Graph for greatest chromosomes:

700 Max Average

645

590

535

480

1 3 56 7 9 11131517 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

We can see at graph above, that after 50 iterations algorithm create
chromosomes with 61.4% good gens. Average value equals with maximum
value in the last part of iterations . When we run program again, we got a
another results, its depends on function that generates initial chromosomes.

source code (JavaScript):

'use strict';

const genesCount = 1000;

const personCount = 100;



const sliceCount = 50;

const iterationCount = 50;

Il
—
—
~e

const averageFitness

const maxFitness = [];

const rand = () => {

const res = Math.random() ;

return res > 0.5 2 1 : 0;
i
const getRandomInt = (min, max) => {
return Math.floor (Math.random() * (max - min + 1))
}
const generatePopulation = (count) => {

return Array.from({ length: count }, v =>
generatePerson (genesCount)) ;

}i

const generatePerson = (count) => {

return Array.from({ length: count }, v => rand());
}i
const countFitness = (array) => {

return array.reduce((p, c) => c ==1 2?2 ++p : p, 0);

}s

+ min;



const rotatePersons = (population) => {

return population.sort((a, b) => countFitness(b) -
countFitness (a));

}

const getStatistics = (population) => {
maxFitness.push (population.map (e => countFitness(e)) .shift());

averageFitness.push (getAverage (population)) ;

const getAverage = (population) => {

const all = population.reduce((p, c) => p += countFitness(c),
0);

return all / personCount;

// reduce less fitness persons
const trimPersons = (population) => {

return population.slice (0, sliceCount);

}s

const getParents = (population) => {
const firstParentindex = getRandomInt (0, sliceCount - 1);
const secondParentindex = getRandomInt (0, sliceCount - 1);
return {

first: population[firstParentindex],

second: population[secondParentindex],

}s



}i

const crossover = (parents) => {
const children = [parents.first, parents.second];

const delimiter = getRandomInt (1, genesCount);

children.push (parents.first.slice (0,
delimiter) .concat (parents.second.slice (delimiter)));

children.push (parents.second.slice (0,
delimiter) .concat (parents.first.slice(delimiter)));

return children;

}i

const main = () => {

let population = generatePopulation (personCount); // init

for (let 1 = 0; i < iterationCount; 1i++) {

population = rotatePersons (population);

getStatistics (population);

population = trimPersons (population);

let parents;

let newPopulation = [];

for (let j = 0; j < sliceCount / 2; j++) {

parents = getParents (population);



const children = crossover (parents);

newPopulation = newPopulation.concat (children);

population = newPopulation;

console.log('average', averageFitness);

console.log('max', maxFitness);

main () ;

Table with results (iteration, average value of good genes, maximum value
of good genes)

Iteration average maximum
1 499.24 540
2 512.04 542
3 519.46 542
4 529.1 549
5 537.84 555
6 542.66 563
7 545.14 563
8 549.72 568
9 555.5 574
10 560.34 573
11 565.22 574
12 567.42 576



13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

569.66
572.16
574.2
576.6
578.96
580.9
583.14
584.56
586.5
588.62
590
591.92
593.5
594.96
595.88
597.06
598.58
600.34
602.3
603.44
605.14
606.26
608.32
610.38
611.4
612.36
612.86
613.48
613.98
614
614

577
579
582
585
588
588
589
595
595
596
596
598
598
599
602
603
604
605
607
610
610
612
614
614
614
614
614
614
614
614
614



44
45
46
47
48
49
50

614
614
614
614
614
614
614

614
614
614
614
614
614
614



