

Source Code

Chromosome.cs

using​ System;
using​ System.Collections.Generic;
using​ System.Linq;
using​ System.Text;
using​ System.Threading.Tasks;

namespace​ Graph
{
 ​public​ ​class​ ​Chromosome​ : ​IComparable​<​Chromosome​>
 {
 ​public​ ​List​<​int​> Genes { ​get​; ​set​; }
 ​public​ ​double​ x1, x2;
 ​public​ ​double​ Fitness { ​get​; ​set​; }
 ​Random​ rnd;
 ​const​ ​int​ GENES_NUMBER = 22;

 ​public​ Chromosome(​Random​ _rnd)
 {
 rnd = _rnd;
 Genes = ​new​ ​List​<​int​>();

 ​for​ (​int​ i = 0; i < GENES_NUMBER; i++)
 Genes.Add(rnd.Next(2));

 CalculateFitness();
 }

 ​public​ ​void​ CalculateFitness()
 {
 ​int​ tempX1, tempX2;

 ​var​ x1Genes = Genes.Skip(1).Take(10);
 ​var​ x2Genes = Genes.Skip(12);

 ​string​ x1String = ​String​.Empty;
 ​string​ x2String = ​String​.Empty;

 ​foreach​ (​int​ x ​in​ x1Genes)
 x1String += x.ToString();

 ​foreach​ (​int​ x ​in​ x2Genes)
 x2String += x.ToString();

 tempX1 = ​Convert​.ToInt32(x1String, 2);
 tempX2 = ​Convert​.ToInt32(x2String, 2);

 ​if​ (Genes.ElementAt(0) == 0)
 tempX1 = -tempX1;

 ​if​ (Genes.ElementAt(11) == 0)
 tempX2 = -tempX2;

 x1 = ((​double​)tempX1 * 5 / 1023);
 x2 = ((​double​)tempX2 * 5 / 1023);
 ​// Console.WriteLine($"x1 = {x1}, x2 = {x2}");
 Fitness = x1 * ​Math​.Sin(​Math​.Abs(x1)) + x2 * ​Math​.Sin(​Math​.Abs(x2));
 }

 ​public​ ​int​ CompareTo(​Chromosome​ compareChromosome)
 {
 ​if​ (compareChromosome == ​null​)
 ​return​ -1;
 ​else
 ​return​ compareChromosome.Fitness.CompareTo(Fitness);
 }

 ​public​ ​Chromosome​ CreateChild(​Chromosome​ parent2)
 {
 ​//uniform crossover
 ​int​ chooseParent;
 ​Chromosome​ child = ​new​ ​Chromosome​(rnd);
 child.Genes.Clear();
 child.Fitness = 0.0;
 ​int​ i;
 ​for​ (i = 0; i < GENES_NUMBER; i++)
 {
 chooseParent = rnd.Next(2);

 ​if​ (chooseParent == 1)
 child.Genes.Add(Genes.ElementAt(i));
 ​else
 child.Genes.Add(parent2.Genes.ElementAt(i));
 }

 ​int​ mutation;
 ​for​ (i = 0; i < child.Genes.Count; i++)
 {
 mutation = rnd.Next(22);

 ​if​ (mutation == 5)
 {
 ​if​ (child.Genes.ElementAt(i) == 1)
 {
 child.Genes.RemoveAt(i);
 child.Genes.Insert(i, 0);
 }
 ​else
 {

 child.Genes.RemoveAt(i);
 child.Genes.Insert(i, 1);
 }
 }
 }

 child.CalculateFitness();

 ​return​ child;
 }
 }
}

Program.cs

using​ System;
using​ System.Collections.Generic;
using​ System.Linq;
using​ System.Text;
using​ System.Threading.Tasks;

namespace​ Graph
{
 ​class​ ​Program
 {
 ​static​ ​void​ Main(​string​[] args)
 {
 ​const​ ​int​ CHROMOSOMES_NUMBER = 20;
 ​Random​ rnd = ​new​ ​Random​();
 ​int​ i;
 ​var​ chromosomes = ​new​ ​List​<​Chromosome​>();
 ​var​ childChromosomes = ​new​ ​List​<​Chromosome​>();
 childChromosomes.Clear();

