Task 3
Student — Oxana Zanko
ALHORITHM

1. Maximize the following y in 3-D cases.
y= Xg*sin(|x1|)+ X2*sin(|x2|)

2. Create a population of 20 chromosomes at random, with fitness being z.
3. Evole this population till fitness dosen’t change

Results:

Fitness of the best

Fitness

Iteration

Fitness of the Average

Fitness

Iteration

Source code:
import random
from math import sin
def get_average value(generation):
av_list =[]
for i in generation:
sum = fitness_function(i)
av_list.append(sum)
average = reduce(lambda x, y: x +y, av_list) / len(av_list)
min_value = min(av_list)
return (average, min_value)
def fitness_function(i):
sum=20
forjini:
sum +=j * sin(abs(j))
return sum
def main():
generation =[]
for i1 in range(0, 20):
hromosome =[]
for j in range(0, 20):
hromosome.append(random.uniform(-5, 5))
generation.append(hromosome)
min_value = get_average_value(generation)[1]
print(min_value)
count=0

while count < 10:
generation.sort(key=lambda x: fitness_function(x), reverse=False)
fathers = generation[0:10]
new_generation = []
for i in range(0, 10):
mother = random.randrange(0, 10)
father = random.randrange(0, 10)
rand_index = random.randrange(0, 20)
first = fathers[mother][0:rand_index]
first.extend(fathers[father][rand_index:20])
second = fathers[father][0:rand_index]
second.extend(fathers[mother][rand_index:20])
new_generation.append(first)
new_generation.append(second)
new_generation.extend(fathers)
new_max = get_average value(new_generation)
print(new_max)
if new_max[1] < min_value:
min_value = new_max[1]

count=0
else:
count +=1
generation = new_generation
if _name_ ==' main_ "

main()

