

2. Maximization of 3-D Schefel function

Student: Uladzimier Shukailo

Brest 2016

Function: y=x1*sin(abs(x1))+x2*sin(abs(x2))

Sellection+Uniform Crossover:

 Listing:

#include "stdafx.h"
#include "time.h"
#include <iostream>
#include <fstream>

using namespace std;

double generation_x1[20][20];
double generation_x2[20][20];
double fitness[20];
double prev_max;
int gen=0;
int q=0;

ofstream file1;
ofstream file2;
ofstream file3;

void fit()
{
 for(int i=0;i<20;i++)
 {
 fitness[i]=20;
 for(int j=0;j<20;j++)

 fitness[i]+=(generation_x1[i][j]*sin(generation_x1[i][j])+generation_x2[i][j]*sin(
generation_x2[i][j]));
 }

}
void cross()
{
 srand(time(NULL));
 double new_gener[20][20];
 double new_geners[20][20];
 for(int i=0;i<10;i++)
 {
 int m=rand()%10;
 int p=rand()%10;
 int cros_gen=rand()%18+1;
 for(int k=0;k<cros_gen;k++){
 new_gener[i*2][k]=generation_x1[m][k];
 new_geners[i*2][k]=generation_x2[m][k];
 }
 for(int j=cros_gen;j<20;j++){
 new_gener[i*2][j]=generation_x1[p][j];
 new_geners[i*2][j]=generation_x2[p][j];
 }
 for(int k=0;k<cros_gen;k++){
 new_gener[i*2+1][k]=generation_x1[p][k];
 new_geners[i*2+1][k]=generation_x2[p][k];
 }
 for(int j=cros_gen;j<20;j++){
 new_gener[i*2+1][j]=generation_x1[m][j];
 new_geners[i*2+1][j]=generation_x2[m][j];
 }
 }
 memcpy(generation_x1,new_gener,20*20*sizeof(double));
 memcpy(generation_x2,new_geners,20*20*sizeof(double));
}
void stats()
{
 cout<<"max: "<<fitness[0]<<endl;
 file1<<fitness[0]<<endl;
 double average=0;
 for(int i=0;i<20;i++)
 average+=fitness[i];
 average/=20;
 cout<<"aver: "<<average<<endl;
 file2<<gen<<endl;
 file3<<average<<endl;
 cout<<"generation: "<<++gen<<endl;
 cout<<"________________"<<endl;
 if(prev_min==fitness[0])
 q++;
 else
 {
 prev_min=fitness[0];
 q=0;
 }
}
void mutation()
{
 srand(time(NULL));
 for(int i=0;i<20;i++)
 for(int j=0;j<20;j++)
 if(rand()%20==0)
 {
 generation_x1[i][j]=(double)(rand()%101)/100;
 generation_x2[i][j]=(double)(rand()%101)/100;
 if(rand()%2)
 generation_x1[i][j]=-generation_x1[i][j];
 generation_x2[i][j]=-generation_x2[i][j];

 }
}
int _tmain(int argc, _TCHAR* argv[])
{
 srand(time(NULL));
 file1.open("max.txt",ios_base::trunc);
 file2.open("av.txt",ios_base::trunc);
 file3.open("avtrue.txt",ios_base::trunc);
 for(int i=0;i<20;i++)
 {
 for(int j=0;j<20;j++)
 {
 generation_x1[i][j]=(double)(rand()%101)/100;
 if(rand()%2)
 generation_x1[i][j]=-generation_x1[i][j];
 generation_x2[i][j]=(double)(rand()%101)/100;
 if(rand()%2)
 generation_x2[i][j]=-generation_x2[i][j];
 }
 }
 for(int i=0;i<20000;i++)
 {
 fit();
 sort();
 stats();
 cross();
 mutation();
 }
 file1.close();
 file2.close();
 file3.close();
 return 0;
}

 1 generetion:

100 generetion:

500 generetion:

5000 generetion:

