
2ex. Alexandr Matveychuk

Maximization of 3-D Schefel function

code(Python3):

import random
import math
def get_fitness(chromosome):
 strChrom = ""
 for ch in chromosome:
 strChrom += str(ch)
 strChrom = strChrom[::-1]
 x1 = 5 * (int(strChrom[1:11], 2) / 1023)
 x2 = 5 * (int(strChrom[12:22], 2) / 1023)
 if strChrom[0] == "1":
 x1 = -x1
 if strChrom[12] == "1":
 x2 = -x2
 return x1 * math.sin(abs(x1)) + x2 * math.sin(abs(x2))
def points(chromosomes , file):
 #file = open("points.txt", "w+")
 strChrom = ""
 for chromosome in chromosomes:
 for ch in chromosome:
 strChrom += str(ch)
 strChrom = strChrom[::-1]
 x1 = 5 * (int(strChrom[1:11], 2) / 1023)
 x2 = 5 * (int(strChrom[12:22], 2) / 1023)
 if strChrom[0] == "1":
 x1 = -x1
 if strChrom[12] == "1":
 x2 = -x2
 x3 = x1 * math.sin(abs(x1)) + x2 * math.sin(abs(x2))
 wrLine = str(x1) + ", " + str(x2) + ", " + str(x3) + "\n"
 file.writelines(wrLine) file.writelines("**********************\n")
def truncate_selection(chromosomes):
 return [chromosomes[random.randint(0, 9)],
 chromosomes[random.randint(0, 9)]]
def uniform_crossover(parents):
 child = []
 for x in range(22):
 point = random.random()
 if point > 0.5:
 child.append(parents[0][x])
 else:
 child.append(parents[1][x])
 # print(child)
 return child
def mutation(child):
 point = random.randint(0, 21)
 child[point] = (child[point] + 1) % 2
 return child
def main():
 chromosomes = [[random.randint(0, 1) for _ in range(22)] for _ in range(20)]
 chromosomes.sort(key=get_fitness, reverse=True)
 new_chromosomes = []
 avg_fitness = 0
 for ch in chromosomes:
 avg_fitness += get_fitness(ch)
 avg_fitness = avg_fitness / len(chromosomes)

 better_fitness = get_fitness(chromosomes[0])
 print(better_fitness, avg_fitness)
 populations = 0
 file = open("points.txt", "w+")
 while populations < 50:
 for _ in range(20):
 parents = truncate_selection(chromosomes)
 child = uniform_crossover(parents)
 child = mutation(child)
 new_chromosomes.append(child)
 new_chromosomes.sort(key=get_fitness, reverse=True)
 # for chr in new_chromosomes:
 # print(get_fitness(chr))
 # print("__________________")
 better_fitness = get_fitness(new_chromosomes[0])
 for ch in new_chromosomes:
 avg_fitness += get_fitness(ch)
 avg_fitness = avg_fitness / len(chromosomes)
 populations += 1
 if populations== 1 or populations== 2 or populations== 5 or
populations== 8 or populations== 50:
 points(new_chromosomes, file)
 chromosomes = new_chromosomes
 new_chromosomes = []
 print(better_fitness, avg_fitness)
 # get_fitness(chromosomes[0])
 # print(new_chromosomes)
main()

Graphs:

Population count: 50
1st population:

population num.10:

population num.25:

population num.40:

population num.50:

