
Task 3

Student – Oxana Zanko

ALHORITHM

1. Maximize the following y in 3-D cases.

y= x1*sin(|x1|)+ x2*sin(|x2|)

2. Create a population of 20 chromosomes at random, with fitness being z.

3. Evole this population till fitness dosen’t change

Results:

Source code:

import random

from math import sin

def get_average_value(generation):

av_list = []

for i in generation:

sum = fitness_function(i)

av_list.append(sum)

average = reduce(lambda x, y: x + y, av_list) / len(av_list)

min_value = min(av_list)

return (average, min_value)

def fitness_function(i):

sum = 0

for j in i:

sum += j * sin(abs(j))

return sum

def main():

generation = []

for i in range(0, 20):

hromosome = []

for j in range(0, 20):

hromosome.append(random.uniform(-5, 5))

generation.append(hromosome)

min_value = get_average_value(generation)[1]

print(min_value)

count = 0

while count < 10:

generation.sort(key=lambda x: fitness_function(x), reverse=False)

fathers = generation[0:10]

new_generation = []

for i in range(0, 10):

mother = random.randrange(0, 10)

father = random.randrange(0, 10)

rand_index = random.randrange(0, 20)

first = fathers[mother][0:rand_index]

first.extend(fathers[father][rand_index:20])

second = fathers[father][0:rand_index]

second.extend(fathers[mother][rand_index:20])

new_generation.append(first)

new_generation.append(second)

new_generation.extend(fathers)

new_max = get_average_value(new_generation)

print(new_max)

if new_max[1] < min_value:

min_value = new_max[1]

count = 0

else:

count += 1

generation = new_generation

if __name__ == '__main__':

main()

