Kiryl Kiryluk

1. Maximize the following y in 3-D cases.
y= Xg*sin(|x1|)+ X2*sin(|x2|)

2. Create a population of 20 chromosomes at random, with fitness being y.
3. Evole this population till fitness dosen’t change

CODE:

#include <stdafx.h>
#include <fstream>
#include <iostream>
#include <vector>
#include <algorithm>
#include <time.h>
#include <math.h>

typedefvector<Chromosome> Population;
int Chromosome::getGen(int index)

{
}

boolsortPopulation(Chromosome &chromosomel, Chromosome &chromosome2);
Population distance(Population population);

return genes[index];

voidsetGen(int index, intnewGen);
void mutation();

voidcurrentPosition();

intgetDistance();
intgetGen(int index);

void Chromosome::currentPosition()

{
for (int i = @; i <genes.size(); i++)
{
switch (genes[i])
{
return distance;
}

Population uniformDistance(Population population);
int XY(inttmp);
void Chromosome: :setGen(int index, intnewGen)

{
}

genes[index] = newGen;

void Chromosome: :mutation()
{
for (int i = @; i <genes.size(); i++)
{
inttmp = rand() % 100;

if (tmp == 0)

genes[i] = rand() % 4 + 1;

boolsortPopulation(Chromosome &chromosomel, Chromosome &chromosome2)

{
}

return chromosomel.getDistance() < chromosome2.getDistance();

Population distance(Population population)
{
intdistancePoint;
intfirstParent, secondParent;
Population result;

for (int 1 = 0; i < 10; i++)

{
distancePoint = rand() % 1000;
firstParent = rand() % 10;
secondParent = rand() % 10;

while (firstParent != secondParent)
{
secondParent = rand() % 10;
}
Population uniformDistance(Population population)
{
intfirstParent, secondParent;
Population result;
for (int 1 = @0; i < 10; i++)
{
firstParent = rand() % 10;
secondParent = rand() % 10;
while (firstParent != secondParent)
{
secondParent = rand() % 10;
}
intmain()
{
srand(time(NULL));

ofstream file("OutData.txt", ios::out);
ofstreamfileTable("Table.txt", ios::out);

Population population;
Population table;
for (int i = @; i < 20; i++)

{
Chromosome tmp;
population.push_back(tmp);
}
for (int i = @; i <population.size(); i++)
{
population[i].currentPosition();
}

sort(population.begin(), population.end(), sortPopulation);

for (int k = 0; k <= 400; k++)

if ((k % 100) == 0)

{
for (int i = 0; 1 < 3; i++)
{
table.push_back(population[i]);
}
}

population = uniformDistance(population);

0; 1 <population.size(); i++)

for (int i

{
}

sort(population.begin(), population.end(), sortPopulation);

population[i].currentPosition();

int min = population[@].getDistance();

int average = 0;
for (int i = @; i <population.size(); i++)

{
}

average = average / 20;

average += population[i].getDistance();

file<< max << "\t" <<endl;

¥
f or (int k = 9; k <= 400; k++)

{
if ((k % 100) == 0)
{

for (int i = 0; i < 3; i++)

{

table.push_back(population[i]);

}

}

population = Distance(population);

