MunucrepcTBo 06pazoBanus Pecriyonuku benapych
YO «bpecTtckuii rocy1apcTBEHHbIN TEXHUUECKUIM YHUBEPCUTET»
Kadenpa UUT

JlaGopartopnast pabota Nel

Beinonaun:
CTyZAEHT 4 Kypca
rpynnsl AC-34
Kopomrok A.B.

[Iposepur:
Professor Akira Imada

Bbpect 2015



Task: Fitness proportionate selection
Code of the program:

#tinclude <iostream>
#tinclude <cstdlib>
#tinclude <ctime>
using namespace std;

class dogs{
public: int genes[1000];
public: int count;

dogs (){
myRand();
count = 0;
findCount();
}

public: void myRand(){
for (int j = 0; j < 1000; j++) {
genes[j] = rand() % 2;

}
}
public: void findCount() {
count = 0;
for (int 1 = 9; i < 1000; i++) {
genes[i] == @ ? count++ : count;
}
}
s

int main(){
srand(time(NULL));
dogs P[50];
dogs Ch[25];
dogs templ, temp2;
int delim;

for (int kp = 0; kp < 27; kp++) {
int curCh = 0;
delim = rand() % 1000;

/* average*/
/*int tempC = 0;*/

/*best*/
/*int tempBest = 0;*/
for (int 1 = @; i < 50; i += 2) {
for (int j = @; j < delim; j++) {
templ.genes[j] = P[i].genes[j];
}

for (int j = delim; j < 1000; j++) {
templ.genes[j] = P[i + 1].genes[]j];
¥

for (int j = @; j < delim; j++) {
temp2.genes[j] = P[i + 1].genes[]j];
¥

for (int j = delim; j < 1000; j++) {
temp2.genes[j] = P[i].genes[j];
}

templ.findCount();

temp2.findCount();

if (templ.count > temp2.count) {
Ch[curCh] = templ;



/* average*/
/*tempC += templ.count;*/

/*best*/

/*

if (templ.count > tempBest)
tempBest = templ.count;*/

}
else {
Ch[curCh] = temp2;
/* average*/
/*tempC += templ.count;*/
/*best*//*
if (temp2.count > tempBest)
tempBest = temp2.count;*/
}
curCh++;

}
/* average*/
/*cout << tempC / 25 << endl;*/

/*best*/
/*cout << tempBest << endl;*/

for (int i = 0; 1 < 49; ++i) {
for (int j = 0; j < 49; ++j) {
if (P[j + 1].count > P[j].count) {
templ = P[j + 17;
P[J + 1] = P[3];
P[j] = tempil;

}

for (int i = 0; i < 24; ++i) {
for (int j = 0; j < 24; ++j) {
if (Ch[j + 1].count > Ch[j].count) {
templ = Ch[j + 1];
Ch[j + 1] = Ch[]];
Ch[j] = tempil;

}

for (int i = 25, j = @; i < 50; i++, j++){
P[i] = Ch[j];
}

/*count genes(1) in iteration*/
/*cout << P[@].count << endl;*/
}
/*
for (int i = 0; i < 50; i++)
cout << P[i].count << endl;*/
return 0;



Results

640

620

600

580

560

540

520

500

480

460

fithes vs generation

_—

123456 7 8 91011121314151617181920212223242526

fitnes vs generation

620

610

600

590

580

570

560

550

540

530

520

510

Best child

~S
/

/

1 2 2 4 5 6 7 8 910111212314151617181920212223242526

Best child




620

600

580

560

540

520

500

480

460

440

Average child

2 11 13 15 17 19 21

Average child




