Contemporary Data Processing Technology (CCOD)
Task 2 (September 15, 2016)
Timohin Valentine, AS-36

Controll two metro cars using Speed, Distance, and Brake.

In this work we are design a virtual loop with 1000 pixels on which two metro cars(A —first train
car and B —second train car).

Both trains always run.

Speed ranges from 0 to 20 pixels per unit of time.

The distance from train A to B is Ya and from train B to train Ais Yb, so Ya + Yb = 1000.
Step by step the speed changes by -2, 0, +2 randomly.

Speed will be controlled by the distance one train to other.

The break of train A and B is Za and Zb.

And we change break every step with the following algorithm:
{if x>=14 then z=1, x=x-1} & {if y<=50 then z=9, x=x-9}
Membership value of 3 rules:

{IF x=medium AND y=small THEN z=strong} OR {IF x=medium AND y=medium THEN
z=medium} OR {IF x=medium AND y=large THEN z=week}

Calculation of membership value of 3 rule according to the screenshot above.

IF x=medium AND y=small THEN z=strong

speed U Distance 7] break total pu
13 0.25 509 0 0 0
11 0.75 491 0 0 0
IF x=medium AND y=medium THEN z=medium
speed 1] Distance Tl break total p
13 0.25 509 0.455 0 0
11 0.75 491 0.545 0 0
IF x=medium AND y=large THEN z=week
speed 1] Distance Tl break total p
13 0.25 509 0.555 0 0
11 0.75 491 0,455 0 0

Membership value:
A: Rulel or Rule2 or Rule3 => 0

B: Rulel or Rule2 or Rule3 => 0

QOC

Source code:

index.html
<!DOCTYPE html>
<html>
<head>
<title>Canvas</title>
<link rel="stylesheet" type="text/css" href="style/style.css">
</head>
<body>
<canvas id="canvas" width="600" height="500" style="border:2px solid
gray; "></canvas>
<script src = "script/index.]js"></script>
</body>
</html>

script/index.js

"use strict";
let cnv = document.getElementById("canvas");
let ctx = cnv.getContext ("2d");

const Width = 600;
const Height = 500;

const CenterX = 300;
const CenterY = 250;
const Radius = 160;
let lengthOfCircle = 2 * Math.PI * Radius;/*1000%*/

const TrainsColorl
const TrainsColor?2

"red" ;
"green";

const RadOfTrain = 10;

0;
180;

let currAngleOfTrainl
let currAngleOfTrain2

let stepl = 10;
let step2 10;

let stepInterval = 15; /*

let speed = {

set stepl (value) {

10 * 25 = 250

if (value < 0) stepl = 0;
else if(value > 20) stepl = 20;
else stepl = value;
//alert (stepl) ;
by
get stepl () {
return stepl;
b
set step2(value) {
if(value < 0) step2 = 0;
else if(value > 20) step2 = 20;

else step2 = value;
//alert (step2) ;
by
get step2 () {

return step2;

let intervalOfCh = 500;
let

let

distancel;
distance?2;

let
let

zl = 0;
z2 = 0;

let
let

stop;
stop2;

let count = 0;

drawRailway () ;

function showInfo ()

{

*/

/**distance between red and green train */
/**distance between green and red train */

ctx.clearRect (0,0,100,Height);
ctx.font = "15px Arial";
ctx.fillStyle = "red";
ctx.fillText ("Xa = " + stepl ,10,30);
ctx.fillText ("Ya = " + (distancel.toFixed(0)) ,10,60);
ctx.fillText ("Za = " + z1 ,10,90);
ctx.fillText ("M = 0." ,10,120);
ctx.fillStyle = "green";
ctx.fillText ("Xa = " + step2 ,10,160);
ctx.fillText ("Ya = " + (distance2.toFixed(0)) ,10,190);
ctx.fillText ("Za = " + z2 ,10,220);
ctx.fillText ("M = 0." ,10,250);
}
function drawRailway () {
ctx.beginPath () ;
ctx.arc (CenterX, CenterY, Radius, 0, 2*Math.PI);

ctx.stroke () ;

let ¢ = getCoordFromAngle (0, Radius)
ctx.beginPath () ;

ctx.moveTo(c.x-10, c.y);
ctx.lineTo(c.x+10, c.y);
ctx.stroke () ;

ctx.fillStyle = 'black';

ctx.font = "bold 14px Arial";
ctx.fillText ('0" , c.x+15, c.y);

c = getCoordFromAngle (90, Radius)
ctx.beginPath () ;

ctx.moveTo(c.x, c.y=-10);
ctx.lineTo(c.x, c.y+10);
ctx.stroke();

ctx.fillStyle = 'black';

ctx.font = "bold 14px Arial";
ctx.fillText ('250' , c.x, c.y+20);

c = getCoordFromAngle (180, Radius)
ctx.beginPath () ;

ctx.moveTo(c.x-10, c.y);
ctx.lineTo(c.x+10, c.y);
ctx.stroke () ;

ctx.fillStyle = 'black';

ctx.font = "bold 1l4px Arial";
ctx.fillText ('500' , ¢.x-30, c.y);

c = getCoordFromAngle (270, Radius)
ctx.beginPath () ;

ctx.moveTo(c.x, c.y-10);
ctx.lineTo(c.x, c.y+10);
ctx.stroke () ;

ctx.fillStyle = 'black';

ctx.font = "bold 1l4px Arial";
ctx.fillText ('750' , c.x, c.y-20);

