
1. Diagram: Average value of one's in chromes

2. Diagram: Maximum value of one's in chromosome

We can see that after 50 iteration our algorythm create chromosomes with more that 60% good
gens. When we run our program next time we can get another data, but in common range.

Source code:

#!/usr/bin/env python
-*- coding: utf-8 -*-

import random

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

41
42

43
44

45
46

47
48

49
50

0

100

200

300

400

500

600

700

Average values

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

41
42

43
44

45
46

47
48

49
50

480

500

520

540

560

580

600

620

640

660

Maximum

def create_population(gens, chromos):
 population = []
 for chrom in xrange(chromos):
 population.append([])
 for gen in xrange(gens):
 population[chrom].append(random.randint(0, 1))
 return population
def calc_ones(arr):
 count = 0
 for i in arr:
 if i == 1:
 count += 1
 return count
def find_best_chromos(population):
 list = []
 for chrom in population:
 list.append((calc_ones(chrom), chrom))
 buble_sort(list)
 r = []
 for item in list[len(population)/2:]:
 r.append(item[1])
 return r
def create_childs(pop):
 size = len(pop)
 par1, par2 = random.randint(0, size-1), random.randint(0, size-1)
 cut_point = random.randint(0, len(pop[0]))
 child1 = pop[par1][:cut_point] + pop[par2][cut_point:]
 child2 = pop[par2][:cut_point] + pop[par1][cut_point:]
 return child1, child2
def buble_sort(A):
 for i in range(len(A)):
 for k in range(len(A) - 1, i, -1):
 if A[k][0] < A[k - 1][0]:
 swap(A, k, k - 1)
def swap(A, x, y):
 tmp = A[x]
 A[x] = A[y]
 A[y] = tmp
def get_avg_count(population):
 chromos = len(population)
 average_list = []
 for chrom in xrange(chromos):
 cur_counter = calc_ones(population[chrom])
 average_list.append(cur_counter)
 return sum(average_list) / len(average_list)
def maximum(population):
 max = 0
 for chrom in population:
 counter = calc_ones(chrom)
 if max < counter:
 max = counter
 return max
def main():
 population = create_population(1000, 100)
 # print(population)
 for i in xrange(50):
 best_chromos = find_best_chromos(population)
 # print("best", best_chromos)
 population = create_new_generation(best_chromos)

 # print("new gen", population)
 avg = get_avg_count(population)
 max = maximum(population)
 print(str(i) + ";" + str(avg) + ";" + str(max))
def create_new_generation(best):
 new_generation = []
 for iter in xrange(len(best)):
 ch1, ch2 = create_childs(best)
 new_generation.append(ch1)
 new_generation.append(ch2)
 return new_generation
if __name__ ==
"__main__":
 main()

Result:

0 511 547
1 520 544
2 529 551
3 537 559
4 543 564
5 549 569
6 555 571
7 562 581
8 566 584
9 572 595

10 576 601
11 582 602
12 586 602
13 590 606
14 594 610
15 598 616
16 603 616
17 607 616
18 610 625
19 614 625
20 616 630
21 619 632
22 622 631
23 625 632
24 627 635
25 629 637
26 631 637
27 632 640
28 634 641
29 635 645
30 637 645
31 639 645
32 640 647
33 642 647
34 643 646
35 644 647
36 645 647
37 645 647
38 645 647
39 646 647
40 647 647
41 647 648
42 647 648
43 647 648
44 647 648
45 647 648
46 647 648
47 648 648
48 648 648
49 648 649