 ​double​ maxFitness, averageFitness;
 ​int​ fitnessChange = 0;

 ​for​ (i = 0; i < CHROMOSOMES_NUMBER; i++)
 chromosomes.Add(​new​ ​Chromosome​(rnd));

 maxFitness = chromosomes.Max(x => x.Fitness);

 ​while​(fitnessChange != 500)
 {
 chromosomes.Sort();

 ​for​ (i = 0; i < CHROMOSOMES_NUMBER; i++)
 {

childChromosomes.Add(chromosomes.ElementAt(rnd.Next(CHROMOSOMES_NUMBER / 2))
 .CreateChild(chromosomes.ElementAt(rnd.Next(CHROMOSOMES_NUMBER
/ 2))));
 }

 chromosomes.Clear();
 chromosomes.AddRange(childChromosomes);
 childChromosomes.Clear();

 fitnessChange++;

 ​if​ (fitnessChange % 10 == 0)
 {

 ​Console​.WriteLine(​"Max Fitness = " + ​chromosomes.Max(x =>
x.Fitness) + ​" Average Fitness = "​ + chromosomes.Average(x => x.Fitness));

 }
 }
 }
 }
}

Results

1-st generation

100 generation

199 generation

Console(Program Output)

Max Fitness = 6,55364726508597 Average Fitness = 1,80084368359127

Generation: 0

x1 = -2,26295210166178, x2 = 3,31378299120235, y = -2,30996935830601

x1 = 4,41348973607038, x2 = 3,30400782013685, y = -4,75206578711701

x1 = -3,81720430107527, x2 = 3,75855327468231, y = 0,212639004736834

x1 = 1,38318670576735, x2 = -4,76050830889541, y = 6,1139137193534

x1 = 4,3108504398827, x2 = 1,94525904203324, y = -2,15750779098347

x1 = -2,88856304985337, x2 = -2,86901270772239, y = -1,49550485024844

x1 = 2,32160312805474, x2 = -4,80449657869013, y = 6,48154462116646

x1 = 1,68132942326491, x2 = 1,70576735092864, y = 3,36132279031548

x1 = 1,66666666666667, x2 = 1,33431085043988, y = 2,95618675412439

x1 = 1,68132942326491, x2 = -4,21309872922776, y = 5,3698436432657

x1 = 1,96480938416422, x2 = -1,56402737047898, y = 0,250266090542297

x1 = -4,40860215053763, x2 = 3,96871945259042, y = 1,28579976560189

x1 = -4,13000977517107, x2 = -2,86901270772239, y = 2,67681712781273

x1 = 4,9169110459433, x2 = -4,47702834799609, y = -0,460835541972179

x1 = 1,4613880742913, x2 = -3,75366568914956, y = 3,60937664784761

x1 = 1,95014662756598, x2 = -3,455522971652, y = 2,87856466729243

x1 = 1,70087976539589, x2 = 3,79765395894428, y = -0,630061907129475

x1 = -4,41348973607038, x2 = 3,3088954056696, y = 3,66679250780999

x1 = 2,24340175953079, x2 = -4,99022482893451, y = 6,55364726508597

x1 = 1,63734115347019, x2 = 2,86901270772239, y = 2,4061043026269

Max Fitness = 6,63389663515081 Average Fitness = 5,50931240021012

Max Fitness = 6,63395468243388 Average Fitness = 5,16021347046184

Max Fitness = 6,63089195159296 Average Fitness = 4,75083165118428

Max Fitness = 6,63100966133728 Average Fitness = 5,66986749434948

Generation: 99

x1 = 2,01857282502444, x2 = -4,95112414467253, y = 6,63026544408641

x1 = 1,97947214076246, x2 = -1,81818181818182, y = 0,0536293585529051

x1 = 2,01857282502444, x2 = -4,32551319648094, y = 5,82539042772362

x1 = 1,97947214076246, x2 = -4,96089931573803, y = 6,62495832715747

