
2-Alex Golodko
Minimization of Test Function

High-dimensional Test Function
Problem is minimize or maximize a n-dimensinal function

y = f(x1; x2; x3; · · · ; xn)

We may use chromosomes with n genes of real value, such as

(0:32;−0:51; 0:48; · · · ;−0:93)

For example, minimize

y = x2
1+ x2

1+ x2
1+ · · · + x2

20

Rastrigin's Function
Exercise 8 1. Minimize the following y in (i) 20-D, (ii) 3-D and (iii) 2-D cases.
y = nA +Σni=1(x2i− Acos(2_xi))
2. Show the following graphics in each of 3 cases (i), (ii) and (iii).
(1) the graph of _tness vs generation.
(2) Create a population of 20 chromosomes at random, with _tness being y.

Task1
Source code

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace lab3_siit_

{

 class Dot

 {

 public List<double> chromosomes;

 public double fitness;

 public Dot(List<double> chromosomes)

 {

 this.chromosomes = chromosomes;

 fitness = getFitness(chromosomes);

 }

 private double getFitness(List<double> chromosomes)

 {

 double fitness = chromosomes.Count;

 for (int i=0;i<chromosomes.Count;i++)

 {

 double temp = chromosomes[i]* chromosomes[i] - Math.Cos(2 * Math.PI *

chromosomes[i]);

 fitness += temp;

 }

 return fitness;

 }

 }

}

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace lab3_siit_

{

 class Population

 {

 public List<Dot> dots;

 public double theBestFitness;

 public double avarageFitness;

 public Population(List<Dot> dogs)

 {

 this.dots = dogs;

 theBestFitness = getTheBestFitness(dogs);

 avarageFitness = getAvarageFitness(dogs);

 }

 public double getTheBestFitness(List<Dot> dogs)

 {

 double bestFitness = 9999;

 for (int i = 0; i < dogs.Count; i++)

 if (bestFitness > dogs[i].fitness)

 bestFitness = dogs[i].fitness;

 return bestFitness;

 }

 public double getAvarageFitness(List<Dot> dogs)

 {

 double avarageFitness = 0;

 for (int i = 0; i < dogs.Count; i++)

 avarageFitness += dogs[i].fitness;

 avarageFitness /= dogs.Count;

 return avarageFitness;

 }

 }

}

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading;

using System.Threading.Tasks;

namespace lab3_siit_

{

 class GA

 {

 Random random;

 List<Population> historyOfPopulation;

 public GA()

 {

 random = new Random();

 List<Dot> dots = new List<Dot>();

 for (int i = 0; i < 20; i++)

 {

 List<double> chromosomes = new List<double>();

 for (int j = 0; j < 20; j++)

 {

 chromosomes.Add(random.NextDouble() % 2 -1);

 }

 dots.Add(new Dot(chromosomes));

 }

 //Sorting by fitness

 for (int i = 0; i < dots.Count; i++)

 {

 for (int j = dots.Count - 1; j > i; j--)

 {

 if (dots[j].fitness > dots[j - 1].fitness)

 {

 Dot tempDot = dots[j];

 dots[j] = dots[j - 1];

 dots[j - 1] = tempDot;

 }

 }

 }

 Population startPopulation = new Population(dots);

 historyOfPopulation = new List<Population>();

 historyOfPopulation.Add(startPopulation);

 int k = 0;

 while (!isReady(historyOfPopulation))

 {

 Thread.Sleep(10);

 historyOfPopulation.Add(getNextPupulation(historyOfPopulation[k]));

 k++;

 }

 }

 private Population getNextPupulation(Population parentPopulation)

 {

 List<Dot> childrenPopulationDots = new List<Dot>();

 for (int i = 0; i < 10; i++)

 {

 List<Dot> childrenDots = getChildren(

 parentPopulation.dots[random.Next() % 10 + 10],

 parentPopulation.dots[random.Next() % 10 + 10]

);

 childrenPopulationDots.AddRange(childrenDots);

 }

 //Sorting by fitness

 for (int i = 0; i < childrenPopulationDots.Count; i++)

