Modern intelligent IT
Lab 1 (26.02.2016)
Akira Imada
Student — Dzmitry Rybalko(Al - 10)

All one problem

We created a random genes and over 50 iterations randomly mated individuals
from the best half of the generation. The results of these operations can be seen on
charts

Best
800

700

600 _—

500

400
300
200

100

1 3 5 7 9 11131517 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Average
350

300 /
250

200

150

100

50

1 3 5 7 9 1113151719 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49



Code of program:

() =>{

"use strict”;

const populationCount = 100,
genSize = 1000,
itterationsCount = 50;

let generation = generateGeneration(populationCount, genSize),
itterationNum = 9;

for (let i = 9; ++i < itterationsCount;) {
generation = generation.sort((genl, gen2) => {
return calcOnes(gen2) - calcOnes(genl);

})s

logGeneration(generation);

generation = nextGeneration(generation);

}

logGeneration(generation);
return;

function generateGeneration(count, size) {
let generation = [];
for (let i = -1; ++i < count;) {
let gen = [];
for (let j = -1; ++j < size;) {
gen.push(getRandomBinary());
}

generation.push(gen);
}

return generation;

}

function calcOnes(gen) {
let count = 0;
for (let i = -1; ++i < gen.length;) if (gen[i]) count++;
return count;

}

function nextGeneration(parentGeneration) {

let repeatCount = populationCount / 2,
newGeneration = [];

for (let i = @; ++i < populationCount;) {
let firstIndex = getRandomInt(@, repeatCount),

secondIndex = getRandomInt(@, repeatCount);
newGeneration.push(...crossover(parentGeneration[firstIndex],
parentGeneration[secondIndex]));

}

return newGeneration;



}

function crossover(firstParent, secondParent) {
let crossIndex = getRandomInt(l, firstParent.length);
let firstPartFirst = firstParent.slice(@, crosslIndex),
secondPartFirst = firstParent.slice(crossIndex, firstParent.length),
firstPartSecond = secondParent.slice(@, crossIndex),
secondPartSecond = secondParent.slice(crossIndex, secondParent.length);

return [firstPartFirst.concat(secondPartSecond),
firstPartSecond.concat(secondPartFirst)];

}

function getRandomBinary(min, max) {
return Math.round(Math.random());

}

function getRandomInt(min, max) {
return Math.floor(Math.random() * (max - min)) + min;
}

function logGeneration(generation) {
let average = 9;
for (let i = -1; ++i < generation.length; i++) average +=
calcOnes(generation[i]);
average = Math.floor(average / generation.length);
console.log(average);

NO;



