
An Integrated Software Immune System: A framework for Automated Network
Management, System Health, and Security

Michael Gilfix

Tufts University
Medford, Massachusetts, 02155

Email: mgilfi01@tufts.edu

Abstract

Maintaining the integrity of large-scale networks
is becoming an increasingly daunting task as
networks expand at an unprecedented rate. The
majority of present network monitoring and
maintenance tools require a substantial
investment in human resources to sift through
vast quantities of information, to detect
problems, and manually resolve them. Computer
Immunology is the solution to ever-increasing
network maintenance overhead. This paper seeks
to define computer normality through a policy-
driven process and provide a framework for
conserving network health. The goal is to
automate network management as much as
possible. This methodology combines the benefits
of two existing systems as well as incorporates
other crucial elements to provide an integrated,
flexible, versatile system.

1. Unwieldy Networks and Today’s Computer

Immune Software

 Mark Burgess recently introduced the
powerful idea of Computer Immunology [1].
Here at Tufts, like many other large-scale
academic environments, such a solution has long
been needed to handle escalating network
demands. An immune system must be capable of
using convergent processes to enforce complex
site policies to be truly effective. It should also
be capable of self-preservation to ensure that
policy is enforced during critical periods. Also,
network administrators need a language for
defining health policies.
 At first glance, CFEngine appeared to
provide our much-needed solution: assuring
system health of all kinds, in terms of
configuration, security, and dynamic behavior.
Unfortunately, CFEngine fails to assure total
system health for several fundamental reasons,
most notably its inability to fully interact with a
system’s OS at all levels and its limited facilities
for defining complex rule sets. Therefore,
PIKT[2] was explored as a possibility. But

PIKT, too, had its own fundamental weaknesses
and focused on too narrow a domain of system
health.
 A true computer immune system
requires a synthesis of CFEngine and PIKT
concepts while integrating other vital elements.
Components of the system must have the ability
to communicate with each other. The immune
system must be able to interact with every aspect
of the computing environment. It requires an
expressive and inclusive language for defining
rules. Moreover, a facility for storing and
deploying a vast array of rules, the lifeblood of
the immune system, is necessary.

2. Basic Immune Logic – Using Normality

 The recognition of “abnormal” behavior
and its neutralization drives the immune engine.
The basic policy behind the engine is best
described by what is considered intolerable
behavior. The policy should provide for the
following:

• Programs misbehaving or using unacceptable
level of resources should be terminated.
• The user environment should not be allowed to
clutter to avoid potential problems
• Should machines misbehave, they must be
probed for errors and their configuration
checked. Problems should be fixed whenever
possible (through a CFEngine-like mechanism)
and, as a last resort, system administrators
alerted with detailed information if necessary.

 This policy implicitly creates a division
between local (i.e. first & second criteria) and
state (third criteria) normality. Local normality
concentrates on local machine resources and
local processes whereas state normality involves
machine configuration. An immune component
(PIKT-like) should police local resources. When
it encounters troubles it cannot resolve, it should
call on an external mechanism (CFEngine-like)
to examine machine configuration and perform
the necessary changes. This should minimize

mailto:mgilfi01@tufts.edu

Internet

loss of service and ensure the problem is
addressed with immediate priority.
 Burgess suggested that a computer
immune system would need to recognize new
patterns in program code and act accordingly.
Such an analysis is too resource costly. The key
is to isolate the actions of the user or the program
in its environment. Thus, one can make an
educated guess. If a program is misbehaving, it’s
most likely for the following reasons:

1) The program has bugs
2) The program is intentionally misbehaving
3) There’s a configuration error

 In the first case, we can only treat the
symptoms, not cure the problem. In the
university environment, buggy student programs
crash constantly and many programs exhibit
buggy behavior. So we need only treat such
programs as if they were intentionally
misbehaving. The cures for the second and third
symptoms are within our grasp: we can kill a
misbehaving program and tweak machine
configuration.
 Consequently these general policies lay
a framework for the inner-workings of the
immune system.

3. A Language for Health Rules and The Rule

Database

 A successful immune system would
require a thorough description of its
environment; the major work in assuring system
health is to create the rules describing system
illness. In an ideal world, one would know rules
for everything. Moreover, this is not a one-
person or one-institution process; everyone must
become involved. This would prove impossible
when using a tool controlled by a single text
configuration file; a database maintainable by a
large number of people is required.
 The rule definitions for an immune
system need to be both extremely expressive and
flexible. Both CFEngine and PIKT’s greatest
weakness is the inability of their scripting
languages to address a wide problem domain. By
using a true rule-based programming language
such as Prolog[3], rules will be able to describe
extremely complex situations and address a large
range of situations. By its very nature, Prolog
also paves the way for the future incorporation of
artificial intelligent interfaces.
 The rules would then be stored in and
downloaded from a central repository on the

Internet using LDAP or a similar protocol. This
will allow delegative administration of the rule
sets by multiple parties, breaking the bottleneck
of labor intensive gatekeeping that may well be
the undoing of the current GNU project. A
control machine or “brain” computer on each
network would work in tandem with CFEngine
and PIKT-like mechanisms to enforce and
preserve system health. Using a control machine
would give an administrator control over his
network –such as which rules to enforce. (See
Figure 1)

Figure 1 – A layout of the integrated immune system

 The idea of the control machine could
also be extended to analyze a wide variety of
network information (such as SNMP queries),
determine problems, code its own rules, and
deploy them through out the network; such
behavior dips into the realm of artificial
intelligence.

4. Summarizing: The Integrated System

 The truly powerful computer immune
system is a policy-driven convergent process.
The concept of normality provides the basics for
such a policy. Combining a powerful, flexible
rule-based language to describe system health
with mechanisms that monitor and manipulate
both machine configuration and resources
provides an appropriate basis to keep machines
and networks constantly functional.

References

[1] Mark Burgess, “Computer Immunology”, Proc.
LISA-XII, 1998

[2] PIKT. Created by Robert Osterlund.
http://pikt.uchicago.edu/pikt/index.html

[3] Alva Couch, “It’s Elementary Dear Watson:
Applying Logic Programming to Convergent System
Management Processes”, Proc. LISA-XIII, 1999

Repository

Clients

Control
Machine

Clients

http://pikt.uchicago.edu/pikt/index.html

	A
	Abstract

