Graph for greatest chromosomes:

700 Max Average

645

590

535

480

1 3 56 7 9 11131517 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

We can see at graph above, that after 50 iterations algorithm create
chromosomes with 61.4% good gens. Average value equals with maximum
value in the last part of iterations . When we run program again, we got a
another results, its depends on function that generates initial chromosomes.

source code (JavaScript):

'use strict';

const genesCount = 1000;

const personCount = 100;



const sliceCount = 50;

const iterationCount = 50;
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const averageFitness

const maxFitness = [];

const rand = () => {

const res = Math.random() ;

return res > 0.5 2 1 : 0;
i
const getRandomInt = (min, max) => {
return Math.floor (Math.random() * (max - min + 1))
}
const generatePopulation = (count) => {

return Array.from({ length: count }, v =>
generatePerson (genesCount)) ;

}i

const generatePerson = (count) => {

return Array.from({ length: count }, v => rand());
}i
const countFitness = (array) => {

return array.reduce((p, c) => c ==1 2?2 ++p : p, 0);

}s

+ min;



const rotatePersons = (population) => {

return population.sort((a, b) => countFitness(b) -
countFitness (a));

}

const getStatistics = (population) => {
maxFitness.push (population.map (e => countFitness(e)) .shift());

averageFitness.push (getAverage (population)) ;

const getAverage = (population) => {

const all = population.reduce((p, c) => p += countFitness(c),
0);

return all / personCount;

// reduce less fitness persons
const trimPersons = (population) => {

return population.slice (0, sliceCount);

}s

const getParents = (population) => {
const firstParentindex = getRandomInt (0, sliceCount - 1);
const secondParentindex = getRandomInt (0, sliceCount - 1);
return {

first: population[firstParentindex],

second: population[secondParentindex],

}s



}i

const crossover = (parents) => {
const children = [parents.first, parents.second];

const delimiter = getRandomInt (1, genesCount);

children.push (parents.first.slice (0,
delimiter) .concat (parents.second.slice (delimiter)));

children.push (parents.second.slice (0,
delimiter) .concat (parents.first.slice(delimiter)));

return children;

}i

const main = () => {

let population = generatePopulation (personCount); // init

for (let 1 = 0; i < iterationCount; 1i++) {

population = rotatePersons (population);

getStatistics (population);

population = trimPersons (population);

let parents;

let newPopulation = [];

for (let j = 0; j < sliceCount / 2; j++) {

parents = getParents (population);



const children = crossover (parents);

newPopulation = newPopulation.concat (children);

population = newPopulation;

console.log('average', averageFitness);

console.log('max', maxFitness);

main () ;

Table with results (iteration, average value of good genes, maximum value
of good genes)

Iteration average maximum
1 499.24 540
2 512.04 542
3 519.46 542
4 529.1 549
5 537.84 555
6 542.66 563
7 545.14 563
8 549.72 568
9 555.5 574
10 560.34 573
11 565.22 574
12 567.42 576
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569.66
572.16
574.2
576.6
578.96
580.9
583.14
584.56
586.5
588.62
590
591.92
593.5
594.96
595.88
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598.58
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