
Contemporary Data Processing Systems
Lab 2 of 15/09/2016

AS-36, Savitsky Anton

Control 2 metro trains using Speed, Distance, and Brake. What we
have:

-a virtual loop with 1000 px on which there are
-two metro trains(1 – first train car and 2 – second train car)
Both train always run. The speed of trains is denoted as X1 and X2 .

Speed ranges from 0 to 20 px per unit of time. The distance from train 1 to 2
is denoted as Y1 and from train 2 to train 1 is Y2 , so Y1 + Y2 = 1000. Both
trains move in a clockwise direction. At the beginning speed of trains is 10
pixels per unit of time (X1 = 10, X2 = 10) and Y2 = 500, Y1 = 500.

Step by step the speed changes by -2, 0, +2 randomly. Speed will be
controlled by the distance to the train in front via its break. The break of train
1 and 2 is denoted as Z1 and Z2. And we change break value each step with
the following algorithm:

{if x>=14 then z=1, x=x­1} & {if y<=50 then z=9, x=x­9}

We also show the membership value of 3 rules:

{IF x=medium AND y=small THEN z=strong} OR {IF x=medium AND y=medium THEN
z=medium} OR {IF x=medium AND y=large THEN z=week}

Calculation of membership value of 3 rule according to the screenshot above.

IF x=medium AND y=short THEN z=strong

1 speed µ Distanc
e

µ break µ total µ

17 0 742 0 1 0 0

2 speed µ Distanc
e

µ break µ total µ

13 0.25 491 0 0 0 0

IF x=medium AND y=medium THEN z=medium

1 speed µ Distanc
e

µ break µ total µ

17 0 742 0 1 0 0

2 speed µ Distanc
e

µ break µ total µ

13 0.25 491 0,5 0 0 0

IF x=medium AND y=long THEN z=week

1 speed µ Distanc
e

µ break µ total µ

17 0 742 0.25 1 0 0

2 speed µ Distanc
e

µ break µ total µ

13 0.25 491 0,5 0 0 0

Membership function value:
for 1 train: rule 1 or rule 2 or rule 3 => 0

for 2 train: rule 1 or rule 2 or rule 3 => 0

Other snapshots:

Source code was written in html5 with canvas graphics:

index.html
<!DOCTYPE html>
<html>
 <head>
 <title>Lab2 - 15_09_2016</title>
 <link rel="stylesheet" type="text/css" href="style/style.css">
 </head>
 <body>
 <canvas id="metro-canvas" width="600" height="700"></canvas>

 <script src = "index.js"></script>
 </body>
</html>

index.js

"use strict";

var canvas = document.getElementById("metro-canvas");
var context = canvas.getContext("2d");
var centerOfX = 300;
var centerOfY = 250;
var R = 160;

var circleLength = 2 * Math.PI * R;

var trainR = 15;

var angleOfA = 0;
var angleOfB = 180;

var stepOf1 = 10;/*ms*/
var stepOf2 = 10;/*ms*/

var width = 600;
var height = 500;

var stepInterval = 10;/*ms*/

var dist1To2;
var dist2To1;

var z1 = 0; //break
var z2 = 0;

var stop1;
var stop2;

var c = 0;

drawMetroLine();

function showData()
{
 context.clearRect(0,450,width,height);
 context.font = "20px Arial";
 context.fillStyle = "blue";
 context.fillText("X1 = " + stepOf1 ,150,530);
 context.fillText("Y1 = " + (dist1To2.toFixed(0)) ,150,560);
 context.fillText("Z1 = " + z1 ,150,590);
 context.fillText("M1 = 0" ,150,620);

 context.fillStyle = "red";
 context.fillText("X2 = " + stepOf2 ,400,530);
 context.fillText("Y2 = " + (dist2To1.toFixed(0)) ,400,560);
 context.fillText("Z2 = " + z2 ,400,590);
 context.fillText("M2 = 0" ,400,620);
}

function drawMetroLine() {
 context.linewidth = 2;
 context.beginPath();
 context.arc(centerOfX, centerOfY, R, 0, 2*Math.PI);
 context.stroke();

 context.fillStyle = 'black';
 context.font = "12px Arial";

 let c = angleToCoordinate(0, R)
 context.beginPath();
 context.moveTo(c.x-5, c.y);
 context.lineTo(c.x+5, c.y);
 context.stroke();
 context.fillText("1000" , c.x+15, c.y-10);
 context.fillText("0" , c.x+15, c.y+10);

 c = angleToCoordinate(90, R)
 context.beginPath();
 context.moveTo(c.x, c.y-5);
 context.lineTo(c.x, c.y+5);
 context.stroke();

 context.fillText('250' , c.x, c.y+20);

 c = angleToCoordinate(180, R)
 context.beginPath();
 context.moveTo(c.x-5, c.y);
 context.lineTo(c.x+5, c.y);
 context.stroke();
 context.fillText('500' , c.x-40, c.y);

 c = angleToCoordinate(270, R)
 context.beginPath();
 context.moveTo(c.x, c.y-5);
 context.lineTo(c.x, c.y+5);
 context.stroke();
 context.fillText('750' , c.x, c.y-10);

