

The initial table $R^{(0)}$ is shown below.

	田	田	且	贝	田	田	田	田	目	今	由	木	林
田	1	0.4	0.7	0.7	0.6	0.4	0.55	0.4	0.8	0.1	0.4	0.1	0.1
田	0.4	1	0.4	0.4	0.4	0.9	0.4	0.8	0.4	0.1	0.9	0.1	0.1
且	0.7	0.4	1	0.8	0.6	0.4	0.55	0.4	0.9	0.1	0.4	0.1	0.1
贝	0.7	0.4	0.8	1	0.6	0.4	0.55	0.4	0.8	0.1	0.4	0.1	0.1
田	0.6	0.4	0.6	0.6	1	0.4	0.8	0.4	0.6	0.1	0.4	0.1	0.1
田	0.4	0.9	0.4	0.4	0.4	1	0.4	0.9	0.4	0.1	0.8	0.1	0.1
田	0.55	0.4	0.55	0.55	0.8	0.4	1	0.4	0.4	0.1	0.4	0.1	0.1
田	0.4	0.8	0.4	0.4	0.4	0.9	0.4	1	0.4	0.1	0.9	0.1	0.1
目	0.8	0.4	0.9	0.8	0.6	0.4	0.4	0.4	1	0.1	0.4	0.1	0.1
今	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	1	0.1	0.3	0.3
由	0.4	0.9	0.4	0.4	0.4	0.8	0.4	0.9	0.4	0.1	1	0.1	0.1
木	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.3	0.1	1	0.85
林	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.3	0.1	0.85	1

The final $R^{(n)}$ table is shown below.

Iteration #1

$$I = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13\}$$

$C = \{ \}$

$a_{26} = a_{28} = a_{2\ 11} = a_{39} = a_{68} = a_{6\ 11} = a_{8\ 11} = a_{12\ 13} = 0.9$ are maximum. a_{28} is selected at random, then $C = \{2, 8\}$

$a_{26} + a_{66} = a_{8\ 11} + a_{8\ 11} = 0.9 + 0.9 = 1.8$ are maximum. $j = 6$ is selected at random, then $C = \{2, 6, 8\}$

$$a_{2,11} + a_{6,11} + a_{8,11} = 0.9 + 0.9 + 0.9 = 2.7 \text{ is maximum, then } C = \{2, 6, 8, 11\}$$

There are no such j , that $a_{2j} + a_{6j} + a_{8j} + a_{11j}$ is maximum, then $C = \{2, 6, 8, 11\}$

Iteration #2

$$I = \{1, 3, 4, 5, 7, 9, 10, 12, 13\}$$

C = {}

$a_{39} = a_{12,13} = 0.9$ are maximum and a_{39} is selected at random, then $C = \{3, 9\}$

$a_{31} + a_{91} = a_{34} + a_{94} = 0.8 + 0.8 = 1.6$ are maximum. $j = 1$ is selected at random, then $C = \{1, 3, 9\}$

$a_{14} + a_{34} + a_{94} = 0.8 + 0.8 + 0.8 = 2.4$ is maximum, then $C = \{1, 3, 4, 9\}$

$a_{15} + a_{35} + a_{45} + a_{95} = a_{17} + a_{37} + a_{47} + a_{97} = 0.6 + 0.6 + 0.6 + 0.8 = 2.6$ are maximum. $j = 7$ is selected at random, then $C = \{1, 3, 4, 7, 9\}$

$a_{15} + a_{35} + a_{45} + a_{75} + a_{95} = 0.6 + 0.6 + 0.6 + 0.8 + 0.6 = 3.2$ is maximum, then $C = \{1, 3, 4, 5, 7, 9\}$

There are no such j , that $a_{1j} + a_{3j} + a_{4j} + a_{5j} + a_{7j} + a_{9j}$ is maximum.

Then $C = \{1, 3, 4, 5, 7, 9\}$

Iteration #3

$I = \{10, 12, 13\}$

$C = \{ \}$

		10	12	13
10		0	0	0
12		0		0.85
13		0	0.85	

$a_{12,13} = 0.85$ is maximum, then $C = \{12, 13\}$

There are no such j , that $a_{12j} + a_{13j}$ is maximum. Then $C = \{12, 13\}$

Iteration #3

$$I = \{10\}$$

$$C = \{ \}$$

		10
10	今	0

There are no such $a_{st} \neq 0$, then $C = \{10\}$

The result, when $\alpha = 0.55$, is 4 clusters $\{2, 6, 8, 11\}, \{1, 3, 4, 5, 7, 9\}, \{12, 13\}, \{10\}$

OR

{ 田, 申, 中, 由 }, { 旦, 且, 𠂇, 𠂇, 𠂇, 𠂇 }, { 木, 木 }, { 今 }