Modern intelligent I'T
Lab 1 (07.09.2016)
AKkira Imada
Student — Yauhen Sampir(AI-10)

All one problem
We created a random genes and over 56 iterations randomly mated
individuals from the best half of the generation.

Result graph

1000
900
800
700
600
500
400
300
200
100

0
1357 911131517192123252729313335373941434547495153555759

Best chromosome in 1 generation:

110011101000101101111110011011010000010111001101100101110001010
101001010010000010001101010111010101101110010111110100100011101010
010100001000111100011110110000111100100001001101010001101101100111
110001000110010101000100110100111101010001100000001011011011111000
111100011100100111000001000011001011100000110100001111010011011000
011100100001100111100000101000000111110111100110101010110111011011
011100110010011101011011011000000001001111110011111000011001001000



010011101000010011110101100011010001010101111110000111101100100100
101110110110000101000111110100001011111001011110000101100011100001
010111000011111001111001011100111111110100111001011100111100111111
100101000111001101101001000011011000100101100100110101111110001101
101000111111001010100101011001000110100100101000000011101101101000
010011110111110010011101011100111111110111110011000110111111111100
101100110110000010110100001001010000111010011001110100101100011000
100100001010010010010101100100111101011000011101111001111101110111
1010011000110

Result chromosome on 56 iteration

[1111r10111111111110111111111101111110111111111101 1111111111111
1orr111111110111101111111101 1111111110111 11111101 111111111011 1111
[rrrr111102211111111111111111011111111111101 111111111111 1101 111111
rrrrrrr111211111101111111111111111011010111111101 11111101 11111111111
orrrrr111011111111111111101 1111111111101 11111111011 111111 11011111
rrrrrrr1112111111101111110111rrrrr1111111101 111 IIIIIIIIIIIIILILL
1110111111101 11111111111101111111101111101 111111111101 10111111111
rrrrrrra222222211111111111110111111111111101 111101 1111111111111
orrrrr111111110111101 111111011111 1111111011211111111110110110111111
[rrrr1111110111111111110111111101111101 1111111111111 1101 1111111111
rrrrrrra22222220100rrrrr1111111011111111101 11011111111
rr1o1111112202121111111111111101111r L IIIIIIILIIIIIILIIIIIOIITL
orrrr1o111111110111101 1111111111101 1201111111 LLLLLLILLLLLLLL
[rr1111111101111110111101 111111111 111111111101 111111101 11111111101
I11111111110111111011111110111110111111110111101111111110101111101
[111111111111

Source code of program

() =>{

"use strict”;

const populationCount = 100,
genSize = 1000,
itterationsCount = 50;

let generation = generateGeneration(populationCount, genSize),
itterationNum = 9;

for (let i = @; ++1i < itterationsCount;) {
generation = generation.sort((genl, gen2) => {
return calcOnes (gen2) - calcOnes(genl);



s

logGeneration(generation);

generation = nextGeneration(generation);

}

logGeneration(generation);
return;

function generateGeneration(count, size) {
let generation = [];
for (let i = -1; ++i < count;) {
let gen = [];
for (let j = -1; ++j < size;) {
gen.send(getRandomBinary());
}

generation.send(gen);

}

return generation;

}

function calcOnes(gen) {
let count = 0;
for (let i = -1; ++i < gen.length;) if (gen[i]) count++;
return count;

}

function nextGeneration(parentGeneration) {

let repeatCount = populationCount / 2,
newGeneration = [];

for (let i = ©; ++i < populationCount;) {
let firstIndex = getRandomInt(@, repeatCount),

secondIndex = getRandomInt(@, repeatCount);
newGeneration.send(...crossover(parentGeneration[firstIndex],
parentGeneration[secondIndex]));

}

return newGeneration;

}

function crossover(firstParent, secondParent) {
let crossIndex = getRandomInt(1l, firstParent.length);
let firstPartFirst = firstParent.slice(®, crossIndex),
secondPartFirst = firstParent.slice(crossIndex, firstParent.length),
firstPartSecond = secondParent.slice(®, crossIndex),
secondPartSecond = secondParent.slice(crossIndex, secondParent.length);

return [firstPartFirst.concat(secondPartSecond),
firstPartSecond.concat(secondPartFirst)];

}

function getRandomBinary(min, max) {
return Math.round(Math.random());

}



function getRandomInt(min, max) {
return Math.floor(Math.random() * (max - min)) + min;

}

function logGeneration(generation) {
let average = 0;
for (let i = -1; ++i < generation.length; i++) average +=
calcOnes(generation[i]);
average = Math.floor(average / generation.length);
console.log(average);

}
NO;



