Practice 3

Maximilization of the 3D function
with multiple solutions.

We must search for all of the 4 maximums of the
function z = x sin(|x|) + v sin(|vy])

With x = [-5; 5] and y = [-5; 5]

E = il ".11-::..
i 5 o
C o TR s b ‘1-':3-"";

To find all 4 solutions I’11 try to use

1. Chromosomes with 22 binary genes
First 11 for X
And last 11 for Y

2. Population with 20 chromosomes

3. I"1ll try to calculate shared fitness function with
Manhattan distance dij

4. Trunked selection *s



5. Without mutations
6. Repeat until maximum shared fitness of last 10
population are equals

Code

Cromosom. java

import java.util.ArraylList;
import java.util.List;
import java.util.Random;

public class Chromosom {
private List<Boolean> genes = new ArrayList<Boolean>();

private static Random random = new Random() ;
private Double sharedFitness;
public Double getSharedFitness () {

return sharedFitness;

public void setSharedFitness (Double sharedFitness) {
this.sharedFitness = sharedFitness;

public Chromosom () {
for(int 1 = 0; 1 < 22; 1i++){
genes.add (random.nextBoolean() ) ;

public Chromosom (List<Boolean> genes) {
this.genes = genes;

public static List<Chromosom> crossover (Chromosom papa, Chromosom mama) {
List<Chromosom> children = new ArrayList<Chromosom> () ;

List<Boolean> firstChildGenes = new ArrayList<>();
List<Boolean> secondChildGenes = new ArrayList<>();

for(int i = 0; 1 < 22; 1i++){
if (random.nextBoolean())

{

firstChildGenes.add (papa.getGenes () .get (1))

secondChildGenes.add (mama.getGenes () .get (1)) ;
lelse(

firstChildGenes.add (mama.getGenes () .get (1))

secondChildGenes.add (papa.getGenes () .get (i)) ;

children.add (new Chromosom(firstChildGenes))
children.add (new Chromosom(secondChildGenes)

’

~ ~

return children;



public List<Boolean> getGenes () {
return genes;

public void setGenes (List<Boolean> genes) {
this.genes = genes;

public double getFitness() {
double x = 0;
double y = 0;

for(int 1 = 1; 1 < 11; 1i++){
x += genes.get (i) ? Math.pow (2.0, i - 1)/1023.0*5.0 : 0;
y += genes.get (i + 11) ? Math.pow (2.0, i - 1)/1023.0*5.0 : 0;

X *= genes.get(0) 2?2 -1.0 : 1.0
y *= genes.get(11l) ? -1.0 : 1.

(@D
~e

return x * Math.sin(Math.abs(x)) + y * Math.sin(Math.abs(y));

public double getX() {
double x = 0;
for(int i = 1; i < 11; i++){
x += genes.get (i) ? Math.pow (2.0, i - 1)/1023.0*5.0 : 0;

X *= genes.get(0) ? -1.0 : 1.0;

return x;

public double getY () {
double y = 0;

for(int i = 12; 1 < 22; 1i++){
y += genes.get (i) ? Math.pow (2.0, i - 1)/1023.0*5.0 : O;
y *= genes.get(0) 2?2 -1.0 : 1.0;

return vy;

Population.java

import java.util.ArrayList;
import java.util.Collections;

import java.util.List;
import java.util.Random;

public class Population {
private List<Chromosom> chromosoms = new ArrayList<Chromosom> () ;
private double sigma = 9.0;

private static Random random = new Random() ;



public Population () {
for (int 1 = 0; i < 20; i++) {
chromosoms.add (new Chromosom()) ;

public Population (List<Chromosom> chromosoms) {
this.chromosoms = chromosoms;

public List<Chromosom> getChromosoms () {
return chromosoms;

public void setChromosoms (List<Chromosom> chromosoms) {
this.chromosoms = chromosoms;

public Population nextGeneration() {
List<Chromosom> nextGen = new ArrayList<>();

Collections.sort (chromosoms, (cl, c2) ->
cl.getSharedFitness () .compareTo (c2.getSharedFitness()))

for (int 1 = 0; 1 < 10; 1i++) {
nextGen.addAll (Chromosom.crossover (chromosoms.get (random.nextInt (10)),
chromosoms.get (random.nextInt (10))));

}

return new Population (nextGen);
public double getSharedFitness (int index) {
double result = 0;

for (int 1 = 0, i < 20; 1i++) {
double x = Math.abs (getChromosoms () .get (index) .getX () -

getChromosoms () .get (1) .getX ()) ;
double y = Math.abs (getChromosoms () .get (index) .getY () -
getChromosoms () .get (1) .getY ()) ;

double d = x + y;

result += s (d);

return getChromosoms () .get (index) .getFitness () / result;

private double s (double d) {

return d < sigma ? 1 - (d / sigma) : 0;
}
public void calcSharedFitnessList () {
for (int 1 = 0; i < 20; 1i++) {
getChromosoms () .get (1) .setSharedFitness (getSharedFitness (1)) ;

public double getMax () {
List<Double> fitnessList = new ArrayList<>();

for (int i = 0; i < 20; i++) {



fitnessList.add (chromosoms.get (i) .getSharedFitness ())
return Collections.max (fitnessList);

public double getAverage () {
double sum = 0;

for (int 1 = 0; i < 20; 1i++) {

sum += chromosoms.get (i) .getSharedFitness{();

return sum/20.0;

plotGraph.m (Matlab code for graphic plot)
x = (-5 : 0.1 : 5



