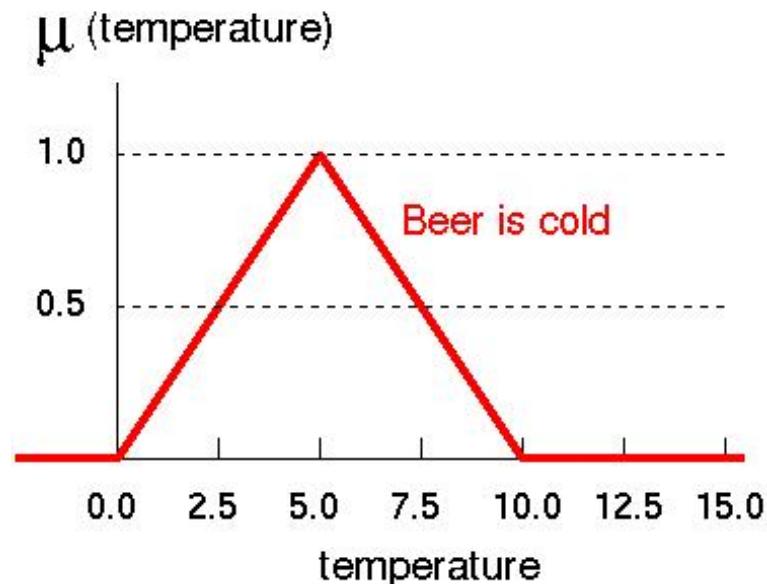


A slide show of our Lecture Note

Application of Fuzzy Logic


Akira Imada
Brest State Technical University

Last modified on 29 October 2016

I. Fuzzy Basic Arithmetics

Membership Function

In Fuzzy logic the probability of "*how likely A is true*" is called membership value of A and expressed as μ_A . E.g., assuming $A = \text{"beer is cold,"}$ $\mu_A = 1$ when temperature of beer is 5°C , while $\mu_A = 0.5$ when temperature of beer is 10°C , and $\mu_A = 0$ when temperature of beer is 15°C .

AND and OR

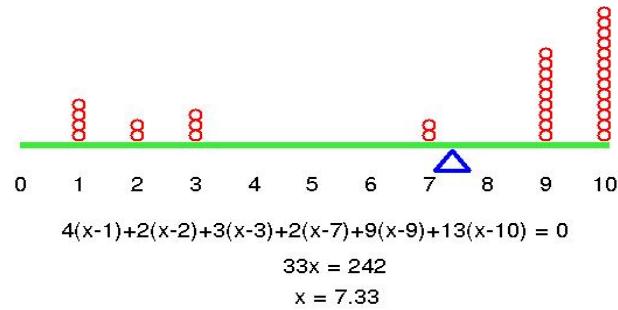
Membership of A AND B and A OR B are given, respectively, as $\mu_{A \cap B}(x) = \min\{\mu_A(x), \mu_B(x)\}$

and

$$\mu_{A \cup B}(x) = \max\{\mu_A(x), \mu_B(x)\}$$

IF-THEN

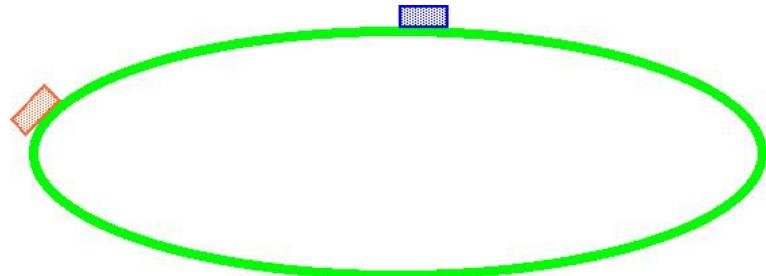
Membership of **IF A THEN B** has proposed by many but here we use this Larsen's proposal.

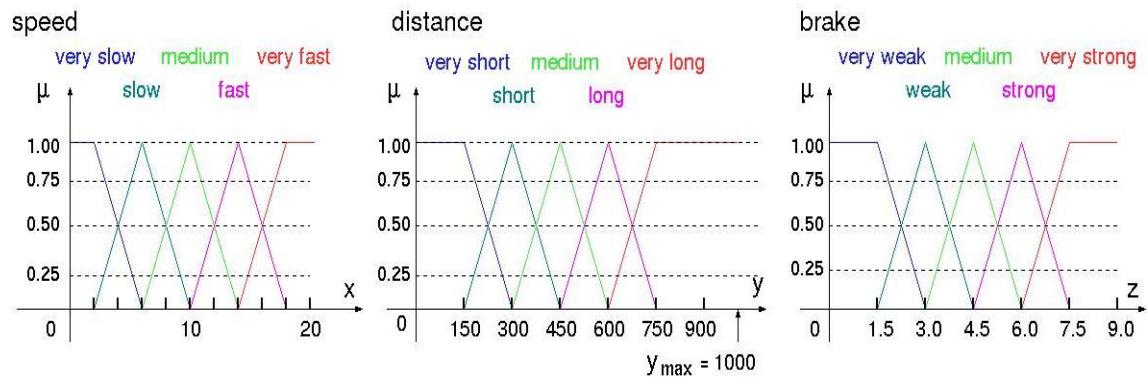

$$\mu_{A \rightarrow B}(x) = \mu_A(x) \times \mu_B(x)$$

4. De-fuzzification

When A has some different possibility, we determine most possible value of A by calculating the center of gravity of these membership values.

$$\sum_i \mu_{A_i} \times (x - x_i) = 0$$


E.g.


