Brest State Technical University, Course "Contemporary Intelligent Information Technology (CIIT)"

From Students' Works (2013)




  • A result ... By Demchuk Kristina


    => It looks good but I don't understand why those points converge to a rectangle-like shape, not converge to almost one point.


  • 3-D version ... By Lisenkov Roman





  • The equation of this 5-D hyperspere is
    (X1 5)^2 + (X2 - 5)^2 + (X3 - 5)^2 + (X4 - 5)^2 + (X5 - 5)^2 = 25.
    So, create X1, X2, X3, X4 at random, then calculate X5 from the equation.


  • (1) The 1st example ... By Vasily Brutsky

  • (4,23 3,49 7,2 5,4 0,86), (5,66 4,41 3,27 5,42 0,41), (4,88 1,63 3,38 4,53 1,72), (4,72 3,81 5,63 1,88 1,34), (4,98 3,58 3,34 7,75 1,44), (4,38 7,51 8,38 4,46 2,43), (5,39 5,03 2,2 2,8 1,51), (5,35 5,86 4,12 8,6 1,77), (5,43 1,18 6,49 5,4 2,2), (6,61 3,41 6,11 3,39 0,99), (7,41 2,01 3,36 2,52 3,81), (6,9 7,73 4,3 5,95 1,46), (0,74 4,52 4,52 3,25 3,18), (4,88 5,32 5,44 7,1 0,5), (4,28 2,18 8,06 2,89 3,35), (8,36 3,29 2,65 2,9 4,08), (4,72 5,19 5,15 9,64 3,17), (6,78 5,51 8,97 5,29 2,61), (3,44 8,31 3,33 3,32 2,55), (8,76 7,24 6,42 6,72 4,07), (7,03 8,42 6,45 3,34 2,92), (7,33 2,45 6,12 1,99 3,34), (5,57 7,74 3,23 6,1 1,42), (1,29 7,72 6,42 6,31 4,68), (1,11 4,43 5,57 2,83 2,88), (2,16 8,19 2,64 5,63 4,11), (1,49 6,95 6,37 5,58 2,42), (4,98 4,57 8,09 7,89 2,37), (3,87 2,78 1,64 3,24 2,9), (7,23 2,63 7,48 4,62 2,15), (2,88 7,07 4,58 6,38 1,24), (3,66 4,3 1,35 5,99 2,1), (5,52 7,74 4,04 8,86 3,82), (3,41 6,27 5,85 7,91 1,58), (1,97 4,51 5,46 5,85 1,17), (8,06 2,75 2,99 7,44 4,24), (4,94 5,08 5,64 6,34 0,23), (8,85 4,56 4,65 8,13 4,75), (6,1 2,34 8,24 3,5 3,01), (6,6 2,61 3,78 5,51 1,13), (5,44 7,65 3,45 8,27 2,83), (8,21 6,46 1,9 6,33 3,91), (5,6 3,24 1,59 3,61 2,17), (5,69 3,57 1,19 3,67 2,51), (6,53 6,79 6,84 7,39 1,78), (4,87 8,29 5,6 8,12 2,98), (5,65 5,38 9,46 3,02 4,21), (6,28 0,7 5,84 6,82 4,08), (3,43 3,99 7,92 7,17 2,12), (9,32 6,8 4,3 4,28 3,55)

  • (2) The 2nd example ... By Dubrovsky Alexander




  • (2) The 3rd example: 10-D instead of 5-D ... By Danilchyk Raman





    • Sammon mapping from 50 points on the surface of 5-D sphere from the Brutsky's data above to 2-D



  • (1) The 1st example ... Bakunovich Dmitriy

    Distance Matrix of the 50 points in 5-D (Left), the one in 2-D at the start (Center), and at the goal (Right).


    Then fitness-generation curve ((Left), 50 random points in 2-D at the start (Center), and almost perfectly mapped the final 50 points (Right)



  • (2) The 2nd example ... By Kabachuk Roman




  • (3) An intermediate set of 50 points: Not random any more but not on a circle yet ... By Galina Bezabrazava