
Laboratory work #1 (Siarhei Savaniuk AI-10)

Source code (write in Java):

File Individual.java:
import java.util.Arrays;

import java.util.concurrent.ThreadLocalRandom;

class Individual implements Comparable<Individual> {

 public static final int GENE_LENGTH = 1000;

 private int[] genes;

 private int fitnessValue;

 public Individual(boolean initialize) {

 genes = new int[GENE_LENGTH];

 if (initialize) {

 generateIndividual();

 fitnessValue = getFitness();

 }

 }

 public Individual(int[] genes) {

 this.genes = genes;

 fitnessValue = getFitness();

 }

 public int getFitnessValue() {

 return fitnessValue;

 }

 public void setFitnessValue(int fitnessValue) {

 this.fitnessValue = fitnessValue;

 }

 public void generateIndividual() {

 for (int i = 0; i < GENE_LENGTH; ++i) {

 genes[i] = ThreadLocalRandom.current().nextInt(2);

 }

 }

 public int getFitness() {

 int fitness = 0;

 for (int gene : genes) {

 if (gene == 1) {

 ++fitness;

 }

 }

 return fitness;

 }

 public int[] getGenesBeforeCutPoint(int cutPoint) {

 int[] genes = new int[cutPoint];

 System.arraycopy(this.genes, 0, genes, 0, cutPoint);

 return genes;

 }

 public int[] getGenesAfterCutPoint(int cutPoint) {

 int[] genes = new int[GENE_LENGTH - cutPoint];

 System.arraycopy(this.genes, cutPoint, genes, 0, genes.length);

 return genes;

 }

 @Override

 public String toString() {

 return "Individual{" +

 "fitnessValue=" + fitnessValue +

 ", genes=" + Arrays.toString(genes) +

 '}' + '\n';

 }

 @Override

 public int compareTo(Individual o) {

 return (o.getFitnessValue() > fitnessValue ? 1 : (o.getFitnessValue()

== fitnessValue) ? 0 : -1);

 }

}

File Population.java:
import java.util.Arrays;

class Population {

 public static final int POPULATION_SIZE = 100;

 private Individual[] individuals;

 public Population(boolean initialize) {

 individuals = new Individual[POPULATION_SIZE];

 if (initialize) {

 for (int i = 0; i < POPULATION_SIZE; ++i) {

 individuals[i] = new Individual(true);

 }

 }

 }

 public Population(Individual[] individuals) {

 this.individuals = new Individual[POPULATION_SIZE];

 System.arraycopy(individuals, 0, this.individuals, 0,

individuals.length);

 }

 public Individual getIndividual(int index) {

 return individuals[index];

 }

 public void addIndividual(int index, Individual individual) {

 individuals[index] = individual;

 }

 public Individual[] getHalfFittestIndividuals() {

 Individual[] fittestIndividuals = new Individual[POPULATION_SIZE /

2];

 System.arraycopy(individuals, 0, fittestIndividuals, 0,

fittestIndividuals.length);

 return fittestIndividuals;

 }

 public int getMaxFitness() {

 return individuals[0].getFitnessValue();

 }

 public double getAverageFitness() {

 double sum = 0;

 for (int i = 0; i < POPULATION_SIZE; ++i) {

 sum += individuals[i].getFitnessValue();

 }

 return sum / POPULATION_SIZE;

 }

 public Individual[] getAllIndividuals() {

 return individuals;

 }

 @Override

 public String toString() {

 return "Population{\n" + Arrays.toString(individuals) + "}\n";

 }

}

File GeneticAlgorithm.java:
import java.util.Arrays;

import java.util.concurrent.ThreadLocalRandom;

public class GeneticAlgorithm {

 private Population population;

 public GeneticAlgorithm(Population population) {

 this.population = population;

 }

 public Population run() {

 Arrays.sort(population.getAllIndividuals());

 Population halfPopulation = new

Population(population.getHalfFittestIndividuals());

 Population nextGeneration = new

Population(halfPopulation.getAllIndividuals());

 for (int i = 0, j = Population.POPULATION_SIZE / 2; i <

Population.POPULATION_SIZE / 4; ++i, j += 2) {

 Individual[] parents = chooseParents(halfPopulation);

 int cutPoint = ThreadLocalRandom.current().nextInt(1000);

 Individual[] descendants = crossover(parents, cutPoint);

 nextGeneration.addIndividual(j, descendants[0]);

 nextGeneration.addIndividual(j + 1, descendants[1]);

 }

 population = nextGeneration;

 Arrays.sort(population.getAllIndividuals());

 return population;

 }

 private Individual[] chooseParents(Population fittestIndividuals) {

 return new Individual[]

{fittestIndividuals.getIndividual(ThreadLocalRandom.current().nextInt(50)),

fittestIndividuals.getIndividual(ThreadLocalRandom.current().nextInt(50))};

 }

 private Individual[] crossover(Individual[] parents, int curPoint) {

 Individual[] descendants = new Individual[2];

 int[] firstDescendantGenes =

concat(parents[0].getGenesBeforeCutPoint(curPoint),

parents[1].getGenesAfterCutPoint(curPoint));

 int[] secondIndividualGenes =

concat(parents[0].getGenesAfterCutPoint(curPoint),

parents[1].getGenesBeforeCutPoint(curPoint));

 descendants[0] = new Individual(firstDescendantGenes);

 descendants[1] = new Individual(secondIndividualGenes);

 return descendants;

 }

 private int[] concat(int[] genes1, int[] genes2) {

 int[] genes = new int[Individual.GENE_LENGTH];

 System.arraycopy(genes1, 0, genes, 0, genes1.length);

 System.arraycopy(genes2, 0, genes, genes1.length, genes2.length);

 return genes;

 }

}

File Main.java:
import java.io.*;

public class Main {

 public static void main(String[] args) throws IOException {

 Population population = new Population(true);

 GeneticAlgorithm geneticAlgorithm = new GeneticAlgorithm(population);

 for (int i = 0; i < 100; ++i) {

 Population newPopulation = geneticAlgorithm.run();

 System.out.println("Max = " + newPopulation.getMaxFitness() + ",

Average = " + newPopulation.getAverageFitness());

 }

 }

}

Testing:

Graphics - Dependence of the max value of fitness function from iteration (50 iterations)

Graphics - Dependence of the average value of fitness function from iteration (50 iterations)

0

100

200

300

400

500

600

700

800

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

m
ax

 f
it

n
es

s

iteration

0

100

200

300

400

500

600

700

800

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

av
er

ag
e

fi
tn

es
s

iteration

Graphics - Dependence of the max value of fitness function from iteration (100 iterations)

Graphics - Dependence of the average value of fitness function from iteration (100 iterations)

0

100

200

300

400

500

600

700

800

900

1000

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0

0

m
ax

 f
it

n
es

s

iteration

0

100

200

300

400

500

600

700

800

900

1000

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0

0

av
er

ag
e

fi
tn

es
s

iteration