II. Fuzzy Controller

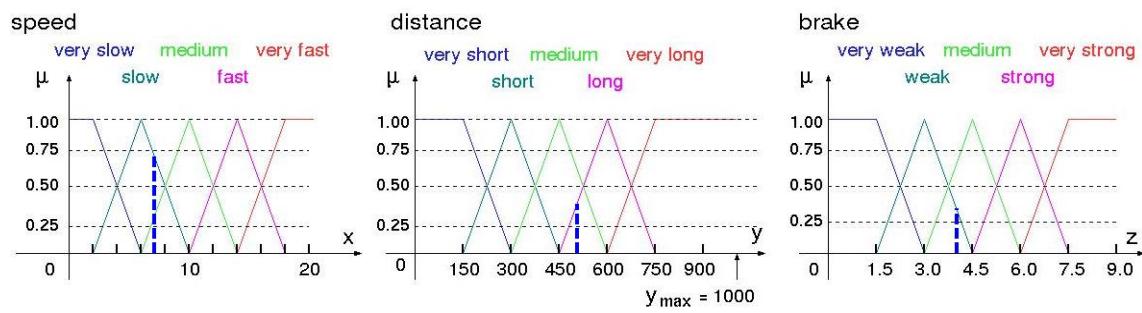
Controll two metro cars

Let's create a virtual metro system with 2 cars on a loop line with 1000 pixels. Each car has a pair of 3 parameters of speed x , distance to the car in front y and strength of brake z .

Membership function of Speed, Distance and Brake assumed here.

Membership value of a rule with specific speed, distance and brake.

E.g.


The membership value below implies **how this brake = 4 will be likely**

when speed = 7 and distance = 500 under the rule below.

IF x = slow AND y = long THEN z = weak

Assume now x = 7, y = 500, z = 4

Then the membership value of this rule is $\rightarrow (0.72 + 0.35) \times 0.31 = 0.3317$

An example of Membership value of one rule Membership value of
brake = 0,1,2,3,4,5,6,7,8,9 when speed = 20 and distance = 650 under the rule

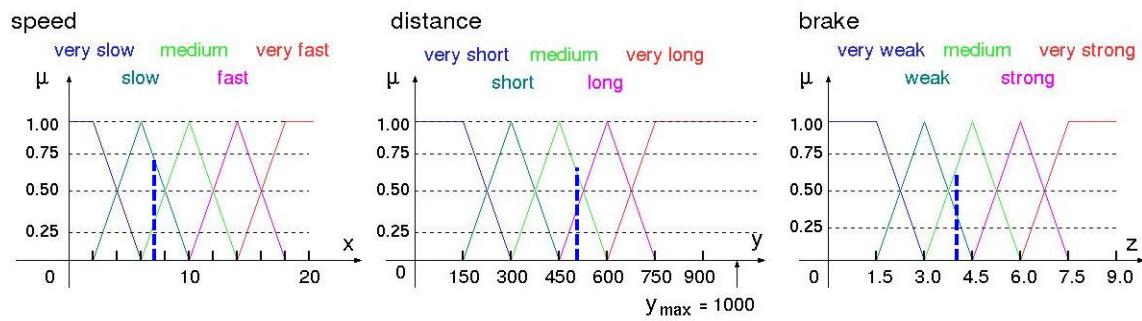
IF speed = medium AND distance = long THEN brake = medium.

Rule: If speed is medium, distance is long, then break is								
Speed	Mui	Distance	Mui	Break	Mui		TotalM	
0	0	0	0	0	0	0	0	0
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
20	0.5	650	0.5	0	0	0	0	0
20	0.5	650	0.5	1	0	0	0	0
20	0.5	650	0.5	2	0	0	0	0
20	0.5	650	0.5	3	0	0	0	0
20	0.5	650	0.5	4	0.5	0.25	0.25	0.25
20	0.5	650	0.5	5	1	0.5	0.5	0.5
20	0.5	650	0.5	6	0.5	0.25	0.25	0.25
20	0.5	650	0.5	7	0	0	0	0
20	0.5	650	0.5	8	0	0	0	0
20	0.5	650	0.5	9	0	0	0	0
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
40	0	1000	0	9	0	0	0	0

From the work by Korol Andrey (2015 Fall)

