Maximization of 3D Schwefel function z=x*sin(x)+y*sin(y), where
x>=-5,y>=-5 20 chrosomes with 22 binary genes by Fitness Sharing

algorithm.

CODE:
int _tmain(int argc, _TCHAR* argv|[])
{
srand(time(NULL));
countChromosome = 20;

countGenes = 22;

int generation = [J;
getAverageValue(generation);
avlist = [];
for (count = 1; 0 < generation; count++;)
sum = fitnessFunction(i);
avlist.append(sum);
average = reduce(lambda x, y, x +y, avlList) / len(avList);
min_value = max(avList);

return min_value;

Sfunction(chromosome_one, chromosomeTwo, sigma);
distance = sqrt((getResX(chromosome_one) - getResX(chromosomeTwo)) * 2 + (getResY(chromosome_one) —
getResY(chromosomeTwo)) * 2)
if distance > sigma then
return 0
else

return 1 - (distance / sigma);

fitnessFunction(i);

return getResX(i) * sin(abs(getResX(i))) + getResY(i) * sin(abs(getResY(i)));

shared_fitnessFunction(chromosome, generation);
sum =0;
radius = 1;
for (i = 0; 0 < countChromosome; i++;)
if generation[it] == chromosome then
sum += Sfunction(chromosome, generationlit], radius);

return double(fitnessFunction(chromosome)) / sum;

getResX(i);

sum =0;



for (count = 1; 0 < 11; count++;)
if ifcount]==1:
sum +=2 * count
if i[0] == 1 then
sum = sum*(-1);

return float(sum) / 1023 * 5;

getResY(i);
sum =0;
for (count = 0; 0 < countGenes - 10; count++;)
if ifcount] == 1 then
sum =sum + (2 * count);
if i[11] == 1,
sum = sum*(-1);

return float(sum) / 1023 * 5;

for (i=1;0<11;i++;)

chromosome =[]

for (j = 0; j < countGenes; j++;)
chromosome.append(random.getrandbits(1));

generation.append(chromosome);

max_value = getAverageValue(generation);

cout << max_value;

count =0;
Xs =[];
MAXs = [];

while count < 10 then
Xs.append((map(lambda x, getResX(x), generation)));
copy_generation = generation][, ;
generation.sort(key = lambda x, shared_fitnessFunction(x, copy_generation), reverse = False);

NewGenerat = uniform_crossover(generation);

new_max = getAverageValue(NewGenerat);
MAXs.append(new_max);
if new_max[0] > max_value then
max_value = new_max[0];
count =0;
else
count+=1
generation = NewGenerat;
cout << Xs[0];
cout << Xs[2];
cout << Xs[len(Xs) - 1];
cout << MAXs;

(070 1V AL G — ;



cout << generation[0];

uniform_crossover(generation);
halfChrmsm = countChromosome / 2;
old = generation[0, halfChrmsm]
NewGenerat = [J;
foriin range(0, halfChrmsm) :
mother = random(0, halfChrmsm);
father = random(0, halfChrmsm);
one =[];
two = [J;
for (range = 0; range < countGenes; range++)
rand_flag = random(1);
if rand_flag ==1 then
one.extend(old[father][it]);
two.extend(old[mother][it]);
else
two.extend(old[father][it]);
one.extend(old[mother][it]);
NewGenerat.append(one);
NewGenerat.append(two);
NewGenerat.extend(old);

return NewGenerat;

1st iteration.

o
SRS

®*sin(x)+y*sinly) —

6st iteration.



RS

e T e a0

-

¥rsin()+y*sinly) —

12st iteration.

x*sin(x)+y*siny) —

19st iteration.



Fitness

e

"-‘7- ——

S A e
N s
S
e

®*¥sin(OHy*sinly) —

26st iteration.

x*sin(O+y*sinly) —

Maximum and average fitness every generation

i1 2 3 4 5 & F B 9 10 11 1z 15 14 15 16 17 18 19 20 21 22 23 24 25 26

e o P —I_I—A‘ir"E.R.AGE
Iteration




