2-Alex Golodko

Minimization of Test Function

High-dimensional Test Function

Problem is minimize or maximize a n-dimensinal function

y = f(xa; x2; X3; + -+ ; Xn)

We may use chromosomes with n genes of real value, such as
(0:32;-0:51; 0:48; - - - ;—-0:93)

For example, minimize

y = X214 X2+ X2+ -+ X0

Rastrigin's Function

Exercise 8 1. Minimize the following y in (i) 20-D, (ii) 3-D and (iii) 2-D cases.
y = nA +Zni=1(x2i- Acos(2_xi))

2. Show the following graphics in each of 3 cases (i), (ii) and (iii).

(1) the graph of _tness vs generation.

(2) Create a population of 20 chromosomes at random, with _tness being y.

Taskl

Source code

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Threading.Tasks;

namespace lab3 siit
{
class Dot
{
public List<double> chromosomes;
public double fitness;
public Dot (List<double> chromosomes)
{
this.chromosomes = chromosomes;
fitness = getFitness (chromosomes) ;
}
private double getFitness (List<double> chromosomes)
{
double fitness = chromosomes.Count;
for (int i=0;i<chromosomes.Count;i++)
{
double temp = chromosomes[i]* chromosomes[i]
chromosomes [i]) ;
fitness += temp;
}

return fitness;

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Threading.Tasks;

namespace lab3 siit

{

class Population

{
public List<Dot> dots;

- Math.Cos (2 * Math.PI *



}
}
using
using
using
using
using
using

public double theBestFitness;
public double avarageFitness;
public Population (List<Dot> dogs)

{

this.dots = dogs;

theBestFitness

getTheBestFitness (dogs) ;

avarageFitness = getAvarageFitness (dogs) ;

}

public double getTheBestFitness (List<Dot> dogs)

{

double bestFitness = 9999;
for (int 1 = 0; 1 < dogs.Count; i++)

if (bestFitness > dogs[i].fitness)
bestFitness = dogs[i].fitness;

return bestFitness;

}

public double getAvarageFitness (List<Dot> dogs)

{

double avarageFitness = 0;
for (int i = 0; 1 < dogs.Count; i++)

avarageFitness += dogs[i].fitness;

avarageFitness /= dogs.Count;
return avarageFitness;

System;
System.
System.
System.
System.
System.

Collections.Generic;
Ling;

Text;

Threading;
Threading.Tasks;

namespace lab3 siit

{

class GA

{

Random random;
List<Population> historyOfPopulation;
public GA()

{

random = new Random () ;
List<Dot> dots = new List<Dot>();
for (int i = 0; 1 < 20; i++)

{

}

List<double> chromosomes = new List<double>();
for (int § = 0; J < 20; j++)
{

chromosomes.Add (random.NextDouble () % 2 -1);
}

dots.Add (new Dot (chromosomes)) ;

//Sorting by fitness
for (int 1 = 0; 1 < dots.Count; i++)

{

}

for (int j = dots.Count - 1; j > i; j--)
{
if (dots[j].fitness > dots[j - 1].fitness)
{
Dot tempDot = dots[j];
dots[j] = dots[j - 11;
dots[j - 1] = tempDot;

}

Population startPopulation = new Population (dots);
historyOfPopulation = new List<Population>();
historyOfPopulation.Add (startPopulation);

int k = 0;

while (!isReady(historyOfPopulation))



Thread.Sleep(10);
historyOfPopulation.Add (getNextPupulation (historyOfPopulation[k]));
k++;
}
}
private Population getNextPupulation (Population parentPopulation)

{
List<Dot> childrenPopulationDots = new List<Dot>();

for (int i = 0; 1 < 10; i++)
{
List<Dot> childrenDots = getChildren (

parentPopulation.dots[random.Next () % 10 + 10],
parentPopulation.dots[random.Next () % 10 + 10]

chilé;enPopulationDots.AddRange(childrenDots);
;/Sorting by fitness
for (int i = 0; 1 < childrenPopulationDots.Count; i++)
{ for (int j = childrenPopulationDots.Count - 1; 3 > i; j--)
{ if (childrenPopulationDots[j].fitness > childrenPopulationDots[j - 1].fitness)

