
2-Roma Rudski
using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace lab3_siit_

{

 class Dot

 {

 public List<double> chromo;

 public double fit;

 public Dot(List<double> chromo)

 {

 this.chromo = chromo;

 fit = getFit(chromo);

 }

 private double getFit(List<double> chromo)

 {

 double fit = chromo.Count;

 for (int i=0;i<chromo.Count;i++)

 {

 double temp = chromo[i]* chromo[i] - Math.Cos(2 * Math.PI * chromo[i]);

 fit += temp;

 }

 return fit;

 }

 }

}

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace lab3_siit_

{

 class Population

 {

 public List<Dot> dots;

 public double theBestFit;

 public double avarageFit;

 public Population(List<Dot> dogs)

 {

 this.dots = dogs;

 theBestFit = getTheBestFit(dogs);

 avarageFit = getAvarageFit(dogs);

 }

 public double getTheBestFit(List<Dot> dogs)

 {

 double bestFit = 9999;

 for (int i = 0; i < dogs.Count; i++)

 if (bestFit > dogs[i].fit)

 bestFit = dogs[i].fit;

 return bestFit;

 }

 public double getAvarageFit(List<Dot> dogs)

 {

 double avarageFit = 0;

 for (int i = 0; i < dogs.Count; i++)

 avarageFit += dogs[i].fit;

 avarageFit /= dogs.Count;

 return avarageFit;

 }

 }

}

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading;

using System.Threading.Tasks;

namespace lab3_siit_

{

 class GA

 {

 Random random;

 List<Population> histor;

 public GA()

 {

 random = new Random();

 List<Dot> dots = new List<Dot>();

 for (int i = 0; i < 20; i++)

 {

 List<double> chromo = new List<double>();

 for (int j = 0; j < 20; j++)

 {

 chromo.Add(random.NextDouble() % 2 -1);

 }

 dots.Add(new Dot(chromo));

 }

 //Sorting by fit

 for (int i = 0; i < dots.Count; i++)

 {

 for (int j = dots.Count - 1; j > i; j--)

 {

 if (dots[j].fit > dots[j - 1].fit)

 {

 Dot tempDot = dots[j];

 dots[j] = dots[j - 1];

 dots[j - 1] = tempDot;

 }

 }

 }

 Population startPopulation = new Population(dots);

 histor = new List<Population>();

 histor.Add(startPopulation);

 int k = 0;

 while (!isReady(histor))

 {

 Thread.Sleep(10);

 histor.Add(getNextPupulation(histor[k]));

 k++;

 }

 }

 private Population getNextPupulation(Population parent)

 {

 List<Dot> childrenPopulationDots = new List<Dot>();

 for (int i = 0; i < 10; i++)

 {

 List<Dot> childrenDots = getChildren(

 parent.dots[random.Next() % 10 + 10],

 parent.dots[random.Next() % 10 + 10]

);

 childrenPopulationDots.AddRange(childrenDots);

 }

 //Sorting by fit

 for (int i = 0; i < childrenPopulationDots.Count; i++)

 {

 for (int j = childrenPopulationDots.Count - 1; j > i; j--)

 {

 if (childrenPopulationDots[j].fit > childrenPopulationDots[j - 1].fit)

 {

 Dot tempDot = childrenPopulationDots[j];

 childrenPopulationDots[j] = childrenPopulationDots[j - 1];

 childrenPopulationDots[j - 1] = tempDot;

 }

 }

 }

 Population childrenPopulation = new Population(childrenPopulationDots);

 return childrenPopulation;

 }

 Boolean isReady(List<Population> histor)

 {

 if (histor.Count < 100)

 return false;

 else

 {

 for (int i = histor.Count - 100; i < histor.Count; i++)

 {

 if (histor[histor.Count - 100].avarageFit != histor[i].avarageFit)

 return false;

 }

 return true;

 }

 }

 private List<Dot> getChildren(Dot father, Dot mother)

 {

 List<Dot> childrenDots = new List<Dot>();

 int pointCross = random.Next()%20;

 List<double> firstChromo = new List<double>();

 List<double> secondChromo = new List<double>();

 for (int j = 0; j < 20; j++)

 {

 if(j<pointCross)

 {

 firstChromo.Add(father.chromo[j]);

 secondChromo.Add(mother.chromo[j]);

 }

 else

 {

 firstChromo.Add(mother.chromo[j]);

 secondChromo.Add(father.chromo[j]);

 }

 }

 childrenDots.Add(new Dot(firstChromo));

 childrenDots.Add(new Dot(secondChromo));

 //Mutation

 for (int j = 0; j < childrenDots.Count; j++)

 {

 int prob = random.Next(0, 20);

 if (prob == 7)

 {

 int number = random.Next(20);

 childrenDots[j].chromo[number] = random.NextDouble() % 2 - 1;

 }

 }

 return childrenDots;

 }

 }

}

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace lab3_siit_

 class Dot

 {

 public List<double> chrom;

 public double fitness;

 public Dot(List<double> chrom)

