
Lab 1

Marchenko Anton, AS-36

Controll two metro cars using Speed, Distance, and Brake

In this work we are design a virtual loop with 1000 pixels on which two metro cars.

The source code:

 Code below recalculate speed and coordinates each cars.

MainViewModel.cs

using System;
using System.Threading.Tasks;
using GalaSoft.MvvmLight;
using GalaSoft.MvvmLight.Command;

namespace WpfApplication1.ViewModel
{
 public class MainViewModel : ViewModelBase
 {
 private double _x0 = 237;
 private double _y0 = 202;
 private double _radius = 200;

 private readonly Random _random = new Random();
 public MainViewModel()
 {
 RunCarsCommand = new RelayCommand(RunCarsMethod);
 RedCar = new Car {Angle = 0, CoordX = _x0 + _radius*Math.Cos(0),
CoordY = _y0 + _radius*Math.Sin(0), Speed = 0.01};
 GreenCar = new Car {Angle = Math.PI, CoordX = _x0 +
_radius*Math.Cos(Math.PI), CoordY = _y0 + _radius*Math.Sin(Math.PI), Speed = 0.01};
 }

 public Car RedCar { get; set; }
 public Car GreenCar { get; set; }

 public RelayCommand RunCarsCommand
 {
 get;
 private set;
 }

 private void RunCarsMethod()
 {

 Task.Run(async () =>
 {
 while (true)
 {
 await Task.Delay(1);
 RecalculateCarsState(RedCar);
 RecalculateCarsState(GreenCar);
 RecalculateDistance();

 if ((Math.Abs(RedCar.Angle - GreenCar.Angle) % (2 * Math.PI)) <
0.05)
 {
 break;
 }
 }

 });
 }

 private void RecalculateCarsState(Car car)
 {
 car.CoordX = _x0 + _radius*Math.Cos(car.Angle);
 car.CoordY = _y0 + _radius*Math.Sin(car.Angle);

 var r = _random.Next(3);

 switch (r)
 {
 case 0:
 car.Speed -= 0.001;
 break;
 case 2:
 car.Speed += 0.001;
 break;
 }

 if (car.Speed <= 0)
 car.Speed = 0;
 car.Angle += car.Speed;
 }

 private void RecalculateDistance()
 {
 RedCar.Distance += (int)((RedCar.Speed) / (2 * Math.PI) * 1000 -
(GreenCar.Speed) / (2 * Math.PI) * 1000);
 GreenCar.Distance += (int)((GreenCar.Speed) / (2 * Math.PI) * 1000 -
(RedCar.Speed) / (2 * Math.PI) * 1000);
 }

 }
//Class car, that store information about metro cars.
 public class Car : ViewModelBase
 {
 private double _coordX;
 private double _coordY;
 private double _speed;
 private int _distance = 500;

 public double Speed
 {
 get { return _speed; }
 set
 {
 _speed = value;
 RaisePropertyChanged();
 }
 }

 public int Distance
 {
 get { return _distance; }
 set
 {
 _distance = value;
 RaisePropertyChanged();
 }
 }

 public double Angle { get; set; }

 public double CoordX

 {
 get { return _coordX; }
 set
 {
 _coordX = value;
 RaisePropertyChanged();
 }
 }

 public double CoordY
 {
 get { return _coordY; }
 set
 {
 _coordY = value;
 RaisePropertyChanged();
 }
 }
 }
}

Code below drowing the animation with moving cars by ellipse and displaying Distance and
speed each of cars.

MainWindow.xaml

<Window x:Class="WpfApplication1.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:local="clr-namespace:WpfApplication1"
 mc:Ignorable="d"
 Title="MainWindow" Height="350" Width="525"
 DataContext="{Binding Main, Source={StaticResource Locator}}">
 <Grid>
 <Canvas>
 <Rectangle Width="30"
 Height="30"
 Canvas.Left="{Binding GreenCar.CoordX, Mode=OneWay}"
 Canvas.Top="{Binding GreenCar.CoordY, Mode=OneWay}"
 Fill="Green"></Rectangle>

 <Rectangle Width="30"
 Height="30"
 Canvas.Left="{Binding RedCar.CoordX, Mode=OneWay}"
 Canvas.Top="{Binding RedCar.CoordY, Mode=OneWay}"
 Fill="Red"></Rectangle>

 <Ellipse Width="400"
 Height="400"
 Canvas.Top="15"
 Canvas.Left="50"
 Stroke="Aqua"
 StrokeThickness="4"></Ellipse>
 <Button Content="tap"
 Width="50"
 Height="50"
 Canvas.Top="202"
 Canvas.Left="237"
 Command="{Binding RunCarsCommand, Mode=OneWay}"></Button>
 </Canvas>
 <StackPanel HorizontalAlignment="Right">
 <TextBlock Text="Green Train:"

 Foreground="Green">
 <Run Text="Distance: " Foreground="Black"/><Run Text="{Binding
GreenCar.Distance}" Foreground="Black"/>
 <Run Text="Speed: " Foreground="Black"/><Run Text="{Binding
GreenCar.Speed, Converter={StaticResource SpeedConverter}}" Foreground="Black"/>
 </TextBlock>
 <TextBlock Text="Red Train:"
 Foreground="Red">
 <Run Text="Distance" Foreground="Black"/><Run Text="{Binding
RedCar.Distance}" Foreground="Black"/>
 <Run Text="Speed: " Foreground="Black"/><Run Text="{Binding RedCar.Speed,
Converter={StaticResource SpeedConverter}}" Foreground="Black"/>
 </TextBlock>
 </StackPanel>

 </Grid>
</Window>

