
TASK – 3

Artyom Yudenkov

Maximization of 3D Schwefel function z=x*sin(|x|)+y*sin(|y|) -5<=x, y<=5 20

chrosomes with 22 binary genes by Fitness Sharing algorithm.

CODE :

Н
аз

ва
н

и
е

 о
си

Название оси

Best Average

import java.util.Random;
public class Main {

private static final int Ch
= 20;

 private static final int G = 22;

 public static void main(String... args){ int[][] dist = new int[Ch][G];
double avr = 0;

 double numb = 0;

 Random random = new Random();

 for (int i = 0; i < Ch; i++){ for (int j = 0; j < G; j++){ dist[i][j] =
random.nextInt(2);

 avr += dist[i][j];

 }

 }

 System.out.println(avr / (Ch * G));

 int[] temp = new int[G];
int[][] best = new int[Ch /
2][G]; int it = 1; do{

System.out.println(it);
it++;

 for (int i = 0; i < Ch - 1; i++){
int max_fitness = i; for (int j =
i + 1; j < Ch; j++){ int countI
= 0; int countJ = 0;
for (int _j = 0; _j < G; _j++){
countI += dist[max_fitness][_j];
countJ += dist[j][_j];

 }

 if(countJ > countI){

 max_fitness = j;

 }

 }

 if(max_fitness != i){
for (int k = 0; k < G; k++){

 temp[k] = dist[i][k];

 }

 for(int k=0;k<G;k++) {

 dist[i][k] = dist[max_fitness][k];

 }

 for(int k=0;k<G;k++) {
dist[max_fitness][k] = temp[k];

 }

 }

 }

 double
AvrFit=0; int
BestFit=0;
for(int i=0;i <
Ch/2;i++){ int
fit=0; for(int
j=0; j < G;j++) {
best[i][j]=dist[i][j];
fit += best[i][j];

 }

 AvrFit += fit;

 }

 AvrFit = AvrFit/50;

 System.out.println("AvrFit=" + AvrFit);

 for(int j = 0;j<G;j++)
{ BestFit +=
best[0][j];

 }

 System.out.println("BestFit" + BestFit + "\n");

 if(isFitnessGood(best)!=-1)break;

 int mom=0; int
dad=0; int cat=0;
int[] firstChild = new int[G];
int[] secondChild = new
int[G];

 for(int
i=0;i<Ch;i++) {
do {

 mom =
random.nextInt(Ch / 2);
dad = random.nextInt(Ch / 2);
}while(mom == dad); cat
= random.nextInt(G);
for(int k=0; k < cat;k++){
firstChild[k] = best[mom][k];

 secondChild[k] = best[dad][k];

 }

 for(int k=cat;k<G;k++) {
firstChild[k] = best[dad][k];

 secondChild[k] = best[mom][k];

 }

 int fitness1=0;
int fitness2=0;
for(int k=0;k<G;k++) {
fitness1 += firstChild[k];

 fitness2 += secondChild[k];

 }

 if(fitness1>fitness2)
{ for(int k=0; k <
G; k++) {

 dist[i][k] = firstChild[k];

 }

 } else {
for(int k=0;k<G;k++) {

 dist[i][k] = secondChild[k];

 }

 }

 }

 }while (true);

 }

 public static int isFitnessGood(int[][] dist){

 int count = 0;
for (int i = 0; i < Ch / 2;
i++){ count = 0;
for (int j = 0; j < G; j++){

 count += dist[i][j];

 }

 if(count ==
G){ return
i;

 }

 }

 return -1;

}

}