 {

 for (int j = childrenPopulationDots.Count - 1; j > i; j--)

 {

 if (childrenPopulationDots[j].fitness > childrenPopulationDots[j - 1].fitness)

 {

 Dot tempDot = childrenPopulationDots[j];

 childrenPopulationDots[j] = childrenPopulationDots[j - 1];

 childrenPopulationDots[j - 1] = tempDot;

 }

 }

 }

 Population childrenPopulation = new Population(childrenPopulationDots);

 return childrenPopulation;

 }

 Boolean isReady(List<Population> historyOfPopulation)

 {

 if (historyOfPopulation.Count < 100)

 return false;

 else

 {

 for (int i = historyOfPopulation.Count - 100; i < historyOfPopulation.Count; i++)

 {

 if (historyOfPopulation[historyOfPopulation.Count - 100].avarageFitness !=

historyOfPopulation[i].avarageFitness)

 return false;

 }

 return true;

 }

 }

 private List<Dot> getChildren(Dot father, Dot mother)

 {

 List<Dot> childrenDots = new List<Dot>();

 int pointCross = random.Next()%20;

 List<double> firstChromosomes = new List<double>();

 List<double> secondChromosomes = new List<double>();

 for (int j = 0; j < 20; j++)

 {

 if(j<pointCross)

 {

 firstChromosomes.Add(father.chromosomes[j]);

 secondChromosomes.Add(mother.chromosomes[j]);

 }

 else

 {

 firstChromosomes.Add(mother.chromosomes[j]);

 secondChromosomes.Add(father.chromosomes[j]);

 }

 }

 childrenDots.Add(new Dot(firstChromosomes));

 childrenDots.Add(new Dot(secondChromosomes));

 //Mutation

 for (int j = 0; j < childrenDots.Count; j++)

 {

 int prob = random.Next(0, 20);

 if (prob == 7)

 {

 int number = random.Next(20);

 childrenDots[j].chromosomes[number] = random.NextDouble() % 2 - 1;

 }

 }

 return childrenDots;

 }

 }

}

Best fitness with mutation equal 0;

Best fitness without mutation equal 12,314;

Task2
Rastrigin's Function
Exercise 8 1. Minimize the following y in (i) 20-D, (ii) 3-D and (iii) 2-D cases.
y = nA +Σni=1(x2i− Acos(2_xi))
Where A and n equal 1;
2. Show the following graphics in each of 3 cases (i), (ii) and (iii).
(1) the graph of _tness vs generation.
(2) Create a population of 20 chromosomes at random, with _tness being y.

Source code

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace lab3_siit_

 class Dot

 {

 public List<double> chromosomes;

 public double fitness;

 public Dot(List<double> chromosomes)

 {

 this.chromosomes = chromosomes;

 fitness = getFitness(chromosomes);

 }

 private double getFitness(List<double> chromosomes)

 {

 double fitness = chromosomes.Count;

 double x=0;

 for (int i = 1; i < chromosomes.Count; i++)

 if (chromosomes[i] == 1)

 x += Math.Pow(2, i - 1);

 x /= 1023;

 if (chromosomes[0] == 0)

 x *= -1;

 return 1 + (x * x - Math.Cos(Math.PI * 2 * x));

 }

 }

}

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace lab3_siit_

{

 class Population

 {

 public List<Dot> dots;

 public double theBestFitness;

 public double avarageFitness;

 public Population(List<Dot> dogs)

 {

 this.dots = dogs;

 theBestFitness = getTheBestFitness(dogs);

 avarageFitness = getAvarageFitness(dogs);

 }

 public double getTheBestFitness(List<Dot> dogs)

 {

 double bestFitness = 9999;

 for (int i = 0; i < dogs.Count; i++)

 if (bestFitness > dogs[i].fitness)

 bestFitness = dogs[i].fitness;

 return bestFitness;

 }

 public double getAvarageFitness(List<Dot> dogs)