Membership value of two rules

IF $x = \text{slow}$ AND $y = \text{long}$ THEN $z = \text{weak}$

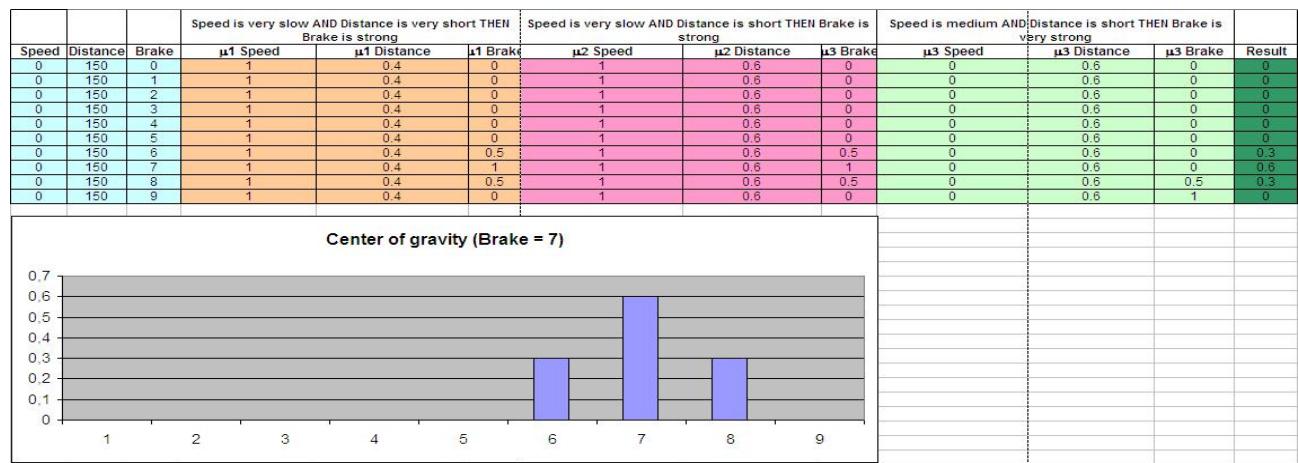

OR

IF $x = \text{medium}$ AND $y = \text{medium}$ THEN $z = \text{medium}$

Assume now $x = 7, y = 500, z = 4$

Then the membership value of these two rules is

$$\max \{ \{(0.72 + 0.35) \times 0.31 = 0.3317\}, \{(0.23 + 0.75) \times 0.58 = 0.5684\} \} = 0.5684$$


Membership function of three rules for a pair of a speed and a distance

Membership value of 3 rules for a pair of speed & distance

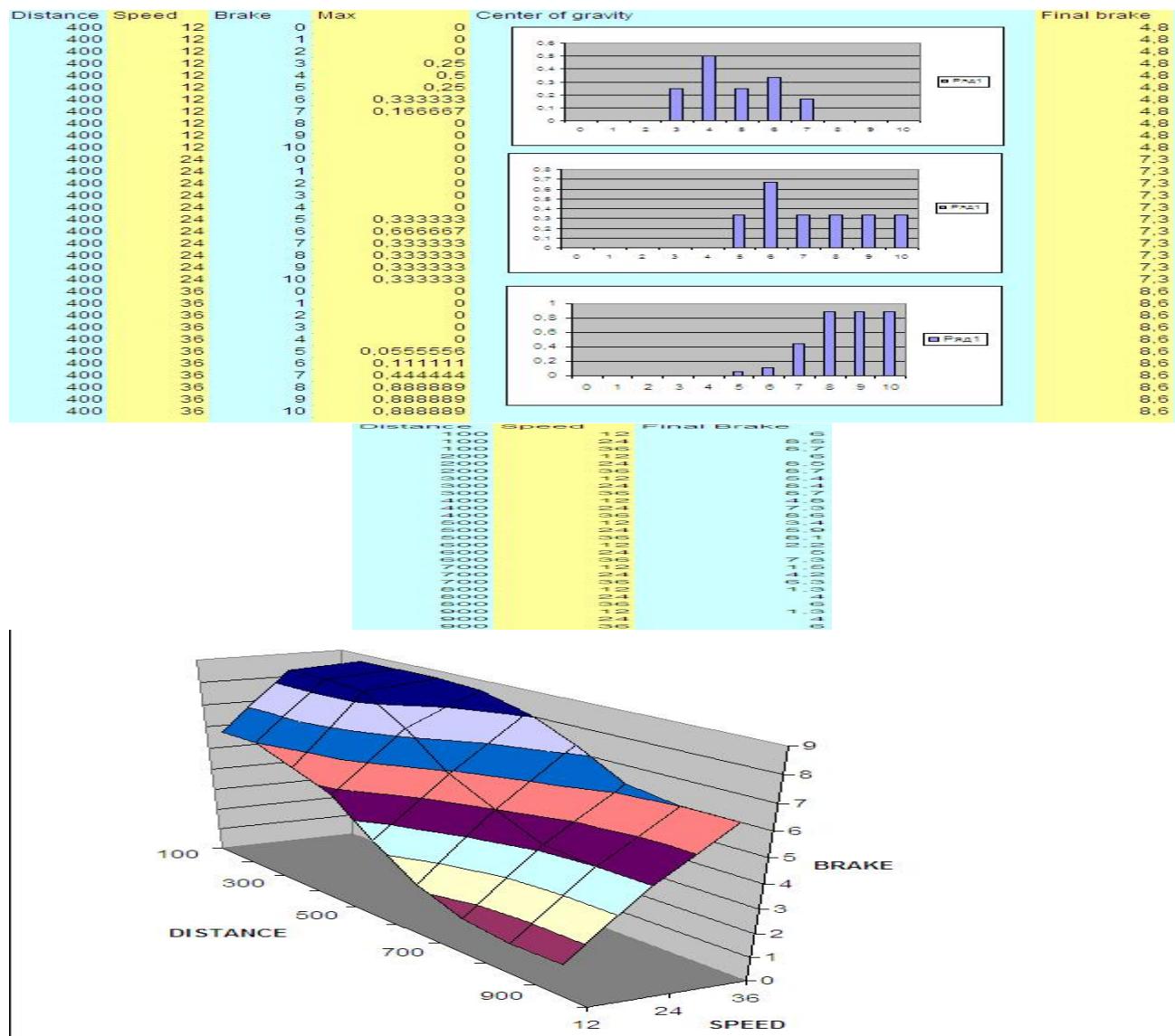
Speed	Distance	Brake	Rule 1: IF x=medium AND y=small THEN z=strong				Rule 2: IF x=medium AND y=medium THEN z=medium				Rule 3: IF x=medium AND y=large THEN z=weak				Max of rules
			mSp1	mDs1	mBr1	min(mSp1, mDs1)*mBr1	mSp2	mDs2	mBr2	min(mSp2, mDs2)*mBr2	mSp3	mDs3	mBr3	min(mSp3, mDs3)*mBr3	
11,00	550,00	0	0,75	0	0	0	0,75	0,25	0	0	0,75	0,75	0	0	0
		1	0,75	0	0	0	0,75	0,25	0	0	0,75	0,75	0	0	0
		2	0,75	0	0	0	0,75	0,25	0	0	0,75	0,75	0,25	0,1875	0,1875
		3	0,75	0	0	0	0,75	0,25	0	0	0,75	0,75	1	0,75	0,75
		4	0,75	0	0	0	0,75	0,25	0,75	0,1875	0,75	0,75	0,25	0,1875	0,1875
		5	0,75	0	0,3	0	0,75	0,25	0,75	0,1875	0,75	0,75	0	0	0,1875
		6	0,75	0	1	0	0,75	0,25	0	0	0,75	0,75	0	0	0
		7	0,75	0	0,3	0	0,75	0,25	0	0	0,75	0,75	0	0	0
		8	0,75	0	0	0	0,75	0,25	0	0	0,75	0,75	0	0	0
		9	0,75	0	0	0	0,75	0,25	0	0	0,75	0,75	0	0	0
		10	0,75	0	0	0	0,75	0,25	0	0	0,75	0,75	0	0	0

