TASK -3
Artyom Yudenkov

Maximization of 3D Schwefel function z=x*sin(|x|)+y*sin(|y|) -5<=x, y<=5 20
chrosomes with 22 binary genes by Fitness Sharing algorithm.

x*sin(abs(x))+y*sin(abs(y)) —

CODE :

import java.util.Random;
public class Main {

private static final int Ch
=20;

private static final int G = 22;

public static void main(String... args){ int[][] dist = new int[Ch][G];
double avr =0;

double numb =0;
Random random = new Random();
for (inti=0; i< Ch;i++){ for (intj=0;j<G; j++){ dist[i][j] =

random.nextInt(2);

avr += dist[il[j];

}

System.out.printin(avr / (Ch * G));

int[] temp = new int[G];
int[][] best = new int[Ch /
2][G]; intit=1; do{

System.out.printin(it);

it++;

for (inti=0;i<Ch-1;i++){
int max_fitness = i; for (intj=
i+1;j<Ch;j++){ int countl
=0; int count) =0;

for (int_j=0; _j<G; _j++){
countl += dist[max_fitness][_j];
count) += dist[j][_j];

}

if(count) > countl){

max_fitness = j;

}

if(max_fitness = i){
for (intk = 0; k < G; k++){

templk] = dist[i][K];
}
for(int k=0;k<G;k++) {

dist[i][k] = dist[max_fitness][k];

for(int k=0;k<G;k++) {
dist[max_fitness][k] = templ[k];

}
}

}

double
AvrFit=0; int
BestFit=0;
for(int i=0;i <
Ch/2;i++){ int
fit=0; for(int

j=0; j < G;j++) {
best[i][jl=dist[i][j];
fit += best[i][j];

}

AvrFit += fit;
}
AvrFit = AvrFit/50;
System.out.printIn("AvrFit="+ AvrFit);
for(int j = 0;j<G;j++)

{ BestFit +=
best[0](j];

}
System.out.printIn("BestFit" + BestFit + "\n");

if(isFitnessGood(best)!=-1)break;

int mom=0; int
dad=0; int cat=0;
int[] firstChild = new int[G];
int[] secondChild = new
int[G];

for(int
i=0;i<Ch;i++) {
do{

mom =
random.nextInt(Ch / 2);

dad = random.nextInt(Ch / 2);
twhile(mom == dad); cat
= random.nextInt(G);

for(int k=0; k < cat;k++){
firstChild[k] = best[mom][k];

secondChild[k] = best[dad][k];

}

for(int k=cat;k<G;k++) {
firstChild[k] = best[dad][k];

secondChild[k] = best[mom][k];

}

int fitness1=0;
int fitness2=0;
for(int k=0;k<G;k++) {
fitness1 += firstChild[k];

fitness2 += secondChild[k];

}
if(fitness1>fitness2)
{ for(int k=0; k <
G; k++) {
dist[i][k] = firstChild[k];
}
} else {

for(int k=0;k<G;k++) {

dist[i][k] = secondChild[k];

}

twhile (true);

public static int isFitnessGood(int[][] dist){

int count =0;
for (inti=0;i<Ch/2;
i++){ count =0;
for (intj=0; < G; j++){

count += dist[i][j];
}

if(count ==
G){ return
i;

}

return -1;

