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Abstract

In [6-9], Song et al. proposed fuzzy time-series models to deal with forecasting problems. In [10], Sullivan and
Woodall reviewed the first-order time-invariant fuzzy time series model and the first-order time-variant model proposed
by Song and Chissom [6—8], where the models are compared with each other and with a time-invariant Markov model
using linguistic labels with probability distributions. In this paper, we propose a new method to forecast university
enrollments, where the historical enrollments of the University of Alabama shown in [7,8] are used to illustrate the
forecasting process. The average forecasting errors and the time complexity of these methods are compared. The
proposed method is more efficient than the ones presented in [7, 8, 10] due to the fact that the proposed method simplifies
the arithmetic operation process. Furthermore, the average forecasting error of the proposed method is smaller than the
ones presented in [2,7,8]. © 1998 Elsevier Science B.V. All rights reserved
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1. Introduction

Forecasting activities play an important role in our daily life. We often forecast the weather, earthquakes,
stock market, and everything which people want to foresee. People can plan or prevent beforehand by
forecasting activities. It is impossible to make a one hundred percent forecast, but we can do our best to
increase the accuracy of forecasts. Traditional forecasting methods can deal with many forecasting cases, but
they cannot solve forecasting problems in which the historical data are linguistic values. In [6-8], Song and
Chissom have proposed a first-order time-invariant fuzzy time-series model and a first-order time-variant
fuzzy time-series model to solve the forecasting problems. They forecast the enrollments of the University of
Alabama by using 20 years of historical enrollment data. The average forecasting errors are 3.18% in [7] and
range from 4.49% down to 3.15% in [8], and it seems that the forecasting results are better than those which
use traditional models to forecast.
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In [7,8], Song and Chissom used the following method to forecast the enrollments of the University of
Alabama:

Ai:AivloRﬂ (1)

where A, ; is the enrollment of year i — 1, A4; is the forecasted enrollment of year i in terms of fuzzy sets, R is
the union of fuzzy relations and “<” is the Max-Min composition operator. The method for deriving
R presented in [7] is not the same as the one presented in [8]. In [7], the time-invariant method will take
much time to compute the fuzzy relation R, but it is computed only once. In [8], the time-variant method will
take less time to compute the fuzzy relation R, but it must recalculate the fuzzy relation R when forecasting
the enrollments of different years. It will take a large amount of time to calculate the Max—Min operation
when the fuzzy relation R is very big. The time complexity of a Max—Min operation is O(kn?), where k is the
number of fuzzy logical relationships and » 1s the number of elements in the universe of discourse. There are
some other researchers [2,10], who proposed other methods based on [7,8] to improve the average
forecasting errors or increase the speed of calculation. In [10], Sullivan et al. reviewed the first-order
time-invariant fuzzy time-series model and the first-order time-invariant model proposed by Song and
Chissom, where these models are compared with each other and with a time-variant Markov model using
linguistic labels with probability distributions. In [2], Chen presented a new method to forecast the
university enrollments based on fuzzy time series, where the method is more efficient than [7, 8] due to the
fact that it used simplified arithmetic calculations rather than the complicated Max-Min composition
operations described in [7, 8], and the average forecasting error is 3.22% which is almost the same as the one
presented in [7].

In this paper, we present a new method based on time-variant fuzzy time series to deal with the forecasting
problems, where the historical enrollment data shown in [7, 8] are used to illustrate the forecasting process.
The concept of the proposed method is that the variation of enrollment of this year is related to the trend of
the enrollments of the past years. For example, if the trend of the enrollments of the past years is increasing,
then the number of enrollment of this year might increase. To define the degree of variations, we perform
systematic calculations to calculate the relation between the variations of last year and the other past years.
Then, we can get the forecasting enrollments from the derived relation. The variation of the enrollments of
last year is a criterion to forecast the enrollments of the next year due to the fact that we consider that the
variation of this year is the most similar to the variation of last year. The average forecasting errors and the
time complexity of the various forecasting methods are compared. The proposed method is more efficient
than the ones presented in [7,8,10] due to the fact that the proposed method simplify the arithmetic
operation process. Furthermore, the average forecasting error of the proposed method is smaller than the
ones presented in [2,7,8].