{
Dot tempDot = childrenPopulationDots[]j];

childrenPopulationDots[j] = childrenPopulationDots[j - 11;
childrenPopulationDots[]j - 1] = tempDot;
}
}
}
Population childrenPopulation = new Population (childrenPopulationDots) ;

return childrenPopulation;

}

Boolean isReady (List<Population> historyOfPopulation)
{
if (historyOfPopulation.Count < 100)
return false;
else
{
for (int i1 = historyOfPopulation.Count - 100; i < historyOfPopulation.Count; i++)
{
if (historyOfPopulationl[historyOfPopulation.Count - 100].avarageFitness !=
historyOfPopulation[i].avarageFitness)
return false;
}
return true;
}
}
private List<Dot> getChildren (Dot father, Dot mother)

{
List<Dot> childrenDots = new List<Dot>();

int pointCross = random.Next ()%20;
List<double> firstChromosomes = new List<double>();
List<double> secondChromosomes = new List<double>():;

for (int j = 0; j < 20; J++)
{

if (j<pointCross)

{
1)
1)

firstChromosomes.Add (father.chromosomes|[]j
secondChromosomes.Add (mother.chromosomes [

}

else

{

1) 7

1)

firstChromosomes.Add (mother.chromosomes [
secondChromosomes.Add (father.chromosomes [



childrenDots.Add (new Dot (firstChromosomes)) ;
childrenDots.Add (new Dot (secondChromosomes)) ;

//Mutation
for (int j = 0; J < childrenDots.Count; j++)
{

int prob = random.Next (0, 20);

if (prob == 7)

{
int number = random.Next (20);
childrenDots[j].chromosomes [number] = random.NextDouble ()

}

}

return childrenDots;

20

12.3140

10+

! ! ! ! ! ! ! 1 ! T il 4 oy

B
s
2
¥
8
&
8
8
!
g

100 110

Best fitness with mutation equal 0;

Best fitness without mutation equal 12,314;

Task2

Rastrigin's Function

Exercise 8 1. Minimize the following y in (i) 20-D, (ii) 3-D and (iii) 2-D cases.
y = nA +2Zni=1(x2i- Acos(2_xi))

Where A and n equal 1;

2. Show the following graphics in each of 3 cases (i), (ii) and (iii).

(1) the graph of _tness vs generation.

(2) Create a population of 20 chromosomes at random, with _tness being y.

Source code

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Threading.Tasks;

140




namespace lab3 siit
class Dot
{
public List<double> chromosomes;
public double fitness;
public Dot (List<double> chromosomes)
{
this.chromosomes = chromosomes;
fitness = getFitness (chromosomes) ;
}
private double getFitness (List<double> chromosomes)

{

double fitness = chromosomes.Count;
double x=0;
for (int 1 = 1; 1 < chromosomes.Count; i++)

if (chromosomes([i] == 1)
X += Math.Pow (2, 1 - 1);

x /= 1023;
if (chromosomes[0] == 0)
x *= -1;

return 1 + (x * x - Math.Cos(Math.PI * 2 * x));

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Threading.Tasks;

namespace lab3 siit
{
class Population
{
public List<Dot> dots;
public double theBestFitness;
public double avarageFitness;
public Population (List<Dot> dogs)
{
this.dots = dogs;
theBestFitness = getTheBestFitness (dogs) ;
avarageFitness = getAvarageFitness (dogs) ;
}
public double getTheBestFitness (List<Dot> dogs)
{
double bestFitness = 9999;
for (int 1 = 0; 1 < dogs.Count; i++)
if (bestFitness > dogs[i].fitness)
bestFitness = dogs[i].fitness;
return bestFitness;
}
public double getAvarageFitness (List<Dot> dogs)
{
double avarageFitness = 0;
for (int i = 0; 1 < dogs.Count; i++)
avarageFitness += dogs[i].fitness;
avarageFitness /= dogs.Count;
return avarageFitness;

