
Contemporary Data Processing Technology (CCOD)

Lab 2 (September 15, 2016)

Savchuk Artem, AS-36

Controll two metro cars using Speed, Distance, and Brake. In this work we are design a

virtual loop with 1000 pixels on which two metro cars(A – first train car and B – second train

car). We don’t assume any stations. That is, both train always run. The speed of train is denoted

as Xa and Xb . Speed ranges from 0 to 20 pixels per unit of time. The distance from train A to B

is denoted as Ya and from train B to train A is Yb , so Ya + Yb = 1000. Both train move in a

clockwise direction. At the beginning speed of trains is 10 pixels per unit of time (Xa = 10, Xb =

10) and Ya = 500, Yb = 500; Step by step the speed changes by -2, 0, +2 randomly. Speed will be

controlled by the distance to the train in front via its break. The break of train A and B is

denoted as Za and Zb. And we change break every step with the following algorithm:

{if x>=14 then z=1, x=x-1} & {if y<=50 then z=9, x=x-9}

We also need to show the membership value of 3 rules:

{IF x=medium AND y=small THEN z=strong} OR {IF x=medium AND y=medium THEN

z=medium} OR {IF x=medium AND y=large THEN z=week}

I wrote a program that simulates this virtual metro. The result of the

program shown at the bottom.

Calculation of membership value of 3 rule according to the screenshot above.

IF x=medium AND y=small THEN z=strong

IF x=medium AND y=medium THEN z=medium

IF x=medium AND y=large THEN z=week

Membership value:

A: Rule1 or Rule2 or Rule3 => 0

B: Rule1 or Rule2 or Rule3 => 0

A
speed µ Distance µ break µ total µ

13 0.25 509 0 0 0 0

B
speed µ Distance µ break µ total µ

11 0.75 491 0 0 0 0

A
speed µ Distance µ break µ total µ

13 0.25 509 0.455 0 0 0

B
speed µ Distance µ break µ total µ

11 0.75 491 0.545 0 0 0

A
speed µ Distance µ break µ total µ

13 0.25 509 0.555 0 0 0

B
speed µ Distance µ break µ total µ

11 0.75 491 0,455 0 0 0

As shown above, in every situation the membership value is equal to 0. Because of Z only takes

the following values: 0, 1, 9. Membership function strong, medium and weak is always equal to

zero when break takes these values.

Source code:

index.html
<!DOCTYPE html>

<html>

 <head>

 <title>Canvas</title>

 <link rel="stylesheet" type="text/css" href="style/style.css">

 </head>

 <body>

 <canvas id="canvas" width="600" height="500" style="border:2px solid

gray;"></canvas>

 <script src = "script/index.js"></script>

 </body>

</html>

script/index.js

"use strict";

let cnv = document.getElementById("canvas");

let ctx = cnv.getContext("2d");

const Width = 600;

const Height = 500;

const CenterX = 300;

const CenterY = 250;

const Radius = 160;

let lengthOfCircle = 2 * Math.PI * Radius;/*1000*/

const TrainsColor1 = "red";

const TrainsColor2 = "green";

const RadOfTrain = 10;

let currAngleOfTrain1 = 0;

let currAngleOfTrain2 = 180;

let step1 = 10;

let step2 = 10;

let stepInterval = 15; /* 10 * 25 = 250 */

let speed = {

 set step1(value) {

 if(value < 0) step1 = 0;

 else if(value > 20) step1 = 20;

 else step1 = value;

 //alert(step1);

 },

 get step1(){

 return step1;

 },

 set step2(value) {

 if(value < 0) step2 = 0;

 else if(value > 20) step2 = 20;

 else step2 = value;

 //alert(step2);

 },

 get step2(){

 return step2;

 }

}

let intervalOfCh = 500;

let distance1; /**distance between red and green train */

let distance2; /**distance between green and red train */

let z1 = 0;

let z2 = 0;

let stop;

let stop2;

let count = 0;

drawRailway();

function showInfo()

{

 ctx.clearRect(0,0,100,Height);

 ctx.font = "15px Arial";

 ctx.fillStyle = "red";

 ctx.fillText("Xa = " + step1 ,10,30);

 ctx.fillText("Ya = " + (distance1.toFixed(0)) ,10,60);

 ctx.fillText("Za = " + z1 ,10,90);

 ctx.fillText("M = 0." ,10,120);

 ctx.fillStyle = "green";

 ctx.fillText("Xa = " + step2 ,10,160);

 ctx.fillText("Ya = " + (distance2.toFixed(0)) ,10,190);

 ctx.fillText("Za = " + z2 ,10,220);

 ctx.fillText("M = 0." ,10,250);

