
#include <iostream>
#include <fstream>
#include <vector>
#include <time.h>
#include <math.h>
#include <algorithm>

using namespace std;

typedef vector<int> Chromosome;
typedef vector<Chromosome> Population;

Population population;
Population population2;

Population makePopulation();
double fitness(Chromosome chromosome);
double s_function(Chromosome chromosome);
bool sortPopulation(const Chromosome &chromosome1, const Chromosome &chromosome2);
Population newPopulation();
double distance(const Chromosome &chromosome1, int k);
double sharing_fitness(Chromosome chromosome);

int main()
{
 srand(time(NULL));
 ofstream file("OutData.txt", ios::out);

 population = makePopulation();
 population2 = population;
 sort(population.begin(), population.end(), sortPopulation);
 population2 = population;

 double aver = 0.0;
 for (int noChanged = 0, k = 0; noChanged < 30 && k < 500; k++)
 {
 population = newPopulation();
 sort(population.begin(), population.end(), sortPopulation);
 population2 = population;

 double max = sharing_fitness(population[0]);
 double average = 0.0;
 for (int i = 0; i < 20; i++)
 {
 average += sharing_fitness(population[i]);
 }
 average = average / 20;
 if (average == aver)
 {
 noChanged++;
 }
 else
 {
 noChanged = 0;
 }
 aver = average;

 file << max << "\t" << average << endl;
 }

 file.close();

 system("pause");
 return 0;
}

Population makePopulation()
{
 Population result;
 for (int i = 0; i < 20; i++)
 {
 Chromosome chromosome;
 for (int j = 0; j < 22; j++)
 {
 chromosome.push_back(rand() % 2);
 }
 result.push_back(chromosome);
 }
 return result;
}

double fitness(Chromosome chromosome)
{
 int sum = 0;
 for (int i = 1; i < 11; i++)
 {
 sum += chromosome[i] * pow(2, (i - 1));
 }
 double x = sum / 1023.0 * 5.0;
 if (chromosome[0] == 0)
 {
 x = x * (-1.0);
 }

 sum = 0;
 for (int i = 12; i < 22; i++)
 {
 sum += chromosome[i] * pow(2, (i - 12));
 }
 double y = sum / 1023.0 * 5.0;
 if (chromosome[11] == 0)
 {
 y = y * (-1.0);
 }

 double z = x * sin(abs(x)) + y * sin(abs(y));
 return z;
}

double distance(const Chromosome &chromosome1, int k)
{
 int sum = 0;
 for (int i = 1; i < 11; i++)
 {
 sum += chromosome1[i] * pow(2, (i - 1));
 }
 double x1 = sum / 1023.0 * 5.0;
 if (chromosome1[0] == 0)
 {
 x1 = x1 * (-1.0);
 }

 sum = 0;
 for (int i = 12; i < 22; i++)
 {
 sum += chromosome1[i] * pow(2, (i - 12));
 }
 double y1 = sum / 1023.0 * 5.0;
 if (chromosome1[11] == 0)
 {

 y1 = y1 * (-1.0);
 }

 sum = 0;
 for (int i = 1; i < 11; i++)
 {
 sum += population2[k][i] * pow(2, (i - 1));
 }
 double x2 = sum / 1023.0 * 5.0;
 if (population2[k][0] == 0)
 {
 x2 = x2 * (-1.0);
 }

 sum = 0;
 for (int i = 12; i < 22; i++)
 {
 sum += population2[k][i] * pow(2, (i - 12));
 }
 double y2 = sum / 1023.0 * 5.0;
 if (population2[k][11] == 0)
 {
 y2 = y2 * (-1.0);
 }

 double dist = sqrt((x1 - x2)*(x1 - x2) + (y1 - y2)*(y1 - y2));
 return dist;
}

double s_function(Chromosome chromosome)
{
 double sigma = 1.0;
 double s = 0.0;

 for (int i = 0; i < population.size(); i++)
 {
 double d = distance(chromosome, i);
 if (d < sigma)
 {
 s += (1 - (d / sigma));
 }
 }

 return s;
}

double sharing_fitness(Chromosome chromosome)
{
 double f = fitness(chromosome) / s_function(chromosome);
 return f;
}

bool sortPopulation(const Chromosome &chromosome1, const Chromosome &chromosome2)
{
 return sharing_fitness(chromosome1) > sharing_fitness(chromosome2);
}

Population newPopulation()
{
 int firstParent, secondParent;
 Population result;

 for (int i = 0; i < 10; i++)
 {
 firstParent = rand() % 10;

 secondParent = rand() % 10;
 while (firstParent != secondParent)
 {
 secondParent = rand() % 10;
 }

 Chromosome child1, child2;
 for (int j = 0; j < 22; j++)
 {
 int mask = rand() % 2;
 if (mask == 0)
 {
 child1.push_back(population[firstParent][j]);
 child2.push_back(population[secondParent][j]);
 }
 else
 {
 child1.push_back(population[secondParent][j]);
 child2.push_back(population[firstParent][j]);
 }
 }

 result.push_back(child1);
 result.push_back(child2);
 }

 return result;
}

0

100

200

300

400

500

600

0 50 100 150 200 250 300 350 400 450

d
is

ta
n

ce

iteration

Best

Average