}

function drawTrainByAngle (angle, trainsColor) {
let {x,y} = getCoordFromAngle (angle, Radius);

ctx.beginPath() ;
ctx.arc(x, y, RadOfTrain, 0, 2*Math.PI);
ctx.fillStyle = trainsColor;
ctx.fi11 () ;
}

function drawDiscriptionOfTrain (angle, text) {
let {x,y} = getCoordFromAngle (angle, Radius + 25);
ctx.fillStyle = "black";
ctx.beginPath () ;
ctx.font = "bold 14px Arial";

ctx.fillText (text ,x,y);

}

function getCoordFromAngle (angle, radius) {
let x = Math.cos(angle * Math.PI / 180) * radius + CenterX;
let y = Math.sin(angle * Math.PI / 180) * radius + CenterY;
return {x,vy};

function speedEffect2 () {
if (Math.random()<0.5)
step2 += Math.random () *3;
else
step2 -= Math.random() *3;
if(step2 < 2) step2 = 2;
if (step2>20)step2 = 20;

}

function pixelToAngle (pixel) {
let k = pixel / lengthOfCircle;
return k * 360;

}

function angleToPixel (angle) {

// let k = angle / 360;

// return k * lengthOfCircle;

return Math.PI * Radius * angle / 180;
}

function calculateZ () {
if (stepl >=14) {
zl = 1;
//speed.stepl = stepl - zl;

}

else 1f(zl ===

if (step2 >=14)
z2 = 1;
//speed.step2 = step2 - z2;

1) z1 = 0;
{

else 1f(z2 === 1) z2 = 0;
if (distancel <= 50){zl = 9; /*speed.stepl = stepl - 9;*/}
else 1f(zl1l == 9) z1 = 0;
if (distance2 <= 50) {z2 = 9; /*speed.step2 = step2 - 9;*/}
else 1f(z2 == 9) z2 = 0;

function simulate () {
ctx.clearRect (100,0,Width, Height) ;
drawRailway () ;

drawTrainByAngle (currAngleOfTrainl, TrainsColorl);
drawTrainByAngle (currAngleOfTrain2, TrainsColor2);

drawDiscriptionOfTrain (currAngleOfTrainl, "A");
drawDiscriptionOfTrain (currAngleOfTrain2, "B");

let diffrence = currAngleOfTrain2 - currAngleOfTrainl;
if(diffrence > 0) {
distancel = angleToPixel(diffrence);
distance2 = lengthOfCircle - distancel;
}
else {
diffrence = -diffrence;

}

distance2 = angleToPixel (diffrence);
distancel = lengthOfCircle - distanceZ2;

distancel -= 2.655;/** 2,655 - NOrpPEemHOCTL Pacu&roB */
distance2 -= 2.655;

if (distancel < O

| distance2 < 0) {stopSimulate(); return;}

currAngleOfTrainl += (pixelToAngle(stepl))/stepInterval;
currAngleOfTrain2 += (pixelToAngle(step2))/stepInterval;

if (currAngleOfTrainl > 360)currAngleOfTrainl -= 360;
if (currAngleOfTrain2 > 360)currAngleOfTrain2 -= 360;
if ((count % stepInterval) == 0) {

speedEffect () ;

}

calculateZz () ;

speed.stepl
speed.step2 =

showInfo () ;

//count = 0;

count++;
if (count === 1000

}

)

function speedEffect ()

speed.stepl

stepl - z1;
step2 - z2;

count = 1;

{

stepl + (1 - Math.floor(Math.random() * 3)) * 2;
speed.step2 = step2 + (1 - Math.floor(Math.random() * 3)) * 2;
=" + stepl + ' '+ "step2 = " + step2);

console.log("stepl

}

function stopSimulate () {
ctx.clearRect (0,0,Width,Height) ;

drawRailway () ;

drawTrainByAngle (currAngleOfTrainl, TrainsColorl);

drawDiscriptionOfTrain (currAngleOfTrainl, "A:");

ctx
ctx
ctx
ctx

ctx.

ctx.
ctx.
ctx.
ctx.

.font = "15px Arial";
red" .

.fillStyle = "
.fillText ("Xa
.fillText ("Ya
fillText ("Za

fillStyle = "
fillText ("Xa
fillText ("Ya
fillText ("Za

+ stepl ,10,30);
"+ 0 ,10,60);
+ z1 ,10,90);

green";

" + step2 ,10,130);
" + 1000 ,10,160);
"+ z2 ,10,190);

clearInterval (stop);
clearInterval (stop2);

stop = setInterval (simulate, 25);

