2-Roma Rudski

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Threading.Tasks;

namespace lab3 siit
{
class Dot
{
public List<double> chromo;
public double fit;
public Dot (List<double> chromo)
{
this.chromo = chromo;
fit = getFit (chromo);
}

private double getFit (List<double> chromo)

{

double fit = chromo.Count;

for (int 1i=0;i<chromo.Count;i++)

{

double temp = chromo[i]* chromo[i]

fit += temp;
}

return fit;

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Threading.Tasks;

namespace lab3 siit
{
class Population
{
public List<Dot> dots;
public double theBestFit;
public double avarageFit;
public Population(List<Dot> dogs)
{
this.dots = dogs;

theBestFit = getTheBestFit (dogs);
avarageFit = getAvarageFit (dogs);

}

public double getTheBestFit (List<Dot> dogs)

{
double bestFit = 9999;
for (int i = 0; i < dogs.Count;
if (bestFit > dogs[i].fit)
bestFit dogs([i].fit;
return bestFit;

}

public double getAvarageFit (List<Dot> dogs)

{
double avarageFit = 0;
for (int i = 0; i < dogs.Count;
avarageFit += dogs[i].fit;
avarageFit /= dogs.Count;
return avarageFit;

}

using System;

using System.Collections.Generic;
using System.Ling;

i++)

i++)

- Math.Cos (2 * Math.PI * chromo[i]);



using System.Text;
using System.Threading;
using System.Threading.Tasks;

namespace lab3 siit
{
class GA
{
Random random;
List<Population> histor;
public GA()
{
random = new Random() ;
List<Dot> dots = new List<Dot>();
for (int 1 = 0; 1 < 20; 1i++)
{
List<double> chromo = new List<double>();
for (int j = 0; j < 20; J++)
{
chromo.Add (random.NextDouble () % 2 -1);
}
dots.Add (new Dot (chromo)) ;
}
//Sorting by fit
for (int 1 = 0; 1 < dots.Count; i++)
{
for (int j = dots.Count - 1; j > 1i; j--)
{
if (dots[j].fit > dots[] - 1].fit)
{
Dot tempDot = dots[]j];
dots[j] = dots[j - 1];
dots[j - 1] = tempDot;

}
}
Population startPopulation = new Population (dots);
histor = new List<Population>();
histor.Add (startPopulation);
int k = 0;
while (!isReady (histor))
{
Thread.Sleep(10);
histor.Add (getNextPupulation (histor([k])):
k++;
}
}
private Population getNextPupulation (Population parent)
{
List<Dot> childrenPopulationDots = new List<Dot>();

for (int 1 = 0; 1 < 10; 1i++)
{
List<Dot> childrenDots = getChildren (
parent.dots[random.Next () % 10 + 107,
parent.dots[random.Next () % 10 + 10]
)
childrenPopulationDots.AddRange (childrenDots) ;
}
//Sorting by fit
for (int 1 = 0; i < childrenPopulationDots.Count; i++)
{
for (int j = childrenPopulationDots.Count - 1; j > i; j--)
{
if (childrenPopulationDots([j].fit > childrenPopulationDots[]j - 1].fit)
{
Dot tempDot = childrenPopulationDots[]j];
childrenPopulationDots[j] = childrenPopulationDots[j - 1];
childrenPopulationDots[]j - 1] = tempDot;

}
}
Population childrenPopulation = new Population(childrenPopulationDots) ;
return childrenPopulation;



using
using
using
using
using

}

Boolean isReady(List<Population> histor)

{

}

private List<Dot> getChildren (Dot father,

{

System
System
System
System
System

if (histor.Count < 100)
return false;

else

{

}

for

{

}

(int 1 = histor.Count - 100; i < histor.Count; i++)

if (histor[histor.Count - 100].avarageFit

return false;

return true;

List<Dot> childrenDots = new List<Dot>();
int pointCross = random.Next ()%20;
List<double> firstChromo = new List<double>();

List<double> secondChromo = new List<double>();

for

{

}

childrenDots.Add (new Dot (firstChromo)
childrenDots.Add (new Dot (secondChromo

(int § = 0; J < 20; j++)

if (j<pointCross)

{

}

firstChromo.Add (father.chromo[j]);
secondChromo.Add (mother.chromo[j]) ;

else

{

firstChromo.Add (mother.chromo[j]) ;
secondChromo.Add (father.chromo[j]);

)
)

)

//Mutation
(int j = 0; j < childrenDots.Count; Jj++)

for

{

}

int
if
{

}

prob = random.Next (0, 20);

Dot mother)

!= histor[i].avarageFit)

(prob == 7)
int number = random.Next (20);
childrenDots[]j] .chromo[number] = random.NextDouble() % 2 - 1;

return childrenDots;

’

.Collections.Generic;