From the work by Yulia Bogutskaya (2016 Fall)

Defuzzified value of break for a pair of a speed and a distance

From the work by Kuchur Alexander (2015 Fall)

Membership value of 3 rules for 3 pairs of speed & distance

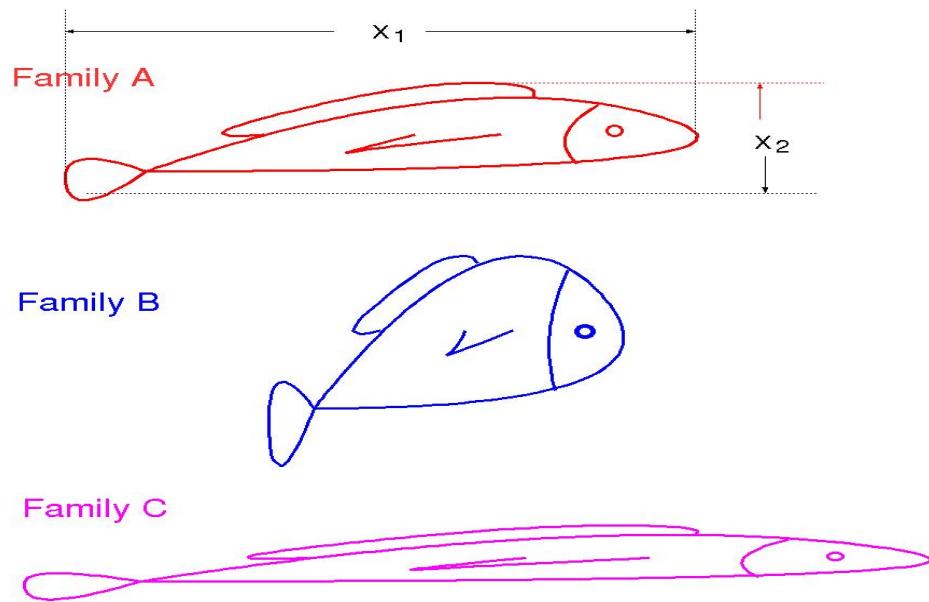

Speed	Distance	Brake	Rule 1: If $x=$ medium AND $y=$ small THEN $z=$ strong				Rule 2: If $x=$ medium AND $y=$ medium THEN $z=$ medium				Rule 3: If $x=$ medium AND $y=$ large THEN $z=$ weak				Max of rules	Balance
			mSp1	mDs1	mBr1	min(mSp1, mDs1) * mBr1	mSp2	mDs2	mBr2	min(mSp2, mDs2) * mBr2	mSp3	mDs3	mBr3	min(mSp3, mDs3) * mBr3		
11.00	500.00	0	0.75	0	0	0	0.75	0.5	0	0	0.75	0.5	0	0	0	3,727273
		1	0.75	0	0	0	0.75	0.5	0	0	0.75	0.5	0	0	0	
		2	0.75	0	0	0	0.75	0.5	0	0	0.75	0.5	0.25	0.125	0.125	
		3	0.75	0	0	0	0.75	0.5	0	0	0.75	0.5	0.25	0.125	0.125	
		4	0.75	0	0	0	0.75	0.5	0.75	0.375	0.75	0.5	0.25	0.125	0.125	
		5	0.75	0	0.3	0	0.75	0.5	0.75	0.375	0.75	0.5	0	0	0.375	
		6	0.75	0	1	0	0.75	0.5	0	0	0.75	0.5	0	0	0	
		7	0.75	0	0.3	0	0.75	0.5	0	0	0.75	0.5	0	0	0	
		8	0.75	0	0	0	0.75	0.5	0	0	0.75	0.5	0	0	0	
		9	0.75	0	0	0	0.75	0.5	0	0	0.75	0.5	0	0	0	
11.00	550.00	0	0.75	0	0	0	0.75	0.25	0	0	0.75	0.75	0	0	0	3,285714
		1	0.75	0	0	0	0.75	0.25	0	0	0.75	0.75	0	0	0	
		2	0.75	0	0	0	0.75	0.25	0	0	0.75	0.75	0.25	0.1875	0.1875	
		3	0.75	0	0	0	0.75	0.25	0	0	0.75	0.75	0	0.75	0.75	
		4	0.75	0	0	0	0.75	0.25	0.75	0.1875	0.75	0.75	0.25	0.1875	0.1875	
		5	0.75	0	0.3	0	0.75	0.25	0.75	0.1875	0.75	0.75	0	0	0.1875	
		6	0.75	0	1	0	0.75	0.25	0	0	0.75	0.75	0	0	0	