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Threading;

using System.Threading.Tasks;



namespace lab3 siit
{
class GA
{
Random random;
List<Population> historyOfPopulation;
public GA()
{
random = new Random() ;
List<Dot> dots = new List<Dot>();
for (int i = 0; 1 < 20; 1i++)
{
List<double> chromosomes = new List<double>():;
for (int j = 0; J < 11; Jj++)
{
chromosomes.Add (random.Next () % 2);
}
dots.Add (new Dot (chromosomes)) ;
}
//Sorting by fitness
for (int 1 = 0; 1 < dots.Count; i++)
{
for (int j = dots.Count - 1; 3 > i; j--)
{
if (dots[j].fitness > dots[j - 1].fitness)
{
Dot tempDot = dots[j]:
dots[j] = dots[j - 1];
dots[j - 1] = tempDot;

}
}

Population startPopulation = new Population(dots);
historyOfPopulation = new List<Population>();
historyOfPopulation.Add (startPopulation);
int k = 0;
while (!isReady (historyOfPopulation))
{
Thread.Sleep(10);
historyOfPopulation.Add (getNextPupulation (historyOfPopulation[k])):;
k++;
}
}
private Population getNextPupulation (Population parentPopulation)

{
List<Dot> childrenPopulationDots = new List<Dot>();

for (int 1 = 0; 1 < 10; 1i++)
{

List<Dot> childrenDots = getChildren (
parentPopulation.dots[random.Next () % 10 + 107,
parentPopulation.dots[random.Next () % 1
)i

childrenPopulationDots.AddRange (childrenDots) ;

}

//Sorting by fitness

for (int 1 = 0; 1 < childrenPopulationDots.Count; i++)
{

for (int j = childrenPopulationDots.Count - 1; 3 > i; j--)

{
if (childrenPopulationDots[j].fitness > childrenPopulationDots[j - 1].fitness)

{
Dot tempDot = childrenPopulationDots[]j];

childrenPopulationDots[j] = childrenPopulationDots[j - 1];
childrenPopulationDots[]j - 1] = tempDot;
}
}
}
Population childrenPopulation = new Population(childrenPopulationDots);

return childrenPopulation;



}

Boolean isReady (List<Population> historyOfPopulation)

{

if (historyOfPopulation.Count < 100)

return false;
else

{

for (int i = historyOfPopulation.Count - 100;

{

if (historyOfPopulationl[historyOfPopulatio

historyOfPopulation[i].avarageFitness)

}

private List<Dot> getChildren (Dot father,

{

return false;

}

return true;

}

Dot mother)

List<Dot> childrenDots = new List<Dot>();

int pointCross = random.Next ()%20;

List<double> firstChromosomes = new List<double> ()
List<double> secondChromosomes = new List<double>(

i < historyOfPopulation.Count;

n.Count - 100].avarageFitness

’

)7

for (int j = 0; J < 11; Jj++)
{
if (j<pointCross)
{
firstChromosomes.Add (father.chromosomes[j]) ;
secondChromosomes .Add (mother.chromosomes|[j]);
}
else
{
firstChromosomes.Add (mother.chromosomes[j]) ;
secondChromosomes.Add (father.chromosomes|[j]);
}
}
//Mutation
for (int j = 0; j < childrenDots.Count; j++)
{
int prob = random.Next (0, 20);
if (prob == 7)
{
int number = random.Next (20);
childrenDots[j].chromosomes [number] = random.NextDouble() % 2 - 1;

}

childrenDots.Add (new Dot (firstChromosomes)) ;
childrenDots.Add (new Dot (secondChromosomes)) ;
return childrenDots;

i++)

1=



0 generation

:
I‘ﬂ
¥

-

5 generation

&
o
!

251

-

10 generation



35

15generation

35

20 generation

05

[s] [s] [s]
x
L L 'Y
1 1 L
0s 09
Hx)1H{x"2-cou 271 14%))
4
[s] [s] [s]
x
. . N
1 1 L
113 09



35

2

- M

05