The rest of this paper is organized as follows. In Section 2, we review the concepts of fuzzy time series from
[7-9]. Furthermore, we also review the first-order time-variant model and the Markov model from [8, 10]. In
Section 3, we present a new method for forecasting enrollments based on fuzzy time series. In Section 4, we
compare the time complexity and the average forecasting errors between the proposed method and the ones
presented in [2,7,8, 10]. The conclusions are discussed in Section 5.

2. Fuzzy time-series concepts

In this section, we teview the concept of fuzzy time series and the forecasting methods presented
in [6-8,10]. Let U be the universe of discourse, U = {uj. us, ..., u,;. A fuzzy set [12] A4 of U is
defined by

A= pg(ug)fuy + pa(ur)/us + -+ pa(un)/un, (2)
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where 4 is the membership function of 4, u4: U — [0, 1], p4(u;) denotes the grade of membership of u; in A,
wa(u) € [0, 1], the symbol “/” separates the membership grades from the elements in the universe of discourse
U, and the symbol “ + ” means “union” rather than the commonly used algebraic symbol of summation. Let

Y(t)(t = ...,0,1,2, ...), asubset of R', be the universe of discourse on which fuzzy set p(t) (i = 1,2, ... ) are
defined and let F(t) be a collection of y;(t) (i= 1,2, ...). Then, F(t) is called a fuzzy time series on Y(t)
(t=..,0,1,2, ...). It is obvious that F(t} can be regarded as a linguistic variable [14], and u;(t) can be

viewed as possible linguistic values of F(t), where w;(t) (i = 1,2, ... ) are represented by fuzzy sets. Further-
more, we can also see that F(¢} is a function of time ¢, i.e., the values of F(t) can be different at different times.
According to [7], if F(t) is caused by F(t — 1) only, then this relationship is represented by

F(t — 1) = F(1).

Let F(t) be a fuzzy time series. If for any time ¢, F(t) = F(t — 1) and F{t) only has finite elements, then F(t) is
called a time-invariant fuzzy time series. Otherwise, it is called a time-variant fuzzy time series.

In [8], Song and Chissom proposed the time-variant fuzzy time-series model and forecasted the enroll-
ments of the University of Alabama based on the time-variant fuzzy time-series model. The Song—Chissom’s
method for forecasting the enrollments of the University of Alabama is briefly reviewed as follows:

Step 1: Define the universe of discourse U within which fuzzy sets will be defined.

Step 2: Partition the universe of discourse U into several equal length intervals.

Step 3. Determine some linguistic values.

Step 4: Fuzzify the historical enrollment data.

Step 5: Choose a suitable parameter w, where w > 1, calculate the fuzzy operation R™(t, t — 1) and forecast
the enrollment. The time-variant fuzzy time series method can be expressed as

F(t)y=F(t — )oR"(t, t — 1), (3)
where
Rt,t — 1)=FT(t = 2)x F(t — WUFT(t = 3)x F(t = 2)u --- UFT(t = w)x F(t —w + 1), 4)

where w is called the model basis [8] denoting the number of years before ¢, F(t) is the value of the fuzzy time
series, “ x ” is the Cartesian product operator, and T is the transpose operator.

Step 6: Defuzzify the forecasted outputs. In [8], they use the method of neural nets to defuzzify the
forecasted outputs.

In [10], Sullivan and Woodall use the Markov model to forecast the enrollment of the students of
Alabama. They use the following model to deal with the forecasting problems:

Pisy = Pi* Ry, ©)

where P, is the vector of state probabilities at time ¢, P, ; is the vector of state probabilities at time (¢ + 1),
and R,, is the transition matrix. Unlike the Max—Min composition operator used in [7, 8], the multiplication
in formula (5) is a conventional matrix multiplication. Because the R,, in formula (5) does not change
with time, so it is the time-invariant fuzzy time-series model. Another style of the Markov model is as
follows:

P;+1=P;*Rl:n’ k:1’2"--9 (6)

where R%, varies with time, and it is a time-variant fuzzy time-series model. For more details, please refer
to [10].
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3. A new method to handle forecasting problems based on fuzzy time series

In this section, we present a new method to deal with the forecasting problems. Assume that the enrollment
of year t is x and assume that the enrollment of year t — 1 is y, then the variation of the enroliments between
year t and year t — 1 is equal to x — y. Firstly, we describe some heuristic rules which are similar to the
human thought:

Rule 1: The variation of the enrollments between this year and last year is related to the variations of the
enrollments between this year and the past years, and the relationship of the enrollments between this year
and last year is closer than the one between this year and the other past years.