		7	0.75	0	0.3	0	0.75	0.25	0	0	0.75	0.75	0	0	0	
		8	0.75	0	0	0	0.75	0.25	0	0	0.75	0.75	0	0	0	
		9	0.75	0	0	0	0.75	0.25	0	0	0.75	0.75	0	0	0	
11.00	600.00	0	0.75	0	0	0	0.75	0.25	0	0	0.75	0.75	0	0	0	3
		1	0.75	0	0	0	0.75	0	0	0	0.75	1	0	0	0	
		2	0.75	0	0	0	0.75	0	0	0	0.75	1	0.25	0.1875	0.1875	
		3	0.75	0	0	0	0.75	0	0	0	0.75	1	0	0.75	0.75	
		4	0.75	0	0	0	0.75	0	0.75	0	0.75	1	0.25	0.1875	0.1875	
		5	0.75	0	0.3	0	0.75	0	0.75	0	0.75	1	0	0	0	
		6	0.75	0	1	0	0.75	0	0	0	0.75	1	0	0	0	
		7	0.75	0	0.3	0	0.75	0	0	0	0.75	1	0	0	0	
		8	0.75	0	0	0	0.75	0	0	0	0.75	1	0	0	0	
		9	0.75	0	0	0	0.75	0	0	0	0.75	1	0	0	0	
		10	0.75	0	0	0	0.75	0	0	0	0.75	1	0	0	0	

5. Membership function of 25 rules

all combination of speed = very slow ..., distance = very short

6. 3-D surface of speed-distance-brake

An example of how to draw for a fixed speed and three different value of distances /



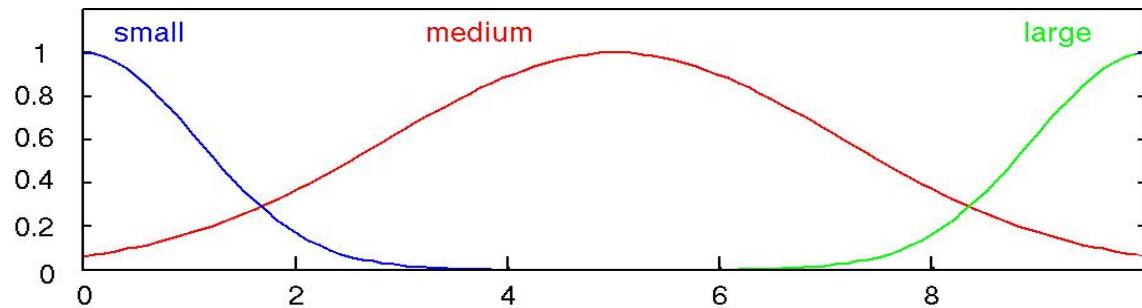
From the work by Bokhanov Evgenii (2015 Fall)

7. Control metros by 3-D surface of speed-distance-brake

III. Fuzzy Classification

An example of classification - 3 families of fish

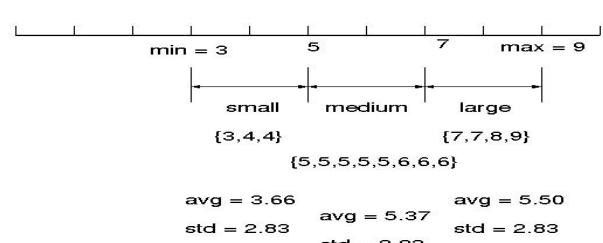
1. Rules to classify as an example

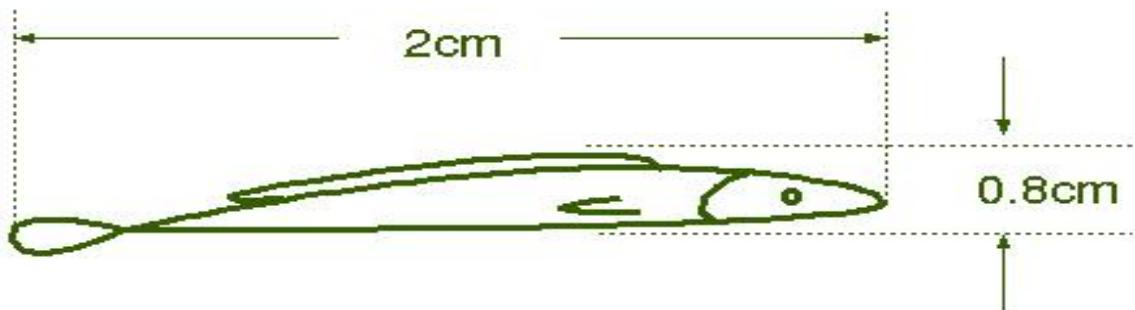

R_1 : IF X_1 = medium AND X_2 = small THEN A

R_2 : IF X_1 = small AND X_2 = medium THEN B

R_3 : IF X_1 = large AND X_2 = small THEN C

2. Memership function for the size of two parts


$$\mu(x) = \exp\left\{-\frac{(x - avg)^2}{std^2}\right\}$$


?