}

function drawRailway() {

 ctx.beginPath();

 ctx.arc(CenterX, CenterY, Radius, 0, 2*Math.PI);

 ctx.stroke();

 let c = getCoordFromAngle(0, Radius)

 ctx.beginPath();

 ctx.moveTo(c.x-10, c.y);

 ctx.lineTo(c.x+10, c.y);

 ctx.stroke();

 ctx.fillStyle = 'black';

 ctx.font = "bold 14px Arial";

 ctx.fillText('0' , c.x+15, c.y);

 c = getCoordFromAngle(90, Radius)

 ctx.beginPath();

 ctx.moveTo(c.x, c.y-10);

 ctx.lineTo(c.x, c.y+10);

 ctx.stroke();

 ctx.fillStyle = 'black';

 ctx.font = "bold 14px Arial";

 ctx.fillText('250' , c.x, c.y+20);

 c = getCoordFromAngle(180, Radius)

 ctx.beginPath();

 ctx.moveTo(c.x-10, c.y);

 ctx.lineTo(c.x+10, c.y);

 ctx.stroke();

 ctx.fillStyle = 'black';

 ctx.font = "bold 14px Arial";

 ctx.fillText('500' , c.x-30, c.y);

 c = getCoordFromAngle(270, Radius)

 ctx.beginPath();

 ctx.moveTo(c.x, c.y-10);

 ctx.lineTo(c.x, c.y+10);

 ctx.stroke();

 ctx.fillStyle = 'black';

 ctx.font = "bold 14px Arial";

 ctx.fillText('750' , c.x, c.y-20);

}

function drawTrainByAngle(angle, trainsColor) {

 let {x,y} = getCoordFromAngle(angle, Radius);

 ctx.beginPath();

 ctx.arc(x, y, RadOfTrain, 0, 2*Math.PI);

 ctx.fillStyle = trainsColor;

 ctx.fill();

}

function drawDiscriptionOfTrain(angle, text) {

 let {x,y} = getCoordFromAngle(angle, Radius + 25);

 ctx.fillStyle = "black";

 ctx.beginPath();

 ctx.font = "bold 14px Arial";

 ctx.fillText(text ,x,y);

}

function getCoordFromAngle(angle, radius) {

 let x = Math.cos(angle * Math.PI / 180) * radius + CenterX;

 let y = Math.sin(angle * Math.PI / 180) * radius + CenterY;

 return {x,y};

}

function speedEffect2() {

 if(Math.random()<0.5)

 step2 += Math.random()*3;

 else

 step2 -= Math.random()*3;

 if(step2 < 2) step2 = 2;

 if(step2>20)step2 = 20;

}

function pixelToAngle(pixel) {

 let k = pixel / lengthOfCircle;

 return k * 360;

}

function angleToPixel(angle) {

 // let k = angle / 360;

 // return k * lengthOfCircle;

 return Math.PI * Radius * angle / 180;

}

function calculateZ() {

 if(step1 >=14) {

 z1 = 1;

 //speed.step1 = step1 - z1;

 }

 else if(z1 === 1) z1 = 0;

 if(step2 >=14) {

 z2 = 1;

 //speed.step2 = step2 - z2;

 }

 else if(z2 === 1) z2 = 0;

 if(distance1 <= 50){z1 = 9; /*speed.step1 = step1 - 9;*/}

 else if(z1 == 9) z1 = 0;

 if(distance2 <= 50) {z2 = 9; /*speed.step2 = step2 - 9;*/}

 else if(z2 == 9) z2 = 0;

}

function simulate() {

 ctx.clearRect(100,0,Width,Height);

 drawRailway();

 drawTrainByAngle(currAngleOfTrain1, TrainsColor1);

 drawTrainByAngle(currAngleOfTrain2, TrainsColor2);

 drawDiscriptionOfTrain(currAngleOfTrain1, "A");

 drawDiscriptionOfTrain(currAngleOfTrain2, "B");

 let diffrence = currAngleOfTrain2 - currAngleOfTrain1;

 if(diffrence > 0) {

 distance1 = angleToPixel(diffrence);

 distance2 = lengthOfCircle - distance1;

 }

 else {

 diffrence = -diffrence;

 distance2 = angleToPixel(diffrence);

 distance1 = lengthOfCircle - distance2;

 }

 distance1 -= 2.655;/** 2,655 - погрешность расчётов */

 distance2 -= 2.655;

 if(distance1 < 0 || distance2 < 0){stopSimulate(); return;}

 currAngleOfTrain1 += (pixelToAngle(step1))/stepInterval;

 currAngleOfTrain2 += (pixelToAngle(step2))/stepInterval;

 if(currAngleOfTrain1 > 360)currAngleOfTrain1 -= 360;

 if(currAngleOfTrain2 > 360)currAngleOfTrain2 -= 360;

 if((count % stepInterval) == 0) {

 speedEffect();

 calculateZ();

 speed.step1 = step1 - z1;

 speed.step2 = step2 - z2;

 showInfo();

 //count = 0;

 }

 count++;

 if(count === 1000) count = 1;

}

function speedEffect() {

 speed.step1 = step1 + (1 - Math.floor(Math.random() * 3)) * 2;

 speed.step2 = step2 + (1 - Math.floor(Math.random() * 3)) * 2;

 console.log("step1 = " + step1 + ' ' + "step2 = " + step2);

}

function stopSimulate() {

 ctx.clearRect(0,0,Width,Height);

 drawRailway();

 drawTrainByAngle(currAngleOfTrain1, TrainsColor1);

 drawDiscriptionOfTrain(currAngleOfTrain1, "A:");

 ctx.font = "15px Arial";

 ctx.fillStyle = "red";

 ctx.fillText("Xa = " + step1 ,10,30);

 ctx.fillText("Ya = " + 0 ,10,60);

 ctx.fillText("Za = " + z1 ,10,90);

 ctx.fillStyle = "green";

 ctx.fillText("Xa = " + step2 ,10,130);

 ctx.fillText("Ya = " + 1000 ,10,160);

 ctx.fillText("Za = " + z2 ,10,190);

 clearInterval(stop);

 clearInterval(stop2);

}

stop = setInterval(simulate, 25);