Rule 2: If the trend of the number of enrollments of the past years is increasing, then the number of
enrollments of this year is increasing. If the trend of the number of enrollments of the past years is decreasing,
then the number of enrollments of this year is decreasing,

From Rules 1 and 2, we might have two problems. Firstly, if the trend of the variations of the enrollments
of the past years is not so obvious, how can we know the trend of the variation of the enrollment this year?
Secondly, how to define the degree of variation of this year? The solutions of these two problems are
described by the following heuristic rule:

Rule 3. Let the variation of last year be a criterion. Compute the fuzzy relationships between last year and
the other past years based on data variations. From the derived fuzzy relationships, we can know the degrees
of relationships between the variation of last year and the variations of other past years. The variation of this
year can be obtained from the derived fuzzy relationships.

Based on these heuristic rules, firstly we can fuzzify the historical enrollment data. In [7,8], Song et al,
used the linguistic values (not many), (not too many). (many), (many many), (very many), (too many), (too
many many) to describe the enrollments of the historical data. In this paper, we use the fuzzified variation of
the historical enrollments and the linguistic values (big decrease), (decrease), (no change), (increase), (big
increase), (too big increase) to forecast the university enrollments. The fuzzified variation of the historical
enrollments between year t and year t — 1 can be described as follows:

F(t) = u,/(big decrease) + u,/(decrease) + --- + u;/(L) + --- + u,/({too big increase), (7)

where F(t) denotes the fuzzified variation of the enrollments between year t and year t — 1, u; is the grade of
membership to the linguistic value L, m is the number of the elements in the universe of discourse, and
I<ig<m

To forecast the enrollment of year f, we must decide how many years of the enrollments data will be used,
where the number of years of the enrollments data we used is called the window basis. Suppose we set
a window basis to w years, then the variation of last year is used to be a criterion and the other variations of
w past years are used to form a matrix which is called the operation matrix. The criterion matrix C(t) and the
operation matrix O™(t) at year t are expressed as follows:

(big decrease) (decrease) --- (too big increase) (8)
(big decrease) (decrease) --- (too big increase)
Ft —2) 014 0, O1m

F(t - 3) 021 022 02m . (9)

F(l - W 1) Owl Ow?. me
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We can calculate the relation between the operation matrix 0*(t) and the criterion matrix C(t), and we can
get a relation matrix R(f)[w, m] by performing R(t) = 0*(t) ® C(t), where

O xCy O1,xCy -+ OpxCp Rii Rz - Rin
0,1xCy 04xCy -+ 0,3, xCy R R - Ry,

R([): 21. 1 22. 2 . 2. _ '21 '22 . 2 , (10)
0,xC; 0,,xC, - 0,,xC, R,i R, - Rynm

where R;; = O;;x¢;, 1 <i<w, 1 <j< mand"x"is the multiplication operation. From the relation matrix
R(t), we can know the degree of relationships between last year and the other past years in data variations.
Then, we can get the forecasting variation of the enrollment of year f, where

F(t) = [Max(R“, Rz], aRwl) MaX(Rlz, R22, ey sz) MaX(le, Rzm, PR me)]. (11)

The proposed method is now presented as follows:

Step 1: From the historical enrollment data shown in [7,8], compute the variations of the enrollments
between any two continuous years. The variation of this year is the enrollment of this year minus the
enroliment of last year. For example, if the enrollment of 1972 is 13 563, and the enrollment of 1971 is 13 055,
then the variation of year 1972 = 13563 — 13055 = 508. Based on the historical enrollment data shown in
[7,8], we can obtain the variations of the enrollments between any two continuous years as shown in Table 1.
We can find the minimum increase D,,;, and maximum increase D,,,. Then we define the universe of
discourse U, U = [Dyiy — Dy, Dpax + D,], where D and D, are suitable positive numbers. In this paper, we
set Diin = —955, Doy = 1291, Dy = 45, D, = 109, so U can be represented as U = [ —1000, 1400].