How we specify avg and std for each of membership function from dataset given?

ω_1			ω_2			ω_3		
X_1	X_2	X_3	X_1	X_2	X_3	X_1	X_2	X_3
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
9	9	9	9	9	9	9	9	9
5	5	5	5	5	5	5	5	5
4	4	4	4	4	4	4	4	4
3	3	3	3	3	3	3	3	3
5	5	5	5	5	5	5	5	5
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7	7
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8	8

Question: Which family is this new fish?

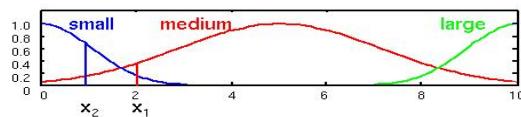
2. Takagi Sugeno Formula

R_k : If x_1 is A_1^k , and x_2 is A_2^k and \dots and x_N is A_N^k then y is g^k .

Takagi-Sugeno rules: Estimation of a single input

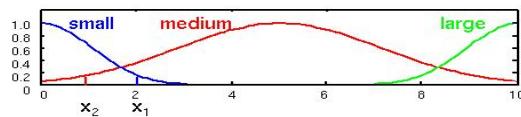
Estimation of y for an input $\mathbf{x} = (x_1, x_2, \dots, x_N)$

$$y_j = \frac{\sum_{k=1}^H (M_k(\mathbf{x}) \cdot g_k)}{\sum_{k=1}^H M_k(\mathbf{x})}$$

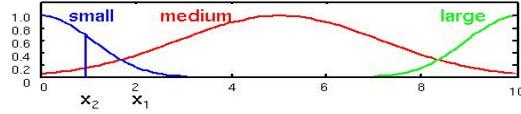

where

$$M_k(\mathbf{x}) = \prod_{i=1}^N \mu_{ik}(x_i)$$

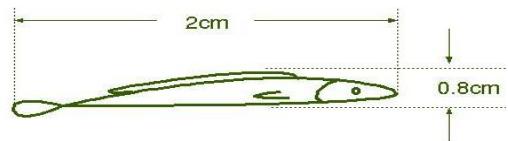
where μ_{ik} is i -th attribute of k -th rule


Three rules to classify

R₁: IF X₁ = **medium** AND X₂ = **small** THEN y = 1

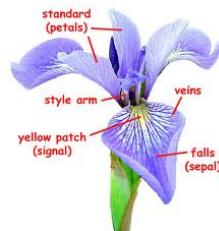

$$M_1 = 0.39 \times 0.41 = 0.16$$

R₂: IF X₁ = **small** AND X₂ = **medium** THEN y = 2


$$M_2 = 0.18 \times 0.18 = 0.03$$

R₃: IF X₁ = **large** AND X₂ = **small** THEN y = 3

$$M_3 = 0.01 \times 0.71 = 0.01$$


$$y = \frac{0.16 \times 1 + 0.03 \times 2 + 0.01 \times 3}{0.16 + 0.03 + 0.01} = \frac{0.25}{0.2} = 1.25$$

A benchmark – Iris database

Iris flower dataset (taken from University of California Urvine Machine Learning Repository) consists of three species of iris flower *setosa*, *versicolor* and *virginica*.

Each sample represents four attributes of the iris flower *sepal-length*, *sepal-width*, *petal-length*, and *petal-width*.

Iris Flower Database to design

Setosa				Versicolor				Virginica			
x_1	x_2	x_3	x_4	x_1	x_2	x_3	x_4	x_1	x_2	x_3	x_4
0.56	0.66	0.20	0.08	0.84	0.66	0.67	0.52	0.85	0.57	0.84	0.72
0.62	0.70	0.22	0.04	0.66	0.61	0.57	0.56	0.91	0.82	0.88	1.00
0.68	0.84	0.22	0.08	0.63	0.45	0.51	0.40	0.82	0.73	0.74	0.80
0.61	0.77	0.23	0.08	0.75	0.68	0.61	0.60	0.81	0.61	0.77	0.76
0.61	0.68	0.20	0.04	0.76	0.50	0.58	0.40	0.86	0.68	0.80	0.84
0.54	0.68	0.16	0.04	0.77	0.66	0.68	0.56	0.72	0.57	0.72	0.80
0.73	0.91	0.17	0.08	0.71	0.66	0.52	0.52	0.73	0.64	0.74	0.96
0.72	1.00	0.22	0.16	0.85	0.70	0.64	0.56	0.81	0.73	0.77	0.92
0.68	0.89	0.19	0.16	0.71	0.68	0.65	0.60	0.82	0.68	0.80	0.72
0.65	0.80	0.20	0.12	0.73	0.61	0.59	0.40	0.97	0.86	0.97	0.88
0.72	0.86	0.25	0.12	0.78	0.50	0.65	0.60	0.97	0.59	1.00	0.92
0.65	0.86	0.22	0.12	0.71	0.57	0.57	0.44	0.76	0.50	0.72	0.60
0.68	0.77	0.25	0.08	0.75	0.73	0.70	0.72	0.87	0.73	0.83	0.92
0.65	0.84	0.22	0.16	0.77	0.64	0.58	0.52	0.71	0.64	0.71	0.80
0.58	0.82	0.14	0.08	0.80	0.57	0.71	0.60	0.97	0.64	0.97	0.80
0.65	0.75	0.25	0.20	0.77	0.64	0.68	0.48	0.80	0.61	0.71	0.72
0.61	0.77	0.28	0.08	0.81	0.66	0.62	0.52	0.85	0.75	0.83	0.84

