Did Kiryl Chepeleu, AS-35

Task: All One Problem
I define 50 dogs with 1000 binary genes. I tryed a evolution with one-point-crossover with mutation

rate being 1/1000.
Source code in Java:

package com.siit.lab1;
import com.siit.lab1.core.Dog;
import com.siit.labl.core.DogManager;
public class App
{
public static void main(String[] args)
{
int maxSteps = Integer MAX_VALUE;
int dogs = 50;
int gensPerDog = 1000;
DogManager dogManager = new DogManager(dogs,gensPerDog);
dogManager.evolution(maxSteps);
}
}

package com.siit.lab1.core;
import java.util. Random;
public class Dog implements Comparable{
private boolean gens|];
private int numberOfGens;
public static final Random random = new Random();
public Dog(final int numberOfGens){
if(numberOfGens < 1){
this.numberOfGens = 1000;
telse {
this.numberOfGens = numberOfGens;
}
gens = new boolean[numberOfGens];
for(int i=0;i<gens.length;i++){
gens|i] = random.nextBoolean();
}

}
private Dog(){

}
public int fitness(){
int res=0;
for(boolean i:gens){
(i)
res++;
}
}

return res;

@Override
public String toString(){
StringBuilder stringBuilder = new StringBuilder();
for(boolean i:gens){
stringBuilder.append(i?1:0);
}
return stringBuilder.toString();
}
public Dog getCopy(){
Dog dog = new Dog();
dog.gens = this.gens.clone();
dog.numberOfGens = this.numberOfGens;
return dog;
}
public static void crossOver(Dog mother,Dog father){
if(mother.numberOfGens!=father.numberOfGens){
return;
}
final int border = random.nextInt(mother.numberOfGens);
for(int i = 0; i < border; i++){
boolean tmp = father.gens[i];
father.gens[i] = mother.gens[i];
mother.gens[i] = tmp;
}
for(int i = 0; i < mother.gens.length; i++){
if(random.nextInt(1000)<1){
father.gens[i] = !father.gens[i];
}
if(random.nextInt(1000)<1){
mother.gens[i] = !mother.gens[i];
}
}

}
@Override

public int compareTo(Object o) {
if(o instanceof Dog){
return ((Dog)o).fitness() - this.fitness();
telse {
return 0;
}
}
}

package com.siit.lab1.core;
import java.lang.reflect. Array;
import java.util.Arrays;

public class DogManager {
private Dog dogs[] = null;
private final int numberOfDogs;
public DogManager(int numberOfDogs,int gensPerDog){
if(numberOfDogs < 1){

this.numberOfDogs = 50;
telse {
this.numberOfDogs = numberOfDogs;
}
dogs = new Dog[numberOfDogs];
for(int i = 0;i<numberOfDogs;i++){
dogs[i]= new Dog(gensPerDog);
}
}
public void evolution(int steps){
Dog children[] = dogs.clone();
double lastAvgFitness=-1;
int lastFitnessCount=0;

for(int step = 0;step < steps && lastFitnessCount < 10;step++) {
Arrays.sort(dogs);
int half = numberOfDogs / 2;
for (int i = 0; i < half; i++) {
int i1 = Dog.random.nextInt(half);
inti2;
do{
i2 = Dog.random.nextInt(half);
}while (i1==i2);
Dog d1 = dogs[il].getCopy();
Dog d2 = dogs[i2].getCopy();
Dog.crossOver(d1, d2);
children[i * 2] = d1;
children[i * 2 + 1] = d2;
}
Arrays.sort(children);
Dog tmpl[] = children;
children = dogs;
dogs = tmp;
double avgFitness = 0;
for (int i = 0; i < dogs.length; i++) {
avgFitness+=dogsl[i].fitness();
}
if(Math.abs(lastAvgFitness - avgFitness) <0.00001){
lastFitnessCount ++;
}else{
lastFitnessCount = 0;
}
lastAvgFitness = avgFitness;
System.out.println(step+"\t"+avgFitness/dogs.length+"\t"+ dogs[0].fitness());

Plot graphic average fitness and best fitness

1000

“average fitness
best fitness

950

900

850

800

750

fithess

700

650

600

550

5|:||:| 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400

generation