Table |
Actual enrollments and variations of historical data

Years Actual enrollments Variations
1971 13055

1972 13563 + 508
1973 13867 + 304
1974 14696 + 829
1975 15460 + 764
1976 15311 - 149
1977 15603 + 292
1978 15861 + 258
1979 16 807 + 946
1980 16919 + 112
1981 16388 — 531
1982 15433 — 955
1983 15497 + 64
1984 15145 — 352
1985 15163 + 18
1986 15984 + 821
1987 16859 + 875
1988 18150 + 1291
1989 18970 + 820
1990 19328 + 358
1991 19337 +9

1992 18876 — 461
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Step 2: Partition the universe of discourse U into several even length intervals u,, u,, ... , u,. In this paper,
we partition the universe of discourse U into six intervals, where 1y = [ — 1000, —600], u, = [ —600, —200],
uz = [—200, 200], uy = [200, 6007, us = [600, 10007, and u, = [1000, 14007.

Step 3: Define fuzzy sets on the universe of discourse U. First, determine some linguistic values represented
by fuzzy sets to describe the degree of variation between two continuous years. In this paper, we consider six
fuzzy sets which are A, = (big decrease), A, = (decrease), A; = (no change), A, = (increase), 45 = (big
increase), Ag = (too big increase). Then, define fuzzy sets 4, A,, ..., A, on the universe of discourse U as
follows:

Ay = 1/u; +0.5/u; + 0/uz + 0/us + 0/us + 0/u,,
Az = 0.5/uy + Luy + 0.5/us + 0/uy + O/us + O/ue.
Az =0/u; +0.5/u; + 1/uy + 0.5/uy + 0/us + 0/u,, (12)
Ay = 0/uy + O/uy + 0.5/uz + 1uy + 0.5/us + Oju,,

As = 0/u; + O/uy, + Of/uy + 0.5/uy + 1/us + 0.5/us,

Ag = 0/uy + 0/uy + Ofus + O/uy + 0.5/us + 1jug.

Step 4: Fuzzify the values of historical data. If the number of variation of the enroliment of year i is p,
where peu;, and if there is a value represented by fuzzy set A4, in which the maximum membership value
occurs at u;, then p is translated to 4. The fuzzified variations of the enrollment data are shown in Table 2.

Table 2
Fuzzified historical enrollments

Years Variations Fuzzified variations
1971

1972 -+ 508 A,
1973 + 304 A,
1974 +829 A,
1975 + 764 A
1976 — 149 A,
1977 +292 A,
1978 +258 A,
1979 + 946 A
1980 + 112 A,
1981 - 531 A,
1982 - 955 A,
1983 + 64 A,
1984 ~352 4,
1985 + 18 A,
1986 + 821 A
1987 + 875 A
1988 + 1291 A,
1989 + 820 A,
1990 +358 A,
1991 +9 A,
1992 — 461 4,
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Step 5: Choose a suitable window basis w, and calculate the output from the operation matrix 0™(t) and
the criterion matrix C(t), where ¢ is the year for which we want to forecast the enroliment. For example, if we
set w = 5, then we can set a 4 x 6 operation matrix 0°(t) and a 1 x 6 criterion matrix C(t). Because w = 5, we
must use six past years enrollment data, so we begin to forecast in 1977. In this case, the operation matrix
0°(t) and the criterion matrix C(t) are as follows:

rfuzzy variation of the enrollment of 1975 As
05(1977) = fuzzy variation of the enrollment of 1974 _|4s
fuzzy variation of the enrollment of 1973 As
fuzzy variation of the enrollment of 1972 Ay

(big decrease) (decrease) (no change) (increase) (big increase) (too big increase)

M 0 0 0 0.5 ! 0.5

= 0 0 0 0.5 1 0.5
0 0 0.5 1 0.5 0
0 0 0.5 1 0.5 0

C(1977) = fuzzy variation of the enrollment of 1976 = [A4;]

(big decrease) (decrease) (no change) (increase) (big increase) (too big increase)
= 0 0.5 1 0.5 0 0 1.

