
Did Kiryl Chepeleu, AS-35

Task: All One Problem
I define 50 dogs with 1000 binary genes. I tryed a evolution with one-point-crossover with mutation
rate being 1/1000.

Source code in Java:

package com.siit.lab1;
import com.siit.lab1.core.Dog;
import com.siit.lab1.core.DogManager;
public class App
{
 public static void main(String[] args)
 {
 int maxSteps = Integer.MAX_VALUE;
 int dogs = 50;
 int gensPerDog = 1000;
 DogManager dogManager = new DogManager(dogs,gensPerDog);
 dogManager.evolution(maxSteps);
 }
}

package com.siit.lab1.core;
import java.util.Random;
public class Dog implements Comparable{
 private boolean gens[];
 private int numberOfGens;
 public static final Random random = new Random();
 public Dog(final int numberOfGens){
 if(numberOfGens < 1){
 this.numberOfGens = 1000;
 }else {
 this.numberOfGens = numberOfGens;
 }
 gens = new boolean[numberOfGens];
 for(int i=0;i<gens.length;i++){
 gens[i] = random.nextBoolean();
 }
 }
 private Dog(){

 }
 public int fitness(){
 int res=0;
 for(boolean i:gens){
 if(i){
 res++;
 }
 }
 return res;
 }

 @Override
 public String toString(){
 StringBuilder stringBuilder = new StringBuilder();
 for(boolean i:gens){
 stringBuilder.append(i?1:0);
 }
 return stringBuilder.toString();
 }
 public Dog getCopy(){
 Dog dog = new Dog();
 dog.gens = this.gens.clone();
 dog.numberOfGens = this.numberOfGens;
 return dog;
 }
 public static void crossOver(Dog mother,Dog father){
 if(mother.numberOfGens!=father.numberOfGens){
 return;
 }
 final int border = random.nextInt(mother.numberOfGens);
 for(int i = 0; i < border; i++){
 boolean tmp = father.gens[i];
 father.gens[i] = mother.gens[i];
 mother.gens[i] = tmp;
 }
 for(int i = 0; i < mother.gens.length; i++){
 if(random.nextInt(1000)<1){
 father.gens[i] = !father.gens[i];
 }
 if(random.nextInt(1000)<1){
 mother.gens[i] = !mother.gens[i];
 }
 }
 }
 @Override
 public int compareTo(Object o) {
 if(o instanceof Dog){
 return ((Dog)o).fitness() - this.fitness();
 }else {
 return 0;
 }
 }
}

package com.siit.lab1.core;
import java.lang.reflect.Array;
import java.util.Arrays;

public class DogManager {
 private Dog dogs[] = null;
 private final int numberOfDogs;
 public DogManager(int numberOfDogs,int gensPerDog){
 if(numberOfDogs < 1){

 this.numberOfDogs = 50;
 }else {
 this.numberOfDogs = numberOfDogs;
 }
 dogs = new Dog[numberOfDogs];
 for(int i = 0;i<numberOfDogs;i++){
 dogs[i]= new Dog(gensPerDog);
 }
 }
 public void evolution(int steps){
 Dog children[] = dogs.clone();
 double lastAvgFitness=-1;
 int lastFitnessCount=0;

 for(int step = 0;step < steps && lastFitnessCount < 10;step++) {
 Arrays.sort(dogs);
 int half = numberOfDogs / 2;
 for (int i = 0; i < half; i++) {
 int i1 = Dog.random.nextInt(half);
 int i2;
 do{
 i2 = Dog.random.nextInt(half);
 }while (i1==i2);
 Dog d1 = dogs[i1].getCopy();
 Dog d2 = dogs[i2].getCopy();
 Dog.crossOver(d1, d2);
 children[i * 2] = d1;
 children[i * 2 + 1] = d2;
 }
 Arrays.sort(children);
 Dog tmp[] = children;
 children = dogs;
 dogs = tmp;
 double avgFitness = 0;
 for (int i = 0; i < dogs.length; i++) {
 avgFitness+=dogs[i].fitness();
 }
 if(Math.abs(lastAvgFitness - avgFitness) <0.00001){
 lastFitnessCount ++;
 }else{
 lastFitnessCount = 0;
 }
 lastAvgFitness = avgFitness;
 System.out.println(step+"\t"+avgFitness/dogs.length+"\t"+ dogs[0].fitness());
 }
 }
}

Plot graphic average fitness and best fitness

