<iostream>

using namespace std;

typedef vector<int> Chromosome;
typedef vector<Chromosome> Population;
Population population;

Population population2;

Population makePopulation();

double fitness(Chromosome chromosome);

double s_function(Chromosome chromosome);

bool sortPopulation(const Chromosome &chromosomel, const Chromosome &chromosome2);
Population newPopulation();

double distance(const Chromosome &chromosomel, int k);
double sharing fitness(Chromosome chromosome);

srand(time(NULL));
ofstream file("OutData.txt", ios::out);

population = makePopulation();

population2 = population;

sort(population.begin(), population.end(), sortPopulation);
population2 = population;

double aver = 0.0;
for (int noChanged = @, k = 0; noChanged < 30 & & k < 500; k++)

population = newPopulation();

sort(population.begin(), population.end(), sortPopulation);
population2 = population;

double max = sharing_fitness(population[0]);

double average = 0.0;

for (int i = @; i < 20; i++)

average += sharing fitness(population[i]);

average = average
if (average == aver)

noChanged++;

aver = average,;

file << max << "\t" << average << endl;
}

file.close();

system("pause");

return 0;



Population makePopulation()

Population result;
for (int i = @; i < 20; i++)

Chromosome chromosome;
for (int §j = @; j < 22; j++)

chromosome.push back(rand() % 2);
result.push_back(chromosome);

return result;

fitness(Chromosome chromosome)

sum += chromosome[i] * pow(2,

(i -1));

double x = sum / 1023.0 * 5.0;
if (chromosome[@] == @)

double z = x * sin(abs(x)) + y * sin(abs(y));
return z;

distance(const Chromosome &chromosomel, int k)

double y1 = sum / 1023.0 * 5.0;
if (chromosomel[11] == @)



double y2 = sum / 1023.0 * 5.0;
if (population2[k][11] == O)

y2 = y2 * (-1.0);
double dist = sqgrt((x1 - x2)*(x1 - x2) + (y1l - y2)*(yl - y2));
return dist;

s _function(Chromosome chromosome)

double sigma = 1.0;
double s = 0.0;

for (int i = @; i < population.size(); i++)

double d = distance(chromosome, i);
if (d < sigma)

s += (1 - (d / sigma));

Population newPopulation()

int firstParent, secondParent;
Population result;

for (int i = 0; i < 10; i++)

firstParent = rand() % 10;



secondParent = rand() % 10;

while (firstParent != secondParent)

secondParent = rand() % 10;

childl.push back(population[firstParent][j]);
child2.push back(population[secondParent][j]);

childl.push_back(population[secondParent][j]);
child2.push back(population[firstParent][j]);

result.push_back(childl);
result.push back(child2);

600

500

400

300

distance

200

100

0 50 100 150 200 250 300 350 400 450

iteration

e Best

= Average