Calculate the relation matrix R(t) by R(t)[i,j]1 = 0™(¢)[i,j] x C(t)[j], where 1 <i < 4,and 1 <j < 6. Then,
based on formula (10), we can get

(big decrease) (decrease) (no change) (increase) (big increase) (too big increase)

0 0 0 0.25 0 0
R(1997) = 0 0 0 0.25 0 0
0 0 0.5 0.5 0 0
0 0 0.5 0.5 0 0

Based on formula (11), we can get the fuzzified forecasting variation F(1977) of year 1977 shown as follows:

(big decrease) (decrease) (no change) (increase) (big increase) (too big increase)
F(1977) = [ 0 0 0.5 0.5 0 0 1.

The fuzzified forecasted variations for the remaining years can be calculated by the same way and all the
results are listed in Table 3.

Step 6: Defuzzify the fuzzy forecasted variations derived in Step 5. In this paper, we use the following
principles to defuzzify the fuzzified forecasted variations:

(1) If the grades of membership of the fuzzified forecasted variation have only one maximum u;, and the
midpoint of u; is m;, then the forecasted variation is m;. If the grades of membership of the fuzzified forecasted
variation have more than one maximum uy, u,, ... , ty, and their midpoints are m,, mo, ..., my, respectively,
then the forecasted variation is (m; + my + .- + my)/k. For example, from Table 3, we can see that the
maximum membership value of F(1977) is 0.5 which occurs at u; and u,, where the midpoint of u5 is 0 and the
midpoint of u, is 400. The forecasted variation of 1977 is (0 + 400)/2 = 200.

(2) 1f the grades of membership of the fuzzified forecasted variation are all 0, then we set the forecasted
variation to 0.

Step 7: Calculate the forecasted enrollments. The forecasted enrollment is forecasted variation plus the
number of actual enrollment of last year. For example, if the forecasted variation in 1977 is 200, and the
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Table 3
Forecasted variations with the window basis w = 5

Years Membership functions of forecasted variations
lll “Z MJ M4 MS 146

1977 0 0 0.5 0.5 0 0

1978 0 0 0.5 1 0.5 0

1979 0 0 0.5 1 0.5 0

1980 0 0 0 0.5 1 0.25

1981 0 0.25 1 0.5 0 0

1982 0 0.5 0.5 0 0 0

1983 0.5 0.5 0 0 0 0

1984 0 0.5 1 0.25 0 0

1985 0.5 1 0.5 0 0 0

1986 0 0.5 | 0.25 0 0

1987 0 0 0 0.25 0 0

1988 0 0 0 0.25 | 0.25

1989 0 0 0 0 0.5 0.5

1990 0 0 0 0.25 1 0.5

1991 0 0 0 0.5 0.5 0

1992 0 0 0.5 0.5 0 0
Table 4
Forecasted results using the proposed fuzzy time-series method with the window
basis w =5
Years Actual enrollments Forecasted enrollments Errors
1977 15603 15511 0.59%
1978 15861 16003 0.90%
1979 16807 16261 3.25%
1980 16919 17607 4.07%
1981 16 388 16919 3.24%
1982 15433 16 188 4.89%
1983 15497 14833 4.28%
1984 15145 15497 2.32%
1985 15163 14745 2.76%
1986 15984 15163 5.14%
1987 16859 16384 2.82%
1988 18150 17659 2.71%
1989 18970 19150 0.95%
1990 19328 19770 2.29%
1991 19337 19928 3.06%
1992 18876 19537 3.50%

actual enrollment in 1976 is 15311, then the forecasted enrollment of 1977 is 15311 + 200 = 15511. The
results of the forecasted enrollment of the University of Alabama are shown in Table 4. The following error of
each year by the proposed method under the window basis w = 5 is also shown in Table 4. The curve of the
actual enrollments and the forecasted enrollments are shown in Fig. 1, where the window basis is 5.
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Fig. 1. The curve of the actual enroliments and forecasted enrollments.

