
Practice 3

Maximization of the 3D function

with multiple solutions.

We must search for all of the 4 maximums of the

function z = x sin(|x|) + y sin(|y|)

With x = [-5; 5] and y = [-5; 5]

To find all 4 solutions I’ll try to use

1. Chromosomes with 22 binary genes

First 11 for X

And last 11 for Y

2. Population with 20 chromosomes

3. I’ll try to calculate shared fitness function with

Manhattan distance dij

4. Trunked selection ½

5. Without mutations

6. Repeat until maximum shared fitness of last 10

population are equals

Code

Cromosom.java

import java.util.ArrayList;

import java.util.List;

import java.util.Random;

public class Chromosom {

 private List<Boolean> genes = new ArrayList<Boolean>();

 private static Random random = new Random();

 private Double sharedFitness;

 public Double getSharedFitness() {

 return sharedFitness;

 }

 public void setSharedFitness(Double sharedFitness) {

 this.sharedFitness = sharedFitness;

 }

 public Chromosom(){

 for(int i = 0; i < 22; i++){

 genes.add(random.nextBoolean());

 }

 }

 public Chromosom(List<Boolean> genes){

 this.genes = genes;

 }

 public static List<Chromosom> crossover(Chromosom papa, Chromosom mama){

 List<Chromosom> children = new ArrayList<Chromosom>();

 List<Boolean> firstChildGenes = new ArrayList<>();

 List<Boolean> secondChildGenes = new ArrayList<>();

 for(int i = 0; i < 22; i++){

 if(random.nextBoolean()){

 firstChildGenes.add(papa.getGenes().get(i));

 secondChildGenes.add(mama.getGenes().get(i));

 }else{

 firstChildGenes.add(mama.getGenes().get(i));

 secondChildGenes.add(papa.getGenes().get(i));

 }

 }

 children.add(new Chromosom(firstChildGenes));

 children.add(new Chromosom(secondChildGenes));

 return children;

 }

 public List<Boolean> getGenes() {

 return genes;

 }

 public void setGenes(List<Boolean> genes) {

 this.genes = genes;

 }

 public double getFitness(){

 double x = 0;

 double y = 0;

 for(int i = 1; i < 11; i++){

 x += genes.get(i) ? Math.pow(2.0, i - 1)/1023.0*5.0 : 0;

 y += genes.get(i + 11) ? Math.pow(2.0, i - 1)/1023.0*5.0 : 0;

 }

 x *= genes.get(0) ? -1.0 : 1.0;

 y *= genes.get(11) ? -1.0 : 1.0;

 return x * Math.sin(Math.abs(x)) + y * Math.sin(Math.abs(y));

 }

 public double getX(){

 double x = 0;

 for(int i = 1; i < 11; i++){

 x += genes.get(i) ? Math.pow(2.0, i - 1)/1023.0*5.0 : 0;

 }

 x *= genes.get(0) ? -1.0 : 1.0;

 return x;

 }

 public double getY(){

 double y = 0;

 for(int i = 12; i < 22; i++){

 y += genes.get(i) ? Math.pow(2.0, i - 1)/1023.0*5.0 : 0;

 }

 y *= genes.get(0) ? -1.0 : 1.0;

 return y;

 }

}

Population.java

import java.util.ArrayList;

import java.util.Collections;

import java.util.List;

import java.util.Random;

public class Population {

 private List<Chromosom> chromosoms = new ArrayList<Chromosom>();

 private double sigma = 9.0;

 private static Random random = new Random();

 public Population() {

 for (int i = 0; i < 20; i++) {

 chromosoms.add(new Chromosom());

 }

 }

 public Population(List<Chromosom> chromosoms) {

 this.chromosoms = chromosoms;

 }

 public List<Chromosom> getChromosoms() {

 return chromosoms;

 }

 public void setChromosoms(List<Chromosom> chromosoms) {

 this.chromosoms = chromosoms;

 }

 public Population nextGeneration() {

 List<Chromosom> nextGen = new ArrayList<>();

 Collections.sort(chromosoms, (c1, c2) ->

c1.getSharedFitness().compareTo(c2.getSharedFitness()));

 for (int i = 0; i < 10; i++) {

 nextGen.addAll(Chromosom.crossover(chromosoms.get(random.nextInt(10)),

chromosoms.get(random.nextInt(10))));

 }

 return new Population(nextGen);

 }

 public double getSharedFitness(int index) {

 double result = 0;

 for (int i = 0; i < 20; i++) {

 double x = Math.abs(getChromosoms().get(index).getX() -

getChromosoms().get(i).getX());

 double y = Math.abs(getChromosoms().get(index).getY() -

getChromosoms().get(i).getY());

 double d = x + y;

 result += s(d);

 }

 return getChromosoms().get(index).getFitness() / result;

 }

 private double s(double d) {

 return d < sigma ? 1 - (d / sigma) : 0;

 }

 public void calcSharedFitnessList() {

 for (int i = 0; i < 20; i++) {

 getChromosoms().get(i).setSharedFitness(getSharedFitness(i));

 }

 }

 public double getMax() {

 List<Double> fitnessList = new ArrayList<>();

 for (int i = 0; i < 20; i++) {

 fitnessList.add(chromosoms.get(i).getSharedFitness());

 }

 return Collections.max(fitnessList);

 }

 public double getAverage() {

 double sum = 0;

 for (int i = 0; i < 20; i++) {

 sum += chromosoms.get(i).getSharedFitness();

 }

 return sum/20.0;

 }

}

plotGraph.m (Matlab code for graphic plot)

x = (-5 : 0.1 : 5);

y = (-5 : 0.1 : 5);

z = zeros(101, 101);

for i = 1:101

 for j = 1 : 101

 z(i, j) = x(i) * sin(x(i)) + y(j) * sin(y(j));

 end

end

surf(x, y, z);

