

Maximization of 3D Schwefel function z=x*sin(x)+y*sin(y), where

x>=-5,y>=-5 20 chrosomes with 22 binary genes by Fitness Sharing

algorithm.

CODE:

int _tmain(int argc, _TCHAR* argv[])

{

 srand(time(NULL));

 countChromosome = 20;

 countGenes = 22;

 int generation = [];

 getAverageValue(generation);

 avList = [];

 for (count = 1; 0 < generation; count++;)

 sum = fitnessFunction(i);

 avList.append(sum);

 average = reduce(lambda x, y, x + y, avList) / len(avList);

 min_value = max(avList);

 return min_value;

 Sfunction(chromosome_one, chromosomeTwo, sigma);

 distance = sqrt((getResX(chromosome_one) - getResX(chromosomeTwo)) * 2 + (getResY(chromosome_one) –

 getResY(chromosomeTwo)) * 2)

 if distance > sigma then

 return 0

 else

 return 1 - (distance / sigma);

 fitnessFunction(i);

 return getResX(i) * sin(abs(getResX(i))) + getResY(i) * sin(abs(getResY(i)));

 shared_fitnessFunction(chromosome, generation);

 sum = 0;

 radius = 1;

 for (i = 0; 0 < countChromosome; i++;)

 if generation[it] == chromosome then

 sum += Sfunction(chromosome, generation[it], radius);

 return double(fitnessFunction(chromosome)) / sum;

 getResX(i);

 sum = 0;

 for (count = 1; 0 < 11; count++;)

 if i[count] == 1 :

 sum += 2 * count

 if i[0] == 1 then

 sum = sum*(-1);

 return float(sum) / 1023 * 5;

 getResY(i);

 sum = 0;

 for (count = 0; 0 < countGenes - 10; count++;)

 if i[count] == 1 then

 sum = sum + (2 * count);

 if i[11] == 1;

 sum = sum*(-1);

 return float(sum) / 1023 * 5;

 for (i = 1; 0 < 11; i++;)

 chromosome = []

 for (j = 0; j < countGenes; j++;)

 chromosome.append(random.getrandbits(1));

 generation.append(chromosome);

 max_value = getAverageValue(generation);

 cout << max_value;

 count = 0;

 Xs = [];

 MAXs = [];

 while count < 10 then

 Xs.append((map(lambda x, getResX(x), generation)));

 copy_generation = generation[,];

 generation.sort(key = lambda x, shared_fitnessFunction(x, copy_generation), reverse = False);

 NewGenerat = uniform_crossover(generation);

 new_max = getAverageValue(NewGenerat);

 MAXs.append(new_max);

 if new_max[0] > max_value then

 max_value = new_max[0];

 count = 0;

 else

 count += 1

 generation = NewGenerat;

 cout << Xs[0];

 cout << Xs[2];

 cout << Xs[len(Xs) - 1];

 cout << MAXs;

 cout << "------------------";

 cout << generation[0];

 uniform_crossover(generation);

 halfChrmsm = countChromosome / 2;

 old = generation[0, halfChrmsm]

 NewGenerat = [];

 for i in range(0, halfChrmsm) :

 mother = random(0, halfChrmsm);

 father = random(0, halfChrmsm);

 one = [];

 two = [];

 for (range = 0; range < countGenes; range++)

 rand_flag = random(1);

 if rand_flag == 1 then

 one.extend(old[father][it]);

 two.extend(old[mother][it]);

 else

 two.extend(old[father][it]);

 one.extend(old[mother][it]);

 NewGenerat.append(one);

 NewGenerat.append(two);

 NewGenerat.extend(old);

 return NewGenerat;

}

1st iteration.

6st iteration.

12st iteration.

19st iteration.

26st iteration.

Maximum and average fitness every generation