4. Performance analysis

In Section 3, we have used the following method to forecast the enrollments of the University of Alabama:

Rll R12 le
R R - Ry
Ry =0"n®@Coy=|"2" "2 .
Re R = R

F(t) = [Max(Ry, R;y, ..., Ry1) Max(Ry2, Ry, ... Ry2) ... Max(Ry, Rops .- s Rym)]

=101 Q2 ... Qul.

where F(t) is the forecasted variation of year t represented by a fuzzy set, 0™(t) is the operation matrix, R(z) is
a fuzzy relation which indicates the fuzzy relationship between the enrollments of last year and the other past
years in data variations and “ x ” is the multiplication operation. The time complexity for calculating the
fuzzy relation R(¢)} is O(n), and the time complexity for calculating the forecasted enrollment F(t) is O(wn), where
w is the window basis and n is the number of elements in the universe of discourse. In [7,8], Song et al. used
the formula A; = A4;_;° R to forecast the enrollments of the University of Alabama, where 4;_; is the
enrollment of year i — 1 represented by a fuzzy set, 4; is the forecasted enrollment of year i represented by
a fuzzy set, R is the union of fuzzy relations, and “-” is the Max-Min composition operator. It must take the
time complexity of O(kn?) to calculate the Max—Min composition operations, where k is the number of fuzzy
logical relationships and r is the number of elements in the universe of discourse. Because O(kn?) > O(wn), the
proposed method is more efficient than the ones presented in [7, 8].

Table 5 shows the forecasting results of different window bases w ranging from 2 to 9. From Table 6 we can
see that the average forecasting errors for different window bases range from 3.12% down to 2.79%, which
are better than 3.18% in [7] and better than the one shown in [8] which ranges from 4.49% down to 3.15%.
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Table 5
Forecasting enrollments with different window bases

Years Actual enrollments Forecasted enrollments
Window bases

w=2 w=23 w=4 w=>35 w=6 W=7 w=§ w=29
1974 14696 14267
1975 15460 15296 15296
1976 15311 16260 16260 16260
1977 15603 15711 15711 15511 15511
1978 15861 15803 16003 16003 16003 16 003
1979 16807 16261 16261 16261 16261 16261 16261
1980 16919 17407 17407 17407 17607 17607 17607 17607
1981 16 388 17319 17119 17119 16919 16919 16919 16919 16919
1982 15433 16188 16 188 16188 16 188 16 188 16 188 16 188 16 188
1983 15497 14833 14833 14833 14833 14833 14833 14833 14833
1984 15145 15097 15297 15497 15497 15497 15497 15497 15497
1985 15163 14945 14745 14745 14745 14745 14745 14745 14745
1986 15984 14963 15163 15163 15163 15163 15163 15163 15163
1987 16859 16384 16 384 16384 16384 16384 16384 16784 16784
1988 18150 17659 17659 17659 17659 17659 17659 17659 17659
1989 18970 19150 19150 19150 19 150 19150 19150 19150 19150
1990 19328 19970 19770 19770 19770 19770 19770 19770 19770
1991 19337 19928 19928 19928 19928 19728 19728 19728 19728
1992 18876 19537 19537 19537 19537 19537 19337 19337 19337

