is called Q-learning. Assume now the state of
the agent at time ¢ is s; and the action policy table gives is a;.

Q(st;a1) = Q(s¢,a1) + afresn + ymax Q(8t11,a) — Q(s,ar) },

where max, Q(st+1,a) is the action with the highest value in the state of s;41 in the Q-
table, « is called learning ratio which determines how this renewal influence the over all
learning, and ~ is called discount rate which determines the importance of the reward
received in the future. Anyway both value takes a value between 0 and 1. Try your
experiment by changing these two parameters. Reward at time t is expressed by r;. In
our case, r —t is -10 when the agent tried to cross border, -500 when the agent falls into
the cliff, +500 when agents reaches to the goal, and all other empty cell gives the agent
-1.

Note that s;11 is automatically determined if an action a; is performed at the state s;.
For example, if the action is up at the state of (4, 3), then the next state will be (4,4).

This process of selection and update the Q-table is repeated until the goal state is reached.
This is called epoch. This epoch is repeated from one agent to the next until the Q-table
will not be changed any more, that is, until the Q-table becomes stable.

3.4 Ant Colony Algorithm

I have never seen, that artificial ant colony challenge this cliff walking problem. Hence if
your simulation with artificial ant colony successfully, you may be the first in the world.

(2009 BSTU Semester Project) 8

Ant Colony Algorithm is ...

3.5 Neural Network

In order to challenge agent with Neural Network might be very tough. So, just an ob-
servation of the agent moving with neural networks but before learning procedure in the
gridworld with out border, obstacle, nor cliff — a huge empty gridworld starting from the
center of the world.

3.5.1 McCulloh-Pits Neurons with Sigmoid
3.5.2 Spiking Neurons

Integrate & Fire Model
Amang others, we use an Integrate-and-Fire model of spiking neurons following Florian
(2007) in which dynamics of neurons is according to:

wi(t) = uy + {ui(t — 6t) — u,} exp(—dt/7) + Zw,j it —6t),

J

assuming we simulate the dynamics in discrete time with a time step ot for the sake of
simplicity, where u;(t) is membrane potential of the i-th neuron at time step ¢, u, is resting
potential, 7 is decay time constant, and f;(¢) is 1 if j-th neuron has fired at time step ¢ or
0 otherwise. When membrane potential exceeds firing threshold 6 it is reset to the reset
potential which is equal to the resting potential u, here.?

References

[1] R. S. Sutton and A G. Barto (2005) “Reinforcement Learning: An Introduction.” A
Bradford Book. The MIT Press. pp. 185-186

2Florian’s setting is u, = -70 mV, § = -54 mV, 7 = 20 ms and 6¢ = 1 ms.