Iris Flower Database to validate

Setosa				Versicolor				Virginica			
x_1	x_2	x_3	x_4	x_1	x_2	x_3	x_4	x_1	x_2	x_3	x_4
0.65	0.80	0.20	0.08	0.89	0.73	0.68	0.56	0.80	0.75	0.87	1.00
0.62	0.68	0.20	0.08	0.81	0.73	0.65	0.60	0.73	0.61	0.74	0.76
0.59	0.73	0.19	0.08	0.87	0.70	0.71	0.60	0.90	0.68	0.86	0.84
0.58	0.70	0.22	0.08	0.70	0.52	0.58	0.52	0.80	0.66	0.81	0.72
0.63	0.82	0.20	0.08	0.82	0.64	0.67	0.60	0.82	0.68	0.84	0.88
0.68	0.89	0.25	0.16	0.72	0.64	0.65	0.52	0.96	0.68	0.96	0.84
0.58	0.77	0.20	0.12	0.80	0.75	0.68	0.64	0.62	0.57	0.65	0.68
0.63	0.77	0.22	0.08	0.62	0.55	0.48	0.40	0.92	0.66	0.91	0.72

IV. Time-series prediction by Fuzzy

Forcasting a value from its history

Assume $y(t)$ is a value of a variable y at time t such as maximum price of a stock during a day. Then T-S formula for singleton consequence is as follows¹.

R_i : If $y(t-1)$ is A_1^i and $y(t-2)$ is A_2^i and \dots and $y(t-n+1)$ is A_n^i then $y(t)$ is g^i .

Forecasting a value from other related items

R_i : If $x_1(t)$ is A_1^i and $x_2(t)$ is A_2^i and \dots and $x_n(t)$ is A_n^i then $y(t)$ is g^i .

V. Fuzzy Clustering

1. Fuzzy Relation

★ Example 4 ... $X = \{\text{green, yellow, red}\}$, $Y = \{\text{unripe, semiripe, ripe}\}$.

We may assume that a red apple is *provably* ripe, but a green apple is *most likely*, and so on. Thus, for example:

$X \setminus Y$	unripe	semiripe	ripe
green	1	0.5	0
yellow	0.3	1	0.4
red	0	0.2	1

Let's call this relation R_1 . Then we think a similar but new Relation.

2. Combine two fuzzy relations

Now

$$Y = \{unripe, semiripe, ripe\}$$

and

$$Z = \{sour, sour - sweet, sweet\}$$

Let's call this relation R_2 .

$X \setminus Y$	sour	sour-sweet	sweet
unripen	0.8	0.5	0.1
semiripe	0.1	0.7	0.5
ripe	0.2	0.3	0.9

Combine two fuzzy relations - continued

We combine these two relations R_1 and R_2 by the formula

$$\mu_R(x, z) \geq \max_{y \in X} \{\min\{\mu_R(x, y), \mu_R(y, z)\}\},$$

the result is:

$X \setminus Y$	sour	sour-sweet	sweet
red	0.8	0.5	0.5
yellow	0.3	0.7	0.5
green	0.2	0.3	0.9

Expression by our daily language

This relation could be expressed by our daily language like

”If tomato is red then it’s most likely sweet , possibly sour-sweet, and unlikely sour.”

”If tomato is yellow then probably it’s sour-sweet , possibly sour, maybe sweet.”

”If tomato is green then almost always sour, less likely sour-sweet, unlikely sweet.”

Or, we could say:

”Now tomato is more or less red, then what is taste like?”

3. Clustering by Fuzzy Relation of Proximity

Algorithm 1

1. Calculate a max-min similarity-relation $R = [a_{ij}]$
2. Set $a_{ij} = 0$ for all $a_{ij} < \alpha$ and $i = j$
3. Select s and t such that $a_{st} = \max\{a_{ij} | i < j \wedge i, j \in I\}$. When tie, select one of these pairs at random

WHILE $a_{st} \neq 0$ DO put s and t into the same cluster $C = \{s, t\}$ ELSE 4.
ELSE all indices $\in I$ into separated clusters and STOP

4. Choose $u \in I - C$ such that

$$\sum_{i \in C} a_{iu} = \max_{j \in I - C} \left\{ \sum_{i \in C} a_{ij} \mid a_{ij} \neq 0 \right\}$$

When a tie, select one such u at random.

WHILE such a u exists, put u into $C = \{s, t, u\}$ and REPEAT 4.

