

Kiryl Kiryluk

1. Maximize the following y in 3-D cases.

y= x1*sin(|x1|)+ x2*sin(|x2|)

2. Create a population of 20 chromosomes at random, with fitness being y.

3. Evole this population till fitness dosen’t change

 CODE:

#include <stdafx.h>
#include <fstream>
#include <iostream>

#include <vector>
#include <algorithm>
#include <time.h>
#include <math.h>

typedefvector<Chromosome> Population;
int Chromosome::getGen(int index)
{
 return genes[index];
}
boolsortPopulation(Chromosome &chromosome1, Chromosome &chromosome2);
Population distance(Population population);

voidsetGen(int index, intnewGen);
 void mutation();

voidcurrentPosition();
 intgetDistance();
 intgetGen(int index);

void Chromosome::currentPosition()
{
 for (int i = 0; i <genes.size(); i++)
 {
 switch (genes[i])
{
 return distance;
}

Population uniformDistance(Population population);
int XY(inttmp);
void Chromosome::setGen(int index, intnewGen)
{
 genes[index] = newGen;
}

void Chromosome::mutation()
{
 for (int i = 0; i <genes.size(); i++)
 {
 inttmp = rand() % 100;

 if (tmp == 0)
 {
 genes[i] = rand() % 4 + 1;
 }
 }
}

boolsortPopulation(Chromosome &chromosome1, Chromosome &chromosome2)
{
 return chromosome1.getDistance() < chromosome2.getDistance();
}

Population distance(Population population)
{
 intdistancePoint;
 intfirstParent, secondParent;
 Population result;

 for (int i = 0; i < 10; i++)
 {
 distancePoint = rand() % 1000;
 firstParent = rand() % 10;
 secondParent = rand() % 10;
 while (firstParent != secondParent)
 {
 secondParent = rand() % 10;
 }

Population uniformDistance(Population population)
{
 intfirstParent, secondParent;
 Population result;

 for (int i = 0; i < 10; i++)
 {
 firstParent = rand() % 10;
 secondParent = rand() % 10;
 while (firstParent != secondParent)
 {
 secondParent = rand() % 10;
 }

intmain()
{
 srand(time(NULL));
 ofstream file("OutData.txt", ios::out);
 ofstreamfileTable("Table.txt", ios::out);

 Population population;
 Population table;
 for (int i = 0; i < 20; i++)
 {
 Chromosome tmp;
 population.push_back(tmp);
 }
 for (int i = 0; i <population.size(); i++)
 {
 population[i].currentPosition();
 }
 sort(population.begin(), population.end(), sortPopulation);

 for (int k = 0; k <= 400; k++)

 {
 if ((k % 100) == 0)
 {
 for (int i = 0; i < 3; i++)
 {
 table.push_back(population[i]);
 }
 }

 population = uniformDistance(population);

 for (int i = 0; i <population.size(); i++)
 {
 population[i].currentPosition();
 }
 sort(population.begin(), population.end(), sortPopulation);

 int min = population[0].getDistance();

 int average = 0;
 for (int i = 0; i <population.size(); i++)
 {
 average += population[i].getDistance();
 }
 average = average / 20;

 file<< max << "\t" <<endl;
 }
 f or (int k = 0; k <= 400; k++)
 {
 if ((k % 100) == 0)
 {
 for (int i = 0; i < 3; i++)
 {
 table.push_back(population[i]);
 }
 }

 population = Distance(population);