}

let speed = {
 set stepOf1(value) {
 if(value < 0) stepOf1 = 0;
 else if(value > 20) stepOf1 = 20;
 else stepOf1 = value;
 },
 get stepOf1(){
 return stepOf1;
 },

 set stepOf2(value) {
 if(value < 0) stepOf2 = 0;
 else if(value > 20) stepOf2 = 20;
 else stepOf2 = value;
 },
 get stepOf2(){
 return stepOf2;
 }
}

function drawTrainByAngle(angle) {
 let {x,y} = angleToCoordinate(angle, R);

 var img=document.getElementById("train-img");

 context.beginPath();
 context.drawImage(img,x-15,y-15, 30, 30);
}

function drawTrainInfo(angle, text) {
 let {x,y} = angleToCoordinate(angle, R + 25);
 context.fillStyle = "black";
 context.beginPath();
 context.font = "12px Arial";

 context.fillText(text ,x,y);

}

function angleToCoordinate(angle, radius) {
 let x = Math.cos(angle * Math.PI / 180) * radius + centerOfX;
 let y = Math.sin(angle * Math.PI / 180) * radius + centerOfY;
 return {x,y};
}

function changeSpeedOf2() {
 if(Math.random()<0.5)
 stepOf2 += Math.random()*3;
 else
 stepOf2 -= Math.random()*3;
 if(stepOf2 < 2) stepOf2 = 2;
 if(stepOf2>20)stepOf2 = 20;

}

function pxToAngle(pixel) {
 let k = pixel / circleLength;
 return k * 360;
}

function angleToPx(angle) {
 return Math.PI * R * angle / 180;
}

function calculateZ() {
 if(stepOf1 >=14)
 z1 = 1;
 else if(z1 === 1) z1 = 0;
 if(stepOf2 >=14)
 z2 = 1;
 else if(z2 === 1) z2 = 0;

 if(dist1To2 <= 50)
 z1 = 9;
 else if(z1 == 9) z1 = 0;
 if(dist2To1 <= 50)
 z2 = 9;
 else if(z2 == 9) z2 = 0;
}

function simulate() {

 context.clearRect(100,0,width,height);

 drawMetroLine();

 drawTrainByAngle(angleOfA);
 drawTrainByAngle(angleOfB);

 drawTrainInfo(angleOfA, "1");
 drawTrainInfo(angleOfB, "2");

 let diffirence = angleOfB - angleOfA;
 if(diffirence > 0) {
 dist1To2 = angleToPx(diffirence);
 dist2To1 = circleLength - dist1To2;
 }
 else {
 diffirence = -diffirence;
 dist2To1 = angleToPx(diffirence);
 dist1To2 = circleLength - dist2To1;
 }

 dist1To2 -= 2.6;
 dist2To1 -= 2.6;

 if(dist1To2 < 0 || dist2To1 < 0){
 stopSimulate();
 return;
 }

 angleOfA += (pxToAngle(stepOf1))/stepInterval;
 angleOfB += (pxToAngle(stepOf2))/stepInterval;

 if(angleOfA > 360)
 angleOfA -= 360;
 if(angleOfB > 360)
 angleOfB -= 360;

 if((c % stepInterval) == 0) {

 effectSpeedOf1();
 calculateZ();

 speed.stepOf1 = stepOf1 - z1;
 speed.stepOf2 = stepOf2 - z2;

 showData();
 }
 c++;
 if(c === 1000) c = 1;

}

function effectSpeedOf1() {
 speed.stepOf1 = stepOf1 + (1 - Math.floor(Math.random() * 3)) * 2;
 speed.stepOf2 = stepOf2 + (1 - Math.floor(Math.random() * 3)) * 2;

 console.log("stepOf1 = " + stepOf1 + ' ' + "stepOf2 = " + stepOf2);
}

stop = setInterval(simulate, 25);

function stopSimulate() {
 context.clearRect(0,0,width,height);

 drawMetroLine();

 drawTrainByAngle(angleOfA, TrainsColor);

 drawTrainInfo(angleOfA, "1");

 drawTrainInfo(angleOfB, "2");

 clearInterval(stop1);
 clearInterval(stop2);
}