5. Let $I = I - C$ and GOTO 3.

Example: Let's Start with the following $R^{(0)}$,

$$R^{(0)} = \begin{bmatrix} 1 & .7 & .5 & .8 & .6 & .6 & .5 & .9 & .4 & .5 \\ .7 & 1 & .3 & .6 & .7 & .9 & .4 & .8 & .6 & .6 \\ .5 & .3 & 1 & .5 & .5 & .4 & .1 & .4 & .7 & .6 \\ .8 & .6 & .5 & 1 & .7 & .5 & .5 & .7 & .5 & .6 \\ .6 & .7 & .5 & .7 & 1 & .6 & .4 & .5 & .8 & .9 \\ .6 & .9 & .4 & .5 & .6 & 1 & .3 & .7 & .7 & .5 \\ .5 & .4 & .1 & .5 & .4 & .3 & 1 & .6 & .2 & .3 \\ .9 & .8 & .4 & .7 & .5 & .7 & .6 & 1 & .4 & .4 \\ .4 & .6 & .7 & .5 & .8 & .7 & .2 & .4 & 1 & .7 \\ .5 & .6 & .6 & .6 & .9 & .5 & .3 & .4 & .7 & 1 \end{bmatrix}$$

Then repeat $R^{(n+1)} = R^{(n)} \circ R^{(n)}$ till $R^{(n)} = R^{(n+1)}$.

$$R^{(n)} = \begin{bmatrix} 1 & .2 & .5 & .8 & .6 & .2 & .3 & .9 & .4 & .3 \\ .2 & 1 & .3 & .6 & .7 & .9 & .2 & .8 & .3 & .2 \\ .5 & .3 & 1 & .5 & .3 & .4 & .1 & .3 & .7 & .6 \\ .8 & .6 & .5 & 1 & .7 & .3 & .5 & .4 & .1 & .3 \\ .6 & .7 & .3 & .7 & 1 & .2 & .4 & .5 & .8 & .9 \\ .2 & .9 & .4 & .3 & .2 & .4 & .1 & .3 & .7 & .2 \\ .3 & .2 & .1 & .5 & .4 & .1 & 1 & .6 & .1 & .3 \\ .9 & .8 & .3 & .4 & .5 & .3 & .6 & 1 & 0 & .2 \\ .4 & .3 & .7 & .1 & .8 & .7 & .1 & 0 & 1 & .1 \\ .3 & .2 & .6 & .3 & .9 & .2 & .3 & .2 & .1 & 1 \end{bmatrix}$$

Now summing $\alpha = 0.55$ apply [1.] and [2.]

$$\begin{bmatrix} 0 & .7 & 0 & .8 & .6 & .6 & 0 & .9 & 0 & 0 \\ .7 & 0 & 0 & .6 & .7 & .9 & 0 & .8 & .6 & .6 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & .7 & .6 \\ .8 & .6 & 0 & 0 & .7 & 0 & 0 & .7 & 0 & .6 \\ .6 & .7 & 0 & .7 & 0 & .6 & 0 & 0 & .8 & .9 \\ .6 & .9 & 0 & 0 & .6 & 0 & 0 & .7 & .7 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & .6 & 0 & 0 \\ .9 & .8 & 0 & .7 & 0 & .7 & .6 & 0 & 0 & 0 \\ 0 & .6 & .7 & 0 & .8 & .7 & 0 & 0 & 0 & .7 \\ 0 & .6 & .6 & .6 & .9 & 0 & 0 & 0 & .7 & 0 \end{bmatrix}$$

First, set $I = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ and $C = \{\}$. Then

3. Now $a_{18} = a_{26} = a_{5\ 10} = 0.9$ are maximum and a_{18} is randomly selected. Then $C = \{1, 8\}$.
4. $a_{12} + a_{82} = a_{14} + a_{84} = 1.5$ are maximum and $j = 4$ is randomly selected. Then $C = \{1, 8, 4\}$.
4. $a_{12} + a_{42} + a_{82} = 2.1$ is maximum, then $C = \{1, 8, 4, 2\}$.
4. There are no j such that $a_{1j} + a_{2j} + a_{4j} + a_{8j}$ is maximum. Then final $C = \{1, 8, 4, 2\}$.

★ $a_{16} + a_{26} + a_{46} + a_{86} = 0.6 + 0.9 + 0 + 0.7 = 2.2$ seems maximum but actually not because $a_{46} = 0$

Note that $\sum_{i \in C} a_{iu} = \max_{j \in I \setminus C} \{\sum_{i \in C} a_{ij} \mid a_{ij} \neq 0\}$

5. Let $I = \{3, 5, 6, 7, 9, 10\}$
3. $a_{5,10} = 0.9$ is maximum. Then renew C as $\{5, 10\}$.
4. $a_{59} + a_{10,9} = 1.5$ is maximum. Then $C = \{5, 10, 9\}$.
4. There are no j in $\{3, 6, 9\}$ such that $a_{5j} + a_{9j} + a_{10j}$ is maximum. Then final $C = \{5, 10, 9\}$.
5. Let $I = \{3, 6, 7\}$.
3. Now $a_{36} = a_{37} = a_{67} = 0$. Then $\{3\}$, $\{6\}$ and $\{7\}$ are three separated clusters. In fact,

$$\begin{bmatrix} a_{33} & a_{36} & a_{37} \\ a_{63} & a_{66} & a_{67} \\ a_{73} & a_{76} & a_{77} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

So $\sum_{i \in \{3, 6, 7\}} a_{iu} = \max_{j \in \{3, 6, 7\}} \{\sum_{i \in C} a_{ij} | a_{ij} \neq 0\}$ does not exist any more.

In this way, when $\alpha = 0.55$, we have 5 clusters $\{1, 8, 4, 2\}$, $\{5, 10, 9\}$, $\{3\}$, $\{6\}$ and $\{7\}$ are obtained.