2. Maximization of 3-D Schefel function

Student: Uladzimier Shukailo

Brest 2016



Function: y=x1*sin(abs(x1))+x2*sin(abs(x2))

Sellection+Uniform Crossover:

Sellection+Uniform Crossover

39 40 41 42 43 44 45 46 47 48 49 50

Listing:

#include "stdafx.h"
#include "time.h"

#include <iostream>
#include <fstream>

using namespace std;

double generation_x1[20][20];
double generation_x2[20][20];
double fitness[20];

double prev_max;

int gen=0;

int g=0;

ofstream filel;
ofstream file2;
ofstream file3;

void fit()
{
for(int i=0;i<20;i++)
{
fitness[i]=20;
for(int j=0;3j<20;j++)

fitness[i]+=(generation_x1[i][j]*sin(generation_x1[i][j])+generation_x2[i][j]*sin(
generation_x2[i][j]));
}



}

void cross()

{

}

srand(time(NULL));

double new_gener[20][20];
double new_geners[20][20];
for(int i=0;i<10;i++)

{

int m=rand()%10;

int p=rand()%10;

int cros_gen=rand()%18+1;

for(int k=0;k<cros_gen;k++){
new_gener[i*2][k]=generation_x1[m][k];
new_geners[i*2][k]=generation_x2[m][k];

}

for(int j=cros_gen;j<20;j++){
new_gener[i*2][j]=generation_x1[p][jl;
new_geners[i*2][j]=generation_x2[p][j];

}

for(int k=0;k<cros_gen;k++){
new_gener[i*2+1][k]=generation_x1[p][k];
new_geners[i*2+1][k]=generation_x2[p][k];

}

for(int j=cros_gen;j<20;j++){
new_gener[i*2+1][j]=generation_x1[m][j];
new_geners[i*2+1][j]=generation_x2[m][j];

}

}

memcpy (generation_x1,new_gener,20*20*sizeof(double));
memcpy (generation_x2,new_geners,20*20*sizeof(double));

void stats()

{

}

cout<<"max: "<<fitness[@]<<endl;
filel<<fitness[0@]<<endl;
double average=0;
for(int i=0;i<20;i++)
average+=fitness[i];
average/=20;
cout<<"aver: "<<average<<endl;
file2<<gen<<endl;
file3<<average<<endl;
cout<<"generation: "<<++gen<<endl;
cout<<" "<<endl;
if(prev_min==fitness[0])
q++;

else

{
prev_min=fitness[0];
q=09;

}

void mutation()

{

srand(time(NULL));
for(int i=0;i<20;i++)
for(int j=0;3j<20;j++)
if(rand()%20==0)
{

generation_x1[i][j]=(double)(rand()%101)/100;

generation_x2[i][j]=(double)(rand()%101)/100;

if(rand()%2)
generation_x1[i][j]=-generation_x1[i][j];
generation_x2[i][j]=-generation_x2[i][j];



}

}

int _tmain(int argc, _TCHAR* argv[])

{

srand(time(NULL));
filel.open("max.txt",ios_base::trunc);
file2.open("av.txt",ios_base::trunc);
file3.open("avtrue.txt",ios_base::trunc);
for(int i=0;1i<20;i++)

{
for(int j=0;3j<20;j++)
{
generation_x1[i][j]=(double)(rand()%101)/100;
if(rand()%2)
generation_x1[i][j]=-generation_x1[i][j];
generation_x2[i][j]=(double)(rand()%101)/100;
if(rand()%2)
generation_x2[i][j]=-generation_x2[i][j];
}
}
for(int i=0;1i<20000;i++)
{
fit();
sort();
stats();
cross();
mutation();
}
filel.close();

file2.close();
file3.close();
return 0;

1 generetion:

100 generetion:



500 generetion:

5000 generetion:




