
Vlad Mashchuk

Lab3

Code

#include <time.h>
#include <math.h>
#include <algorithm>
#include <iostream>
#include <math.h>
#include <fstream>
#include <vector>
using namespace std;

typedef vector<int> Chrm;
typedef vector<Chrm> Pplt;
Pplt population;

double fitness(Chrm Chrm)
{
 int sum = 0;
 for (int i = 1; i < 11; i++)
 {
 sum += Chrm[i] * pow(2, (i - 1));
 }
 int x = sum / 1023 * 5;
 if (Chrm[0] == 0)
 {
 x = x * (-1);
 }

 sum = 0;
 for (int i = 12; i < 22; i++)
 {
 sum += Chrm[i] * pow(2, (i - 12));
 }
 int y = sum / 1023 * 5;
 if (Chrm[11] == 0)
 {
 y = y * (-1);
 }

 double z = x * sin(abs(x)) + y * sin(abs(y));
 return z;
}

double distance(Chrm Chrm1, Chrm Chrm2)
{
 int sum = 0;
 for (int i = 1; i < 11; i++)
 {
 sum += Chrm1[i] * pow(2, (i - 1));
 }
 int x1 = sum / 1023 * 5;
 if (Chrm1[0] == 0)
 {
 x1 = x1 * (-1);
 }

 sum = 0;
 for (int i = 12; i < 22; i++)
 {
 sum += Chrm1[i] * pow(2, (i - 12));
 }

 int y1 = sum / 1023 * 5;
 if (Chrm1[11] == 0)
 {
 y1 = y1 * (-1);
 }

 sum = 0;
 for (int i = 1; i < 11; i++)
 {
 sum += Chrm2[i] * pow(2, (i - 1));
 }
 int x2 = sum / 1023 * 5;
 if (Chrm2[0] == 0)
 {
 x2 = x2 * (-1);
 }

 sum = 0;
 for (int i = 12; i < 22; i++)
 {
 sum += Chrm2[i] * pow(2, (i - 12));
 }
 int y2 = sum / 1023 * 5;
 if (Chrm2[11] == 0)
 {
 y2 = y2 * (-1);
 }

 double dist = sqrt((x1 - x2)*(x1 - x2) + (y1 - y2)*(y1 - y2));
 return dist;
}

Pplt makePplt()
{
 Pplt result;
 for (int i = 0; i < 20; i++)
 {
 Chrm Chrm;
 for (int j = 0; j < 22; j++)
 {
 Chrm.push_back(rand() % 2);
 }
 result.push_back(Chrm);
 }
 return result;
}

Pplt makePplt();
double fitness(Chrm Chrm);
double s_function(Chrm Chrm);
bool sortPpl(const Chrm &Chrm1, const Chrm &Chrm2);
Pplt newPplt();
double distance(Chrm Chrm1, Chrm Chrm2);
double sharing_fitness(Chrm Chrm);

int main()
{
 srand(time(NULL));
 ofstream file("file.txt", ios::out);

 population = makePplt();
 sort(population.begin(), population.end(), sortPplt);

 double aver = 0.0;
 for (int noChanged = 0, k = 0; noChanged < 30 && k < 500; k++)

 {
 population = newPplt();
 sort(population.begin(), population.end(), sortPplt);

 double max = sharing_fitness(population[0]);
 double average = 0.0;
 for (int i = 0; i < 20; i++)
 {
 average += sharing_fitness(population[i]);
 }
 average = average / 20;
 if (average == aver)
 {
 noChanged++;
 }
 else
 {
 noChanged = 0;
 }
 aver = average;

 file << max << "\t" << average << endl;
 }

 file.close();

 system("pause");
 return 0;
}

double s_function(Chrm Chrm)
{
 double sigma = 1.0;
 double s = 0.0;

 for (int i = 0; i < 20; i++)
 {
 double d = distance(Chrm, population[i]);
 if (d < sigma)
 {
 s += (1 - (d / sigma));
 }
 }

 return s;
}

double sharing_fitness(Chrm Chrm)
{
 double f = fitness(Chrm) / s_function(Chrm);
 return f;
}

bool sortPplt(const Chrm &Chrm1, const Chrm &Chrm2)
{
 return sharing_fitness(Chrm1) > sharing_fitness(Chrm2);
}

Pplt newPplt()
{
 int firstParent, secondParent;

 Pplt result;

 for (int i = 0; i < 10; i++)
 {
 firstParent = rand() % 10;
 secondParent = rand() % 10;
 while (firstParent != secondParent)
 {
 secondParent = rand() % 10;
 }

 Chrm child1, child2;
 for (int j = 0; j < 22; j++)
 {
 int mask = rand() % 2;
 if (mask == 0)
 {
 child1.push_back(population[firstParent][j]);
 child2.push_back(population[secondParent][j]);
 }
 else
 {
 child1.push_back(population[secondParent][j]);
 child2.push_back(population[firstParent][j]);
 }
 }

 result.push_back(child1);
 result.push_back(child2);
 }

 return result;
}

