
!!!
Graph for greatest chromosomes:	

!!!!
We can see at graph above, that after 50 iterations algorithm create
chromosomes with 61.4% good gens. Average value equals with maximum
value in the last part of iterations . When we run program again, we got a
another results, its depends on function that generates initial chromosomes.	

!
source code (JavaScript):	
'use strict';

!
const genesCount = 1000;

const personCount = 100;

480

535

590

645

700

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Max Average

const sliceCount = 50;

const iterationCount = 50;

!
const averageFitness = [];

const maxFitness = [];

!
const rand = () => {

 const res = Math.random();

 return res > 0.5 ? 1 : 0;

};

!
const getRandomInt = (min, max) => {

 return Math.floor(Math.random() * (max - min + 1)) + min;

}

!
const generatePopulation = (count) => {

 return Array.from({ length: count }, v =>
generatePerson(genesCount));

};

!
const generatePerson = (count) => {

 return Array.from({ length: count }, v => rand());

};

!
const countFitness = (array) => {

 return array.reduce((p, c) => c == 1 ? ++p : p, 0);

};

!

const rotatePersons = (population) => {

 return population.sort((a, b) => countFitness(b) -
countFitness(a));

}

!
const getStatistics = (population) => {

 maxFitness.push(population.map(e => countFitness(e)).shift());

 averageFitness.push(getAverage(population));

}

!
const getAverage = (population) => {

 const all = population.reduce((p, c) => p += countFitness(c),
0);

 return all / personCount;

}

!
// reduce less fitness persons

const trimPersons = (population) => {

 return population.slice(0, sliceCount);

};

!
const getParents = (population) => {

 const firstParentindex = getRandomInt(0, sliceCount - 1);

 const secondParentindex = getRandomInt(0, sliceCount - 1);

!
 return {

 first: population[firstParentindex],

 second: population[secondParentindex],

 };

};

!
const crossover = (parents) => {

 const children = [parents.first, parents.second];

 const delimiter = getRandomInt(1, genesCount);

!
 children.push(parents.first.slice(0,
delimiter).concat(parents.second.slice(delimiter)));

 children.push(parents.second.slice(0,
delimiter).concat(parents.first.slice(delimiter)));

!
 return children;

};

!
const main = () => {

 let population = generatePopulation(personCount); // init

!
 for (let i = 0; i < iterationCount; i++) {

 population = rotatePersons(population);

!
 getStatistics(population);

!
 population = trimPersons(population);

!
 let parents;

 let newPopulation = [];

!
 for (let j = 0; j < sliceCount / 2; j++) {

 parents = getParents(population);

 const children = crossover(parents);

 newPopulation = newPopulation.concat(children);

 }

!
 population = newPopulation;

 }

!
 console.log('average', averageFitness);

 console.log('max', maxFitness);

}

!
main();

!
Table with results (iteration, average value of good genes, maximum value
of good genes)

!!
Iteration average maximum

1 499.24 540

2 512.04 542

3 519.46 542

4 529.1 549

5 537.84 555

6 542.66 563

7 545.14 563

8 549.72 568

9 555.5 574

10 560.34 573

11 565.22 574

12 567.42 576

13 569.66 577

14 572.16 579

15 574.2 582

16 576.6 585

17 578.96 588

18 580.9 588

19 583.14 589

20 584.56 595

21 586.5 595

22 588.62 596

23 590 596

24 591.92 598

25 593.5 598

26 594.96 599

27 595.88 602

28 597.06 603

29 598.58 604

30 600.34 605

31 602.3 607

32 603.44 610

33 605.14 610

34 606.26 612

35 608.32 614

36 610.38 614

37 611.4 614

38 612.36 614

39 612.86 614

40 613.48 614

41 613.98 614

42 614 614

43 614 614

44 614 614

45 614 614

46 614 614

47 614 614

48 614 614

49 614 614

50 614 614