Table 6

Forecasting errors with different window bases

Window bases

w=2 w=3 w=4 w=35 w=0 w=7 w=3_ w=9

Average forecasting errors 2.99% 2.94% 3.12% 2.92% 3.01% 3.08% 2.89% 2.79%

It shows that the proposed method gets better forecasting results than the ones presented in [7,8]. In Table 7,
we compare the forecasting enrollments of the University of Alabama under different forecasting methods. In
Table 8, we compare the average forecasting errors of different forecasting methods with the proposed
method under window basis w = 4. The definition of the window basis w in the proposed method is like the
definition of the model basis in {8], and they all use the previous w years of data to forecast the enrollment of
this year, where the difference is that the proposed method uses actual variation to forecast, and the method
in [8] uses actual enrollments to forecast. In Table 9, we compare the actual forecasting errors of these two
methods. From Table 8, we can see that the proposed method is more efficient than the ones presented in
[7,8,10] due to the fact that the proposed method simplifies the arithmetic operation process. Furthermore,
we can also see that the average forecasting error of the proposed method is smaller than the ones presented
in [2,7,8].
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Table 7
The forecasting results of different forecasting methods
Years Actual enrollments Song-Chissom  Song-Chissom Chen's method ~ Markov method The proposed
method [7] method [8] (under [2] {10] (time- method (under
model basis w = 4 invariant) window basis
and using neural w=4)

net method)

1972 13563 14000 14000 13563

1973 13867 14000 14000 13867

1974 14696 14000 14000 14696

1975 15460 15500 14700 15500 15460

1976 15311 16000 14800 16000 15311 16260
1977 15603 16 000 15400 16 000 15603 15511
1978 15861 16000 15500 16000 15861 16003
1979 16807 16 000 15500 16 000 16 807 16261
1980 16919 16813 16 800 16833 16919 17407
1981 16388 16813 16 200 16833 16388 17119
1982 15433 16789 16400 16833 15433 16188
1983 15497 16 000 16 800 16000 15497 14833
1984 15145 16000 16400 16000 15145 15497
1985 15163 16 000 15500 16000 15163 14745
1986 15984 16 000 15500 16000 15984 15163
1987 16859 16 000 15 500 16 000 16859 16384
1988 18150 16813 16 800 16833 18150 17659
1989 18970 19000 19300 19000 18970 19150
1990 19328 19000 17800 19000 19328 19770
1991 19337 19000 19300 19000 19337 19928
1992 18 876 not forecasted 19600 19000 not forecasted 19537
Table 8

A comparison of the average forecasting errors of different forecasting methods (Note: k denotes the number of fuzzy logical
relationships, n denotes the number of elements in the universe of discourse, p denotes the number of fuzzy logical relationship groups,
¢ denotes the number of transitions in the historical data, and w denotes the window basis)

Song—Chissom  Song-Chissom Chen’s method ~ Markov method The proposed

method {7] method [8] (under [2] [10] (time- method (under
model basis w = 4 invariant) window basis
and using neural (w=4)

net method)

Style Time-invariant ~ Time-variant Time-invariant ~ Time-invariant  Time-variant
Time complexity O(kn®) O(kn?) o) O(cn®) O(wn)
Average forecasting errors 3.2% 437% 3.22% 2.6% 3.12%

5. Conclusions

In this paper, we have proposed a new method for handling forecasting problems based on fuzzy time
series, where the data of historical enrollments of the University of Alabama shown in [7,8] are adopted to
illustrate the forecasting process. We have also shown that the proposed method is more efficient than the
ones presented in [7,8, 10]. Furthermore, the average forecasting error of the proposed method is smaller
than the ones presented in [2, 7, 8]. From Section 3, we can see that the bigger the window basis w, the more
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Table 9
A comparison of average forecasting errors of the proposed method and Song—Chissom method

Window bases {(or Model bases)

w=2 wo=3 w=4 we=35 w=0 w=7 w=_8 w=29

Forecasting errors of the Song—Chissom
method [8] (using neural net method) 3105%  389%  4.37%  441%  449%  435%  445%  4.23%

Forecasting errors of the proposed method 299%  294%  3.12%  292%  3.01%  3.08%  2.89%  279%

time is needed to perform calculations. From Table 6, we can see that the biggest average forecasting error
occurred at w = 4, and the smallest forecasting error occurred at w = 9. It is difficult to find the relationships
between the window basis and the average forecasting error, but there is an efficient way [3] which uses
genetic algorithms to find the better window basis to forecast the enrollments. From Table 8, we can see that
the proposed method has a better average forecasting accuracy than the other methods presented in [2,7, 8].
Furthermore, from Table §, we can also see that the time complexity of the proposed method is better than
the ones presented in [7, 8, 10].
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