1. Diagram: Average value of one's in chromes

Average values
700

600
500
400
300
200

100

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

2. Diagram: Maximum value of one's in chromosome

Maximum
660
640
620
600
580
560
540
520
500
480

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
1 3 5 7 9 11 13 1517 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

We can see that after 50 iteration our algorythm create chromosomes with more that 60% good

gens. When we run our program next time we can get another data, but in common range.

Source code:

#!/usr/bin/env python
-*- coding: utf-8 -*-

import random

def

def

def

def

def

def

def

def

def

create population(gens, chromos):
population = []
for chrom in xrange(chromos):
population.append([])
for gen in xrange(gens):

population[chrom].append(random.randint(0, 1))

return population
calc _ones(arr):

count = 0
for i in arr:
if i ==

count += 1

return count

find best chromos(population):

list = []

for chrom in population:
list.append((calc ones(chrom), chrom))

buble sort(list)

r=1[1]

for item in list[len(population)/2:1]:
r.append(item[1])

return r

create childs(pop):

size = len(pop)

parl, par2 = random.randint(0, size-1), random.randint (0,

cut point = random.randint(@, len(pop[0]))

childl = poplparl][:cut point] + popl[par2][cut point:]
child2 = poplpar2][:cut point] + pop[parl][cut point:]

return childl, child2
buble sort(A):
for i in range(len(A)):
for k in range(len(A) - 1, i, -1):
if A[k][0] < A[k - 1]1[0]:
swap(A, k, k - 1)
swap(A, x, y):

tmp = A[x]
Alx] = Alyl
Aly] = tmp

get avg count(population):
chromos = len(population)
average list = []
for chrom in xrange(chromos):
cur_counter = calc_ones(population[chrom])
average list.append(cur counter)
return sum(average list) / len(average list)
maximum(population):
max = 0
for chrom in population:
counter = calc_ones(chrom)
if max < counter:
max = counter
return max
main():
population = create population(1000, 100)
print(population)
for i in xrange(50):
best chromos = find best chromos(population)
print("best", best chromos)

population = create new generation(best chromos)

size-1)

print("new gen", population)
avg = get avg count(population)
max = maximum(population)
print(str(i) + ";" + str(avg) + ";" + str(max))
def create new generation(best):
new generation = []
for iter in xrange(len(best)):
chl, ch2 = create childs(best)
new generation.append(chl)
new generation.append(ch2)
return new generation

if npame ==
" _main__": 0 511 547
main() 1 520 544
2 529 551
3 537 559
Result: 4 543 564
5 549 569
6 555 571
7 562 581
8 566 584
9 572 595
10 576 601
11 582 602
12 586 602
13 590 606
14 594 610
15 598 616
16 603 616
17 607 616
18 610 625
19 614 625
20 616 630
21 619 632
22 622 631
23 625 632
24 627 635
25 629 637
26 631 637
27 632 640
28 634 641
29 635 645
30 637 645
31 639 645
32 640 647
33 642 647
34 643 646
35 644 647
36 645 647
37 645 647
38 645 647
39 646 647
40 647 647
41 647 648
42 647 648
43 647 648
44 647 648
45 647 648
46 647 648
47 648 648
48 648 648
49 648 649

