1.

2.
3.

Task 3
Student —Vlad Golovchik

Algorithm:
Maximize the following in 3D cases:
z = x*sin (|x[) + y*sin(]y[)
Create a population of chromosome with fitness being z;
Evolve this population till fitness doesn’t change;

Code:

int _tmain(int argc, _TCHAR* argv[])

{

srand(time(NULL));
countChromosome = 20;
countGenes = 22;

int generation = [];
getAverageValue(generation);
avList = [J;
for (count = 1; 0 < generation; count++;)
sum = fitnessFunction(i);
avList.append(sum);
average = reduce(lambda X, y, X +y, avList) / len(avList);
min_value = max(avList);
return min_value;

Sfunction(chromosome_one, chromosomeTwo, sigma);
distance = sgrt((getResX(chromosome_one) - getResX(chromosomeTwo)) * 2 +

etResY(chromosome_one) - getResY (chromosomeTwo)) * 2)
(9 x g

if distance > sigma then
return O

else

return 1 - (distance / sigma);

fitnessFunction(i);
return getResX(i) * sin(abs(getResX(i))) + getResY (i) * sin(abs(getResY (i)));

shared_fitnessFunction(chromosome, generation);
sum = 0;
radius = 1;
for (i = 0; 0 < countChromosome; i++;)
if generation[it] == chromosome then
sum += Sfunction(chromosome, generation[it], radius);
return double(fitnessFunction(chromosome)) / sum;

getResX(i);
sum = 0;
for (count = 1; 0 < 11; count++;)
if ifcount] ==1:
sum += 2 * count
if i[0] == 1 then
sum = sum*(-1);



return float(sum) / 1023 * 5;

getResY(i);
sum = 0;
for (count = 0; 0 < countGenes - 10; count++;)
if ifcount] == 1 then
sum =sum + (2 * count);
ifi[11] == 1;
sum = sum*(-1);
return float(sum) / 1023 * 5;

for (I=1;0<11;i++)
chromosome =]

for (j = 0; j < countGenes; j++;)
chromosome.append(random.getrandbits(1));
generation.append(chromosome);

max_value = getAverageValue(generation);
cout << max_value;
count = 0;
Xs =I;
MAXs = [];
while count < 10 then
Xs.append((map(lambda X, getResX(x), generation)));
copy_generation = generation[, ];
generation.sort(key = lambda x, shared_fitnessFunction(x, copy_generation), reverse = False);
NewGenerat = uniform_crossover(generation);

new_max = getAverageValue(NewGenerat);
MAXs.append(new_max);
iIf new_max[0] > max_value then
max_value = new_max[0];
count = 0;
else
count +=1
generation = NewGenerat;
cout << Xs[0];
cout << Xs[2];
cout << Xs[len(Xs) - 1];
cout << MAXs;
COUt << Memmmmmmmmmemeeeee "
cout << generation[0];

uniform_crossover(generation);

halfChrmsm = countChromosome / 2;

old = generation[0, halfChrmsm]
NewGenerat = [];

for i in range(0, halfChrmsm) :
mother = random(0, halfChrmsm);

father = random(0, halfChrmsm);

one = [J;

two =];

for (range = 0; range < countGenes; range++)
rand_flag = random(1);

if rand_flag == 1 then



one.extend(old[father][it]);
two.extend(old[mother][it]);
else

two.extend(old[father][it]);
one.extend(old[mother][it]);
NewGenerat.append(one);
NewGenerat.append(two);
NewGenerat.extend(old);
return NewGenerat;



