

The initial table $R^{(0)}$ is shown below.

		田	匁	匚	匒	匓	匔	匕	化	北	匘	匙	匚	匛
		田	匁	匚	匒	匓	匔	匕	化	北	匘	匙	匚	匛
田	1	0.4	0.7	0.6	0.3	0.3	0.3	0.3	0.8	0.1	0.3	0.1	0.1	0.1
匁	0.4	1	0.3	0.3	0.3	0.9	0.3	0.8	0.3	0.1	0.9	0.1	0.1	0.1
匚	0.7	0.3	1	0.8	0.3	0.3	0.3	0.3	0.9	0.1	0.3	0.1	0.1	0.1
匒	0.6	0.3	0.8	1	0.3	0.3	0.3	0.3	0.8	0.1	0.3	0.1	0.1	0.1
匓	0.3	0.3	0.3	0.3	1	0.3	0.8	0.3	0.3	0.1	0.3	0.1	0.1	0.1
匔	0.3	0.9	0.3	0.3	0.3	1	0.3	0.9	0.3	0.1	0.8	0.1	0.1	0.1
匕	0.3	0.3	0.3	0.3	0.8	0.3	1	0.3	0.3	0.1	0.3	0.1	0.1	0.1
化	0.3	0.8	0.3	0.3	0.3	0.9	0.3	1	0.3	0.1	0.9	0.1	0.1	0.1
北	0.8	0.3	0.9	0.8	0.3	0.3	0.3	0.3	1	0.1	0.3	0.1	0.1	0.1
匘	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	1	0.1	0.3	0.3	0.3
匙	0.3	0.9	0.3	0.3	0.3	0.8	0.3	0.9	0.3	0.1	1	0.1	0.1	0.1
匚	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.3	0.1	1	0.9	0.9
匛	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.3	0.1	0.1	0.9	1

The final $R^{(3)}$ table is shown below.

		1	2	3	4	5	6	7	8	9	10	11	12	13
1		0	0	0.8	0.8	0	0	0	0	0.8	0	0	0	0
2		0	0	0	0	0	0.9	0	0.9	0	0	0.9	0	0
3		0.8	0	0	0.8	0	0	0	0	0.9	0	0	0	0
4		0.8	0	0.8	0	0	0	0	0	0.8	0	0	0	0
5		0	0	0	0	0	0	0.8	0	0	0	0	0	0
6		0	0.9	0	0	0	0	0	0.9	0	0	0.9	0	0
7		0	0	0	0	0.8	0	0	0	0	0	0	0	0
8		0	0.9	0	0	0	0.9	0	0	0	0	0.9	0	0
9		0.8	0	0.9	0.8	0	0	0	0	0	0	0	0	0
10		0	0	0	0	0	0	0	0	0	0	0	0	0
11		0	0.9	0	0	0	0.9	0	0.9	0	0	0	0	0
12		0	0	0	0	0	0	0	0	0	0	0	0	0.9
13		0	0	0	0	0	0	0	0	0	0	0.9	0	0

The 1st iteration

$$I = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13\}$$

$$C = \{ \}$$

$a_{26} = a_{28} = a_{2\ 11} = a_{39} = a_{68} = a_{6\ 11} = a_{8\ 11} = a_{12\ 13} = 0.9$ are maximum and a_{26} is selected at random, then $C = \{2, 6\}$

$a_{28} + a_{68} = a_{2\ 11} + a_{6\ 11} = 0.9 + 0.9 = 1.8$ are maximum and $j = 8$ is selected at random, then $C = \{2, 6, 8\}$

$a_{2\ 11} + a_{6\ 11} + a_{8\ 11} = 0.9 + 0.9 + 0.9 = 2.7$ is maximum, then $C = \{2, 6, 8, 11\}$

The 2nd iteration

$$I = \{1, 3, 4, 5, 7, 9, 10, 12, 13\}$$

$$C = \{ \}$$

		1	3	4	5	7	9	10	12	13
1		0	0.8	0.8	0	0	0.8	0	0	0
3		0.8	0	0.8	0	0	0.9	0	0	0
4		0.8	0.8	0	0	0	0.8	0	0	0
5		0	0	0	0	0.8	0	0	0	0
7		0	0	0	0.8	0	0	0	0	0
9		0.8	0.9	0.8	0	0	0	0	0	0
10		0	0	0	0	0	0	0	0	0
12		0	0	0	0	0	0	0	0	0.9
13		0	0	0	0	0	0	0.9	0	0

$a_{39} = a_{12,13} = 0.9$ are maximum and a_{39} is selected at random, then $C = \{3, 9\}$

$a_{31} + a_{91} = a_{34} + a_{94} = 0.8 + 0.8 = 1.6$ are maximum and $j = 1$ is selected at random, then $C = \{1, 3, 9\}$

$a_{14} + a_{34} + a_{94} = 0.8 + 0.8 + 0.8 = 2.4$ is maximum, then $C = \{1, 3, 4, 9\}$

There are no such j , that $a_{1j} + a_{3j} + a_{4j} + a_{9j}$ is maximum.

Then $C = \{1, 3, 4, 9\}$

The 3rd iteration

$I = \{5, 7, 10, 12, 13\}$

$C = \{ \}$

		5	7	10	12	13
5		0	0.8	0	0	0
7		0.8	0	0	0	0
10		0	0	0	0	0
12		0	0	0	0	0.9
13		0	0	0	0.9	0

$a_{12,13} = 0.9$ is maximum, then $C = \{12, 13\}$

There are no such j , that $a_{12j} + a_{13j}$ is maximum.

Then $C = \{12, 13\}$

The 4th iteration

$$I = \{5, 7, 10\}$$

$$C = \{ \}$$

		5	7	10
5		0	0.8	0
7		0.8	0	0
10		0	0	0

$a_{57} = 0.8$ is maximum, then $C = \{5, 7\}$

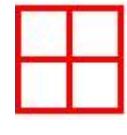
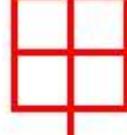
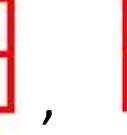
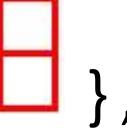
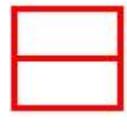
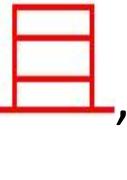
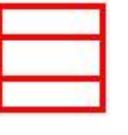
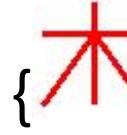
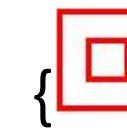
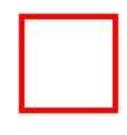
There are no such j , that $a_{5j} + a_{7j}$ is maximum.

Then Then $C = \{5, 7\}$

.

The 5th iteration

$$I = \{10\}$$











$$C = \{ \}$$

10		
10		0

There are no such $a_{st} \neq 0$, then $C = \{10\}$

The result, when $\alpha = 0.55$, is 5 clusters $\{2, 6, 8, 11\}$, $\{1, 3, 4, 9\}$, $\{12, 13\}$, $\{5, 7\}$, $\{10\}$

OR

{ , , , }, { , , , }, { , }, { , }, { }