x1 = 2,01857282502444, x2 = -4,32551319648094, y = 5,82539042772362

x1 = -4,48191593352884, x2 = -4,30596285434995, y = 8,31860424286707

x1 = 3,6217008797654, x2 = -4,37438905180841, y = 2,45411144014244

x1 = -4,78983382209189, x2 = -4,94623655913979, y = 9,58708703273621

x1 = 2,01368523949169, x2 = -4,96089931573803, y = 6,62789959704446

x1 = -1,35386119257087, x2 = -4,22287390029325, y = 2,40481468833051

x1 = 0,762463343108504, x2 = 4,32062561094819, y = -3,46664581183725

x1 = 4,63831867057674, x2 = -5, y = 0,169020747254683

x1 = 3,26490713587488, x2 = -4,95112414467253, y = 4,40910890276325

x1 = 1,90127077223851, x2 = -4,95112414467253, y = 6,60908978356089

x1 = -4,48191593352884, x2 = -4,30596285434995, y = 8,31860424286707

x1 = -4,48191593352884, x2 = -4,32062561094819, y = 8,35669005182577

x1 = -4,48191593352884, x2 = -4,95601173020528, y = 9,17307010444862

x1 = 4,48680351906158, x2 = -4,32551319648094, y = -0,367298198133858

x1 = -4,40371456500489, x2 = -5, y = 8,99020367928081

x1 = 2,01857282502444, x2 = -4,86803519061584, y = 6,62875406379597

Max Fitness = 9,17546435492153 Average Fitness = 4,78903944577828

Max Fitness = 9,62457874664465 Average Fitness = 7,86021149985483

Max Fitness = 9,62544743405881 Average Fitness = 9,43082777842302

Max Fitness = 9,62842721322818 Average Fitness = 7,67265038424611

Max Fitness = 9,6286251914388 Average Fitness = 8,24191346393028

Generation: 199

x1 = -4,64320625610948, x2 = 4,86314760508309, y = -0,175888077382415

x1 = -4,60410557184751, x2 = -4,79472140762463, y = 9,35561945189926

x1 = -4,9169110459433, x2 = -2,42913000977517, y = 3,22651284293542

x1 = -4,88269794721408, x2 = -4,93157380254154, y = 9,62564326437134

x1 = -4,86314760508309, x2 = -4,82893450635386, y = 9,60416323435308

x1 = -4,87292277614858, x2 = -4,93646138807429, y = 9,62332022902308

x1 = -4,92179863147605, x2 = -4,86314760508309, y = 9,62226306870307

x1 = -4,92179863147605, x2 = -4,99022482893451, y = 9,61313208350927

x1 = -2,40469208211144, x2 = -4,9266862170088, y = 3,19805052855792

x1 = 4,91202346041056, x2 = -4,9266862170088, y = -0,000472782214211875

x1 = -4,92179863147605, x2 = 4,97067448680352, y = 0,0084822387304655

x1 = -4,56011730205279, x2 = -3,68035190615836, y = 6,39563571144366

x1 = -4,86314760508309, x2 = -4,8533724340176, y = 9,61320564049235

x1 = -4,87781036168133, x2 = -4,70674486803519, y = 9,51789353948068

x1 = -4,72629521016618, x2 = 4,94623655913979, y = -0,0857718099624991

x1 = -4,88269794721408, x2 = -4,86314760508309, y = 9,62004425474327

x1 = -3,60215053763441, x2 = -4,86314760508309, y = 6,40895534781053

x1 = -4,24731182795699, x2 = -4,95112414467253, y = 8,60689158424226

x1 = -4,88269794721408, x2 = -4,93157380254154, y = 9,62564326437134

x1 = -4,86314760508309, x2 = -3,6950146627566, y = 6,75009227805428