 {

 double avarageFitness = 0;

 for (int i = 0; i < dogs.Count; i++)

 avarageFitness += dogs[i].fitness;

 avarageFitness /= dogs.Count;

 return avarageFitness;

 }

 }

}

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading;

using System.Threading.Tasks;

namespace lab3_siit_

{

 class GA

 {

 Random random;

 List<Population> historyOfPopulation;

 public GA()

 {

 random = new Random();

 List<Dot> dots = new List<Dot>();

 for (int i = 0; i < 20; i++)

 {

 List<double> chromosomes = new List<double>();

 for (int j = 0; j < 11; j++)

 {

 chromosomes.Add(random.Next() % 2);

 }

 dots.Add(new Dot(chromosomes));

 }

 //Sorting by fitness

 for (int i = 0; i < dots.Count; i++)

 {

 for (int j = dots.Count - 1; j > i; j--)

 {

 if (dots[j].fitness > dots[j - 1].fitness)

 {

 Dot tempDot = dots[j];

 dots[j] = dots[j - 1];

 dots[j - 1] = tempDot;

 }

 }

 }

 Population startPopulation = new Population(dots);

 historyOfPopulation = new List<Population>();

 historyOfPopulation.Add(startPopulation);

 int k = 0;

 while (!isReady(historyOfPopulation))

 {

 Thread.Sleep(10);

 historyOfPopulation.Add(getNextPupulation(historyOfPopulation[k]));

 k++;

 }

 }

 private Population getNextPupulation(Population parentPopulation)

 {

 List<Dot> childrenPopulationDots = new List<Dot>();

 for (int i = 0; i < 10; i++)

 {

 List<Dot> childrenDots = getChildren(

 parentPopulation.dots[random.Next() % 10 + 10],

 parentPopulation.dots[random.Next() % 10 + 10]

);

 childrenPopulationDots.AddRange(childrenDots);

 }

 //Sorting by fitness

 for (int i = 0; i < childrenPopulationDots.Count; i++)

 {

 for (int j = childrenPopulationDots.Count - 1; j > i; j--)

 {

 if (childrenPopulationDots[j].fitness > childrenPopulationDots[j - 1].fitness)

 {

 Dot tempDot = childrenPopulationDots[j];

 childrenPopulationDots[j] = childrenPopulationDots[j - 1];

 childrenPopulationDots[j - 1] = tempDot;

 }

 }

 }

 Population childrenPopulation = new Population(childrenPopulationDots);

 return childrenPopulation;

 }

 Boolean isReady(List<Population> historyOfPopulation)

 {

 if (historyOfPopulation.Count < 100)

 return false;

 else

 {

 for (int i = historyOfPopulation.Count - 100; i < historyOfPopulation.Count; i++)

 {

 if (historyOfPopulation[historyOfPopulation.Count - 100].avarageFitness !=

historyOfPopulation[i].avarageFitness)

 return false;

 }

 return true;

 }

 }

 private List<Dot> getChildren(Dot father, Dot mother)

 {

 List<Dot> childrenDots = new List<Dot>();

 int pointCross = random.Next()%20;

 List<double> firstChromosomes = new List<double>();

 List<double> secondChromosomes = new List<double>();

 for (int j = 0; j < 11; j++)

 {

 if(j<pointCross)

 {

 firstChromosomes.Add(father.chromosomes[j]);

 secondChromosomes.Add(mother.chromosomes[j]);

 }

 else

 {

 firstChromosomes.Add(mother.chromosomes[j]);

 secondChromosomes.Add(father.chromosomes[j]);

 }

 }

 //Mutation

 for (int j = 0; j < childrenDots.Count; j++)

 {

 int prob = random.Next(0, 20);

 if (prob == 7)

 {

 int number = random.Next(20);

 childrenDots[j].chromosomes[number] = random.NextDouble() % 2 - 1;

 }

 }

 childrenDots.Add(new Dot(firstChromosomes));

 childrenDots.Add(new Dot(secondChromosomes));

 return childrenDots;

 }

 }

}

0 generation

 5 generation

10 generation

15generation

20 generation