.Lin
.Tex

q;
t;

.Threading.Tasks;

namespace lab3 siit
class Dot

{

public List<double> chrom;
public double fitness;
public Dot (List<double> chrom)

{

}

fitness

this.chrom = chrom;

= getFitness (chrom);

private double getFitness (List<double> chrom)



double fitness = chrom.Count;

double x=0;
for (int 1 = 1; 1 < chrom.Count; i++)
if (chrom[i] == 1)
X += Math.Pow(2, i - 1);
x /= 1023;
if (chrom[0] == 0)
x *= -=1;

return 1 + (X * X - Math.Cos(Math.PI * 2 * x));

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Threading.Tasks;

namespace lab3 siit
{
class Population
{
public List<Dot> dots;
public double theBestFitness;
public double avarageFitness;
public Population(List<Dot> dogs)
{
this.dots = dogs;
theBestFitness = getTheBestFitness (dogs) ;
avarageFitness = getAvarageFitness (dogs) ;
}
public double getTheBestFitness (List<Dot> dogs)
{
double bestFitness = 9999;
for (int 1 = 0; i < dogs.Count; i++)
if (bestFitness > dogs[i].fitness)
bestFitness = dogs[i].fitness;
return bestFitness;
}
public double getAvarageFitness (List<Dot> dogs)
{
double avarageFitness = 0;
for (int 1 = 0; i < dogs.Count; i++)
avarageFitness += dogs[i].fitness;
avarageFitness /= dogs.Count;
return avarageFitness;

}
}
using System;
using System.Collections.Generic;
using System.Ling;
using System.Text;
using System.Threading;
using System.Threading.Tasks;

namespace lab3 siit
{
class GA
{
Random random;
List<Population> history;
public GA()
{
random = new Random() ;
List<Dot> dots = new List<Dot>();
for (int i = 0; 1 < 20; 1i++)
{
List<double> chrom = new List<double>();
for (int j = 0; j < 11; j++)
{
chrom.Add (random.Next () % 2);



}
dots.Add (new Dot (chrom)) ;

}
//Sorting by fitness
for (int i1 = 0; 1 < dots.Count; i++)
{
for (int j = dots.Count - 1; j > i; j--)
{
if (dots[j].fitness > dots[j - 1l].fitness)

{
Dot tempDot = dots[]j];

dots[j] = dots[j - 1];
dots[j - 1] = tempDot;
}
}
}
Population start = new Population (dots);

history = new List<Population>();

history.Add (start);

int k = 0;

while (!isReady (history))

{
Thread.Sleep(10);
history.Add (getNextPupulation (history([k]));
k++;

}

}

private Population getNextPupulation (Population parentPopulation)

{
List<Dot> childrenDots = new List<Dot>();

for (int 1 = 0; 1 < 10; 1i++)
{

List<Dot> childrenDots = getChildren (
parentPopulation.dots[random.Next () % 10 + 10],
parentPopulation.dots[random.Next () 1
)

childrenDots.AddRange (childrenDots) ;

}

//Sorting by fitness
for (int 1 = 0; 1 < childrenDots.Count; 1i++)

{
for (int j = childrenDots.Count - 1; 3 > i; j--)

{
if (childrenDots[j].fitness > childrenDots[j - 1].fitness)

{
Dot tempDot = childrenDots([]];
childrenDots[j] = childrenDots[]j - 11];
childrenDots[j - 1] = tempDot;

}

}
Population childrenPopulation = new Population(childrenDots) ;

return childrenPopulation;

}

Boolean isReady (List<Population> history)
{
if (history.Count < 100)
return false;
else
{
for (int i1 = history.Count - 100; i < history.Count; i++)
{
if (historylhistory.Count - 100].avarageFitness != history[i].avarageFitness)
return false;
}
return true;
}
}
private List<Dot> getChildren (Dot father, Dot mother)
{
List<Dot> childrenDots = new List<Dot>();
int pointCross = random.Next ()$%20;



List<double> firstChrom = new List<double>();
List<double> secondChrom = new List<double>();
for (int j = 0; j < 11; j++)
{
if (j<pointCross)
{
firstChrom.Add (father.chrom([j]);
secondChrom.Add (mother.chrom([j]);
}
else
{
firstChrom.Add (mother.chrom[j]) ;
secondChrom.Add (father.chrom([j]) ;

}

//Mutation
for (int j = 0; j < childrenDots.Count; j++)
{

int prob = random.Next (0, 20);

if (prob == 7)
{
int number = random.Next (20);
childrenDots[]j].chrom[number] = random.NextDouble() % 2 - 1;

}

childrenDots.Add (new Dot (firstChrom)) ;
childrenDots.Add (new Dot (secondChrom)) ;
return childrenDots;

Graph 2D:
X-generation
y-fitness (red— average, blue— best)

11