 {

 this.chrom = chrom;

 fitness = getFitness(chrom);

 }

 private double getFitness(List<double> chrom)

 {

 double fitness = chrom.Count;

 double x=0;

 for (int i = 1; i < chrom.Count; i++)

 if (chrom[i] == 1)

 x += Math.Pow(2, i - 1);

 x /= 1023;

 if (chrom[0] == 0)

 x *= -1;

 return 1 + (x * x - Math.Cos(Math.PI * 2 * x));

 }

 }

}

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace lab3_siit_

{

 class Population

 {

 public List<Dot> dots;

 public double theBestFitness;

 public double avarageFitness;

 public Population(List<Dot> dogs)

 {

 this.dots = dogs;

 theBestFitness = getTheBestFitness(dogs);

 avarageFitness = getAvarageFitness(dogs);

 }

 public double getTheBestFitness(List<Dot> dogs)

 {

 double bestFitness = 9999;

 for (int i = 0; i < dogs.Count; i++)

 if (bestFitness > dogs[i].fitness)

 bestFitness = dogs[i].fitness;

 return bestFitness;

 }

 public double getAvarageFitness(List<Dot> dogs)

 {

 double avarageFitness = 0;

 for (int i = 0; i < dogs.Count; i++)

 avarageFitness += dogs[i].fitness;

 avarageFitness /= dogs.Count;

 return avarageFitness;

 }

 }

}

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading;

using System.Threading.Tasks;

namespace lab3_siit_

{

 class GA

 {

 Random random;

 List<Population> history;

 public GA()

 {

 random = new Random();

 List<Dot> dots = new List<Dot>();

 for (int i = 0; i < 20; i++)

 {

 List<double> chrom = new List<double>();

 for (int j = 0; j < 11; j++)

 {

 chrom.Add(random.Next() % 2);

 }

 dots.Add(new Dot(chrom));

 }

 //Sorting by fitness

 for (int i = 0; i < dots.Count; i++)

 {

 for (int j = dots.Count - 1; j > i; j--)

 {

 if (dots[j].fitness > dots[j - 1].fitness)

 {

 Dot tempDot = dots[j];

 dots[j] = dots[j - 1];

 dots[j - 1] = tempDot;

 }

 }

 }

 Population start = new Population(dots);

 history = new List<Population>();

 history.Add(start);

 int k = 0;

 while (!isReady(history))

 {

 Thread.Sleep(10);

 history.Add(getNextPupulation(history[k]));

 k++;

 }

 }

 private Population getNextPupulation(Population parentPopulation)

 {

 List<Dot> childrenDots = new List<Dot>();

 for (int i = 0; i < 10; i++)

 {

 List<Dot> childrenDots = getChildren(

 parentPopulation.dots[random.Next() % 10 + 10],

 parentPopulation.dots[random.Next() % 10 + 10]

);

 childrenDots.AddRange(childrenDots);

 }

 //Sorting by fitness

 for (int i = 0; i < childrenDots.Count; i++)

 {

 for (int j = childrenDots.Count - 1; j > i; j--)

 {

 if (childrenDots[j].fitness > childrenDots[j - 1].fitness)

 {

 Dot tempDot = childrenDots[j];

 childrenDots[j] = childrenDots[j - 1];

 childrenDots[j - 1] = tempDot;

 }

 }

 }

 Population childrenPopulation = new Population(childrenDots);

 return childrenPopulation;

 }

 Boolean isReady(List<Population> history)

 {

 if (history.Count < 100)

 return false;

 else

 {

 for (int i = history.Count - 100; i < history.Count; i++)

 {

 if (history[history.Count - 100].avarageFitness != history[i].avarageFitness)

 return false;

 }

 return true;

 }

 }

 private List<Dot> getChildren(Dot father, Dot mother)

 {

 List<Dot> childrenDots = new List<Dot>();

 int pointCross = random.Next()%20;

 List<double> firstChrom = new List<double>();

 List<double> secondChrom = new List<double>();

 for (int j = 0; j < 11; j++)

 {

 if(j<pointCross)

 {

 firstChrom.Add(father.chrom[j]);

 secondChrom.Add(mother.chrom[j]);

 }

 else

 {

 firstChrom.Add(mother.chrom[j]);

 secondChrom.Add(father.chrom[j]);

 }

 }

 //Mutation

 for (int j = 0; j < childrenDots.Count; j++)

 {

 int prob = random.Next(0, 20);

 if (prob == 7)

 {

 int number = random.Next(20);

 childrenDots[j].chrom[number] = random.NextDouble() % 2 - 1;

 }

 }

 childrenDots.Add(new Dot(firstChrom));

 childrenDots.Add(new Dot(secondChrom));

 return childrenDots;

 }

 }

}

Graph 2D:
 x-generation
y-fitness (red— average, blue— best)

-1

1

3

5

7

9

11

0 10 20 30 40 50

