2ex. Alexandr Matveychuk
Maximization of 3-D Schefel function

code(Python3):

import random
import math
def get_fitness(chromosome):
strChrom = ""
for ch in chromosome:
strChrom += str(ch)
strChrom = strChrom[::-1]
x1 =5 * (int(strChrom[1:11], 2) / 1023)
x2 =5 * (int(strChrom[12:22], 2) / 1023)
if strChrom[@] == "1":
X1 = -x1
if strChrom[12] == "1":
X2 = -X2
return x1 * math.sin(abs(x1)) + x2 * math.sin(abs(x2))
def points(chromosomes , file):
#file = open("points.txt", "w+")
strChrom = ""
for chromosome in chromosomes:
for ch in chromosome:
strChrom += str(ch)
strChrom = strChrom[::-1]
x1 =5 * (int(strChrom[1:11], 2) / 1023)
X2 = 5 * (int(strChrom[12:22], 2) / 1023)
if strChrom[@] == "1":
X1 = -x1
if strChrom[12] == "1":
X2 = -X2
x3 = x1 * math.sin(abs(x1)) + x2 * math.sin(abs(x2))
wrLine = str(x1) + ", " + str(x2) + ", " + str(x3) + "\n"

file.writelines(wrLine) file.writelines("***¥***x***xxxkdxkrkkxtx*x\n")

def truncate_selection(chromosomes):
return [chromosomes[random.randint(0, 9)],
chromosomes[random.randint (0, 9)]]
def uniform_crossover(parents):
child = []
for x in range(22):
point = random.random()
if point > 0.5:
child.append(parents[0][x])
else:
child.append(parents[1][x])
print(child)
return child
def mutation(child):
point = random.randint(0, 21)
child[point] = (child[point] + 1) % 2
return child
def main():
chromosomes = [[random.randint(®, 1) for _ in range(22)] for
chromosomes.sort(key=get_fitness, reverse=True)
new_chromosomes = []
avg_fitness = 0
for ch in chromosomes:
avg_fitness += get_fitness(ch)
avg_fitness = avg_fitness / len(chromosomes)

in range(20)]

better_fitness = get_fitness(chromosomes[0])
print(better_fitness, avg_fitness)
populations = 0
file = open("points.txt", "w+")
while populations < 50:
for _ in range(20):
parents = truncate_selection(chromosomes)
child = uniform_crossover(parents)
child = mutation(child)
new_chromosomes.append(child)
new_chromosomes.sort(key=get_fitness, reverse=True)
for chr in new_chromosomes:
print(get_fitness(chr))
print(" ")
better_fitness = get_fitness(new_chromosomes[0@])
for ch in new_chromosomes:
avg_fitness += get_fitness(ch)
avg_fitness = avg_fitness / len(chromosomes)
populations += 1
if populations== 1 or populations== 2 or populations== 5 or
populations== 8 or populations== 50:
points(new_chromosomes, file)
chromosomes = new_chromosomes
new_chromosomes = []
print(better_fitness, avg_fitness)
get_fitness(chromosomes[0Q])
print(new_chromosomes)

main()

Graphs:

x: fitness

y: population

blue line: best fithess
orange line: average fitness

12

10

1 3 5 7 9% 11 13 15 17 19 21 23 25 27 29 31 33 35 37 35 41 43 45 47 439

Population count: 50
1st population:

population num.10:

population num.25:

population num.40:

population num.50:

