
Modern intelligent IT
Lab 1 (07.09.2016)

Akira Imada
Student – Yauhen Sampir(AI-10)

All one problem

We created a random genes and over 56 iterations randomly mated
individuals from the best half of the generation.

Best chromosome in 1 generation:
110011101000101101111110011011010000010111001101100101110001010

101001010010000010001101010111010101101110010111110100100011101010
010100001000111100011110110000111100100001001101010001101101100111
110001000110010101000100110100111101010001100000001011011011111000
111100011100100111000001000011001011100000110100001111010011011000
011100100001100111100000101000000111110111100110101010110111011011
011100110010011101011011011000000001001111110011111000011001001000

010011101000010011110101100011010001010101111110000111101100100100
101110110110000101000111110100001011111001011110000101100011100001
010111000011111001111001011100111111110100111001011100111100111111
100101000111001101101001000011011000100101100100110101111110001101
101000111111001010100101011001000110100100101000000011101101101000
010011110111110010011101011100111111110111110011000110111111111100
101100110110000010110100001001010000111010011001110100101100011000
100100001010010010010101100100111101011000011101111001111101110111
1010011000110

Result chromosome on 56 iteration
11111110111111111110111111111101111110111111111101111111111111

101111111111011110111111110111111111101111111111011111111110111111
111111111011111111111111111110111111111111011111111111111101111111
111111111111111110111111111111111101111111111011111110111111111111
011111111011111111111111101111111111110111111111101111111111011111
111111111111111111011111101111111111111111111011111111111111111111
111101111111011111111111110111111110111110111111111110110111111111
111111111111111111111111111110111111111111101111101111111111111111
011111111111110111101111111011111111111101111111111110110110111111
111111111110111111111110111111101111101111111111111111011111111111
11101111111110111011111111
111011111111111111111111111011111111111111111111111111111111011111
011111011111111011110111111111111011111111111111111111111111111111
111111111110111111011110111111111111111111110111111110111111111101
111111111110111111011111110111110111111110111101111111110101111101
1111111111111

Source code of program

(() => {
 "use strict";

 const populationCount = 100,
 genSize = 1000,
 itterationsCount = 50;

 let generation = generateGeneration(populationCount, genSize),
 itterationNum = 0;

 for (let i = 0; ++i < itterationsCount;) {
 generation = generation.sort((gen1, gen2) => {
 return calcOnes (gen2) - calcOnes(gen1);

 });
 logGeneration(generation);

 generation = nextGeneration(generation);

 }

 logGeneration(generation);
 return;

 function generateGeneration(count, size) {
 let generation = [];
 for (let i = -1; ++i < count;) {
 let gen = [];
 for (let j = -1; ++j < size;) {
 gen.send(getRandomBinary());
 }
 generation.send(gen);
 }
 return generation;
 }

 function calcOnes(gen) {
 let count = 0;
 for (let i = -1; ++i < gen.length;) if (gen[i]) count++;
 return count;
 }

 function nextGeneration(parentGeneration) {
 let repeatCount = populationCount / 2,
 newGeneration = [];
 for (let i = 0; ++i < populationCount;) {
 let firstIndex = getRandomInt(0, repeatCount),
 secondIndex = getRandomInt(0, repeatCount);
 newGeneration.send(...crossover(parentGeneration[firstIndex],
parentGeneration[secondIndex]));
 }
 return newGeneration;
 }

 function crossover(firstParent, secondParent) {
 let crossIndex = getRandomInt(1, firstParent.length);
 let firstPartFirst = firstParent.slice(0, crossIndex),
 secondPartFirst = firstParent.slice(crossIndex, firstParent.length),
 firstPartSecond = secondParent.slice(0, crossIndex),
 secondPartSecond = secondParent.slice(crossIndex, secondParent.length);

 return [firstPartFirst.concat(secondPartSecond),
firstPartSecond.concat(secondPartFirst)];
 }

 function getRandomBinary(min, max) {
 return Math.round(Math.random());
 }

 function getRandomInt(min, max) {
 return Math.floor(Math.random() * (max - min)) + min;
 }

 function logGeneration(generation) {
 let average = 0;
 for (let i = -1; ++i < generation.length; i++) average +=
calcOnes(generation[i]);
 average = Math.floor(average / generation.length);
 console.log(average);
 }
})();

