Laboratory work #1 (Siarhei Savaniuk Al-10)

Source code (write in Java):

File Individual.java:

import java.util.Arrays;
import java.util.concurrent.ThreadLocalRandom;

class Individual implements Comparable<Individual> {

public static final int GENE_LENGTH = 1000;

private int[] genes;
private int fitnessValue;

public Individual (boolean initialize) {
genes = new int[GENE LENGTH] ;

if (initialize) {
generatelIndividual () ;
fitnessValue = getFitness|();

}

public Individual (int[] genes) {
this.genes = genes;
fitnessValue = getFitness();

}

public int getFitnessValue () {
return fitnessValue;

}

public void setFitnessValue (int fitnessValue) {
this.fitnessValue = fitnessValue;

}
public void generatelIndividual () {

for (int i = 0; i < GENE_LENGTH; ++i) ({
genes[i] = ThreadLocalRandom.current () .nextInt (2);

}
}

public int getFitness () {
int fitness = 0;

for (int gene : genes) ({

if (gene == 1) {
++fitness;

}

return fitness;

}

public int[] getGenesBeforeCutPoint (int cutPoint) {
int[] genes = new int[cutPoint];

System.arraycopy (this.genes, 0, genes, 0, cutPoint);

return genes;

public int[] getGenesAfterCutPoint (int cutPoint) {
int[] genes = new int[GENE LENGTH - cutPoint];

System.arraycopy (this.genes, cutPoint, genes, 0, genes.length);

return genes;

}

@Override
public String toString () {
return "Individual{" +
"fitnessValue=" + fitnessValue +

", genes=" + Arrays.toString(genes) +
|}| + l\nl,.
}

@Override
public int compareTo (Individual o) {
return (o.getFitnessValue() > fitnessValue ? 1

== fitnessValue) ? 0 : -1);

}

(o.getFitnessValue ()

}

File Population.java:
import java.util.Arrays;

class Population {

public static final int POPULATION SIZE = 100;
private Individual[] individuals;

public Population (boolean initialize) {
individuals = new Individual [POPULATION SIZE];

if (initialize) {
for (int 1 = 0; i < POPULATION SIZE; ++1) |
individuals[i] = new Individual (true) ;

}

}

public Population(Individual[] individuals) {
this.individuals = new Individual [POPULATION SIZE];

System.arraycopy(individuals, 0, this.individuals, O,
individuals.length) ;
}
public Individual getIndividual (int index) {
return individuals[index];
}
public void addIndividual (int index, Individual individual) {
individuals[index] = individual;

}

public Individual[] getHalfFittestIndividuals () {
Individual[] fittestIndividuals = new Individual [POPULATION SIZE /

2];
System.arraycopy(individuals, 0, fittestIndividuals, O,
fittestIndividuals.length) ;

return fittestIndividuals;

}

public int getMaxFitness () {
return individuals[0].getFitnessValue () ;

}

public double getAverageFitness () {
double sum = 0;

for (int 1 = 0; i < POPULATION SIZE; ++i) {
sum += individuals[i].getFitnessValue();

}

return sum / POPULATION SIZE;
}

public Individual[] getAllIndividuals() {
return individuals;

}

@Override
public String toString() {
return "Population{\n" + Arrays.toString(individuals)

}

File GeneticAlgorithm. java:

import java.util.Arrays;
import java.util.concurrent.ThreadLocalRandom;

public class GeneticAlgorithm {

private Population population;

public GeneticAlgorithm (Population population) {
this.population = population;

}

public Population run() {
Arrays.sort (population.getAllIndividuals());

Population halfPopulation = new

Population (population.getHalfFittestIndividuals());

Population nextGeneration = new

Population (halfPopulation.getAllIndividuals());

+ " }\nu;

for (int i = 0, j = Population.POPULATION SIZE / 2; i <

Population.POPULATION SIZE / 4; ++i, J += 2) {

Individual[] parents = chooseParents (halfPopulation);

int cutPoint = ThreadLocalRandom.current () .nextInt (1000);

Individual[] descendants = crossover (parents, cutPoint);

nextGeneration.addIndividual (j, descendants[0]);

nextGeneration.addIndividual (j + 1, descendants[1l]);

}

population = nextGeneration;

Arrays.sort (population.getAllIndividuals());

return population;

private Individual[] chooseParents (Population fittestIndividuals) {

return new Individual []
{fittestIndividuals.getIndividual (ThreadLocalRandom. current () .nextInt (50)),

fittestIndividuals.getIndividual (ThreadLocalRandom. current () .nextInt (50)) };
}
private Individual[] crossover (Individual[] parents, int curPoint) ({
Individual|[] descendants = new Individual[2];

int[] firstDescendantGenes =
concat (parents[0] .getGenesBeforeCutPoint (curPoint),

parents[1l].getGenesAfterCutPoint (curPoint));
int[] secondIndividualGenes =
concat (parents[0] .getGenesAfterCutPoint (curPoint),

parents[1l].getGenesBeforeCutPoint (curPoint)) ;

descendants[0] = new Individual (firstDescendantGenes);
descendants[1l] = new Individual (secondIndividualGenes) ;

return descendants;

}

private int[] concat (int[] genesl, int[] genes2) {
int[] genes = new int[Individual.GENE_ LENGTH] ;

System.arraycopy (genesl, 0, genes, 0, genesl.length);
System.arraycopy (genes2, 0, genes, genesl.length, genes2.length);

return genes;

}

File Main. java:
import java.io.*;

public class Main {

public static void main(String[] args) throws IOException {
Population population = new Population (true);
GeneticAlgorithm geneticAlgorithm = new GeneticAlgorithm(population);

for (int 1 = 0; 1 < 100; ++1i) {
Population newPopulation = geneticAlgorithm.run();
System.out.println("Max = " + newPopulation.getMaxFitness() + ",
Average = " + newPopulation.getAverageFitness());

}
}

Testing:
800
700
600
500

400

max fitness

300
200

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

iteration

Graphics - Dependence of the max value of fitness function from iteration (50 iterations)

800
700
600

500

average fitness
D
o
o

300
200

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49
iteration

Graphics - Dependence of the average value of fitness function from iteration (50 iterations)

1000

900

800

700

600

500

max fitness

400
300
200
100

0

AT ™~NO M OW N A TN OMOOONLWMO Ad N O M OO N N 0 o IS
I A" A AN NN MO0 TN NN OO ONNNNOOOOWOO OO

100

iteration

Graphics - Dependence of the max value of fitness function from iteration (100 iterations)

1000
900
800
700
600

500

average fitness

400
300
200
100

0

A NO M OWOONWMOO AN OMOVOOONLWMOAd < NO M OO AN N 0 o IS
I A" A AN NN TN NN OO ONNNNOOOOWO OO

100

iteration

Graphics - Dependence of the average value of fitness function from iteration (100 iterations)

